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Abstract

High throughput sequencing has previously identified differentially expressed genes

(DEGs) and enriched signalling networks in human myometrium for term (�37 weeks) ges-

tation labour, when defined as a singular state of activity at comparison to the non-labouring

state. However, transcriptome changes that occur during transition from early to established

labour (defined as�3 and >3 cm cervical dilatation, respectively) and potentially altered by

fetal membrane rupture (ROM), when adapting from onset to completion of childbirth,

remained to be defined. In the present study, we assessed whether differences for these

two clinically observable factors of labour are associated with different myometrial transcrip-

tome profiles. Analysis of our tissue (‘bulk’) RNA-seq data (NCBI Gene Expression Omni-

bus: GSE80172) with classification of labour into four groups, each compared to the same

non-labour group, identified more DEGs for early than established labour; ROM was the

strongest up-regulator of DEGs. We propose that lower DEGs frequency for early labour

and/or ROM negative myometrium was attributed to bulk RNA-seq limitations associated

with tissue heterogeneity, as well as the possibility that processes other than gene transcrip-

tion are of more importance at labour onset. Integrative analysis with future data from addi-

tional samples, which have at least equivalent refined clinical classification for labour status,

and alternative omics approaches will help to explain what truly contributes to transcriptomic

changes that are critical for labour onset. Lastly, we identified five DEGs common to all

labour groupings; two of which (AREG and PER3) were validated by qPCR and not differen-

tially expressed in placenta and choriodecidua.
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Introduction

Understanding how parturition (i.e. the process of birth) is initiated, specifically how the myo-

metrium (uterine smooth muscle) is activated to generate the contractions of labour, is essen-

tial if we are to reduce rates of adverse maternal and fetal/neonatal outcomes associated with

aberrant timing of birth, such as preterm birth and prolonged pregnancy. Preterm birth (i.e.

birth prior to 37 weeks of gestation) affects 10–15% of pregnancies worldwide and is the lead-

ing cause of death for children under the age of 5 years (including neonates and infants) [1].

The majority (~70%) of preterm births occur spontaneously without clear etiology or cause

[2]. Prolonged pregnancy (>41 weeks of gestation; late and post term) is also problematic as it

increases the risk of stillbirth and significant neonatal morbidity [3]. Current clinical strategies

to prevent preterm labour, stop preterm labour after it has started, or induce labour at late/

post term pregnancy are relatively unsuccessful for improving maternal and neonatal out-

comes [4, 5]; this is mostly due to our incomplete understanding of the physiological process

of term labour and the pathological mechanisms that result in its mistiming.

Human labour can be clinically divided into two distinct phases: (i) ‘early’ phase, which is

characterised by cervical effacement, with increasing frequency/intensity of uterine contrac-

tions and�3 cm cervical dilatation, and (ii) ‘established’ phase, which is characterised by regu-

lar, strong uterine contractions and>3 cm cervical dilatation. Rupture of fetal (amniotic and

chorionic) membranes (ROM), which decreases intrauterine pressure with release of (cyto-

kines-containing) amniotic fluids, occurs after contractions have initiated for most pregnan-

cies [6]. Transcriptional changes responsible for initiating uterine contractions to start

parturition are more likely to be detected in myometrium samples obtained during early

labour, whereas consequential changes are expected to dominate observations for established

labour; whether ROM can alter the myometrial transcriptome irrespective of labour status

defined by cervical dilatation has not been previously determined. In fact, most published

myometrium transcriptome studies [7–17] have compared samples without clear differential

analysis for these factors of labour and, in some cases, samples were obtained from women

after clinical interventions to artificially augment the process; both shortfalls have potential to

obscure the identities of true (i.e. endogenous) labour initiators [18, 19].

Previously, we used whole tissue (‘bulk’) RNA-seq to obtain a transcriptomics dataset for

myometrial biopsies from singleton pregnant women at term gestation, who were clinically

classified as (i) not in labour (TNL), (ii) in early phase labour (TEaL) or (iii) in established

phase labour (TEsL), which has already been used for an integrated analysis with those from

two other myometrium-based studies (one also RNA-seq [20] and another that used microar-

rays [15]). Although this identified parturition-related signalling networks from a combined

total of 33 non-labouring and 38 labouring women [21], the data from our TEaL and TEsL

samples were combined as one labour group so that the impact of cervical dilatation, as well as

ROM, were not differentiated. Thus, it remained unclear which genes and signalling networks

were most likely to be responsible for starting the process of labour.

In the present study, we applied a different bioinformatics approach to only our dataset to

assess transcriptomic changes that occur in the myometrium at different stages of physiologi-

cal labour. We specifically investigated whether refining classification of term labour by cervi-

cal dilatation or ROM status would result in different profiles of DEGs and enriched gene

ontology (GO) terms. Our observations highlight factors of myometrial tissue heterogeneity,

which will be discussed for the intention of improving design of future omics-based studies.

Additionally, we used a new (‘second’) sample cohort to validate five DEGs, which were identi-

fied from our RNA-seq cohort during the present study to be common to all our labour classi-

fications of interest. We also determined to what extent these labour-associated DEGs of
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interest were distinct to myometrium, when compared to their expression patterns in cohort-

matched placenta and choriodecidua.

Materials and methods

Ethical approval

Myometrium, placenta and choriodecidua biopsies from women undergoing Caesarean sec-

tion with singleton pregnancies at term (37+3–41+1 weeks) gestation were obtained with writ-

ten consent in accordance with the Declaration of Helsinki guidelines, and with approval from

the Brompton and Harefield Research Ethics Committee (London, UK; Ethics No. 10/H0801/

45).

Study setting and participant selection

Setting. The study was carried out in Chelsea & Westminster Hospital NHS Foundation

Trust, a tertiary referral teaching hospital in London, England, UK.

Participants. All women in the study underwent Caesarean section following medical

advice provided by their clinical care team at Chelsea & Westminster Hospital. Following this,

recruitment to the study and related documentation of clinical data were conducted by obste-

tricians (clinical research fellows and consultants) and a postdoctoral scientist within the

research term.

Subject categorisation. Participants were firstly categorised as TNL, TEaL or TEsL, as

described previously for the RNA-seq cohort [21], for all 38 women in the present study.

Briefly, labour was defined by the presence of both regular palpable uterine contractions (�1–

2 per 10 minutes; assessed using cardiotocography) and progressive cervical dilatation

(assessed using digital examination) [22]; TNL women presented with no palpable uterine

contractions and a closed cervix. Labouring women were further categorised as either TEaL

(�3 cm dilated at cervix; both cohorts) or TEsL (>3 cm dilated at cervix; RNA-seq cohort

only) immediately prior to Caesarean section. Additionally, ROM status of labouring women

was determined during speculum examination of the vaginal cavity prior to Caesarean section.

For the present study, women were categorised as labouring without ROM (TL-ROM) if ROM

was documented as present for�1 hour (i.e. ROM negative or ROM occurred in the operating

theatre), or labouring in the presence of ROM (TL+ROM) if ROM occurred >1 hour, prior to

fetal delivery.

Exclusion criteria. For both cohorts, women with diabetes (gestational, type I and type

II), preeclampsia, obstetric cholestasis, signs of an infection, who were administered drugs for

labour induction or augmentation (i.e. prostaglandins and oxytocin), or who were having Cae-

sarean section for failure to progress were excluded.

Study duration. Time taken to obtain all samples for the RNA-seq (n = 22) and second

(n = 16) cohort was 17 and 6 months, respectively.

Tissue samples collection

Myometrium biopsies from the upper edge of Caesarean section incision, made to the lower

uterine segment, were excised prior to completion of suturing after fetal and placental delivery;

all participating pregnancies resulted in live births. Biopsies of placenta (maternal side; region

adjacent to umbilical cord insertion) and chorionic membrane (after manual separation from

amniotic membrane and without removing decidua; i.e. choriodecidua) were collected after

their routine clinical checks were completed outside of the operating theatre. Myometrium

and placenta biopsies were immediately washed with ice-cold sterile Dulbecco’s
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phosphate-buffered saline (Sigma-Aldrich, Dorset, UK), dissected into ~3 mm3 pieces, treated

with RNAlater (Sigma-Aldrich) overnight at 2–4˚C and transferred into -80˚C storage prior to

RNA extraction, as described (for myometrium) previously [21]; the same process was under-

taken for choriodecidua except dissected tissues were flash frozen in liquid nitrogen instead of

using RNAlater.

RNA extraction, library preparation, sequencing and data processing for

RNA-seq

RNAlater-treated myometrial tissues were used for RNA extraction as described previously

[21], along with RNA quality assessment, preparation of cDNA libraries and strand-specific

RNA-seq; the latter utilised a HiSeq 2000 instrument (Illumina, San Diego, USA) to generate

an average of 42 million DNA fragments per sample (100 base pair paired-end reads; strand-

specific) and FastQC software (version 0.11.2; Babraham Institute, Cambridge, UK) was used

for quality control, all undertaken at the Imperial BRC Genomics Facility (Imperial College

London, UK). The raw dataset has been deposited into NCBI’s Gene Expression Omnibus

(GEO) with series accession number GSE80172 [21].

RNA-seq reads were aligned to the GRCh38 Homo sapiens reference genome provided by

the Ensembl project (release 84) [23] using HISAT2 (version 2.1.0) [24, 25] with parameters

of–dta-cufflinks–fr–phred33 –p 4 –q. Index was built with the information about single nucle-

otide polymorphisms (SNPs) and annotated transcripts. Ensembl annotated a total of 58825

genes, which included 20465 protein-coding genes. A transcript merging procedure was

implemented to produce gene level models for expression analysis. Specifically, exons labelled

as ‘retained_intron’ were first excluded, then overlapping interval exons of each gene were

merged and a final gene level model was produced in general feature format (GFF). Only

uniquely mapped reads, where a NH:i:1 tag was present, were used to produce gene read

counts. An average of 53 million reads were obtained from each sample. More than 94.92% of

total reads were successfully aligned to the GRCh38 reference human genome and unique con-

cordant pair ratio was greater than 88.57%. In total, 37082 genes were mapped with the follow-

ing criteria: (i) at least one RNA-seq read was assigned to a gene, and (ii) a read was only

assigned to a gene when >90% of this read matched the exon regions of the gene. A gene

expression matrix and design of the experiment were provided to DESeqDataSetFromMatrix

function from DESeq2 (version 1.6.3) [26]; expression values presented in transcripts per mil-

lion (TPM) units at S1 and S2 Datasets.

Feature normalization was conducted by rlog function to transform the matrix to log2 scale

and principal component analysis (PCA) was performed by principal function to produce the

top ten principal components. DEGs between sample groups were identified using DESeq2,

edgeR (version 3.8.6) [27] and baySeq (version 2.4.1) [28] differential expression analysis pack-

ages. Raw p values were adjusted by false discovery rate (FDR) to produce q values (i.e p values

corrected to account for multiple comparisons between sample groups); a q value of 0.05 was

chosen as the cut-off for statistical significance in DESeq2, edgeR and baySeq. Fold change

(FC)�1.5 in median TPM, whereby the larger TPM was always divided by the smaller TPM,

between two sample groups of interest were used for GO enrichment and Venn diagrams; the

expression FC was calculated as a ratio of median, rather than mean, TPM to minimise impact

from large variance between samples.

Enrichment Analysis for Customised Organism (EACO) package [29] was used for its

computational pipeline to undertake statistical analysis of GO enrichment; genes with a

median TPM�1.5 in at least one of the two sample groups of paired comparison were used as

background. Fisher’s exact test was used to identify whether DEGs (foreground genes) were
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enriched in a specific GO category when compared to background genes; p values were

adjusted for multiple testing using the Benjamini-Hochberg procedure for FDR [30]. Venn

diagrams were drawn using the jvenn online tool [31] to visualise FC�1.5 DEGs lists from all

pairs of comparisons made to TNL; their accompanying gene lists were interpreted using the

Human Genome Organisation (HUGO) Gene Nomenclature Committee (HGNC) Gene Bio-

Mart online tool [32].

qPCR

Total mRNA was extracted and purified from all tissues using the TRIzol Plus RNA Purifica-

tion kit (Life Technologies, Paisley, UK). After Nanodrop quantification, 1.0 μg RNA was

reverse transcribed using the QuantiTect Reverse Transcription kit (Qiagen, Manchester, UK).

SYBR Green (Life Technologies) was used for qPCR with a Rotor-Gene Q thermocycler (Qia-

gen); DNA denaturation, annealing and extension steps were as described previously [33], and

qPCR standards (prepared from pooled second cohort cDNA samples) were defined by copy

number. Nucleotide sequences for qPCR primers are listed in Table 1, which were designed

using NCBI Primer-BLAST [34] and purchased from Life Technologies. Data for cohort-

matched samples were acquired during the same set of qPCR cycles for each pair of primers so

that relative expression patterns were comparable between tissue types. Each DEG was nor-

malised to two housekeeping genes, β2-microglobulin (B2M) and ribosomal protein L19

(RPL19); the geometric mean of these normalised copy numbers was calculated for each sam-

ple and all subsequently log10 transformed for data presentation.

Statistical analyses

Prism 8.0 (GraphPad, San Diego, USA) was used for statistical analyses of patient

demographics and qPCR data; their fit to normal distribution was assessed using the Shapiro-

Wilk test. For patient demographics, data were analysed using non-parametric two-tailed

Table 1. Primers for qPCR.

Name Forward (F) and Reverse (R) Primer Sequence

(5’ to 3’)

RefSeq Accession Number PCR Product Size

(bp)

AREG F: tgtcgctcttgatactcggc NM_001657 173

R: aggcatttcactcacagggg

LIF F: gccacccatgtcacaacaac NM_002309 140

R: gccacatagcttgtccaggt

LILRA5 a F: cacgtgcaggcagggaa NM_021250; NM_181879 159

R: ctgtgtgtcccagggttctg

NAMPT F: ggagcatctgctcacttggt NM_005746 155

R: tcatggtctttcccccaagc

PER3 F: atggcagtgagagcagtcct NM_001289862; NM_001289861; NM_001289863; NM_016831; NM_001289864;

NM_001377276; NM_001377275

157 / 211

R: aatcccatggacagtgtgct

B2M F: tgggtttcatccatccgaca NM_004048 160

R: acggcaggcatactcatctt

RPL19 F: caggcacatgggcataggtaa NM_000981; NM_001330200 165

R: ttcaccttcaggtacaggct

a LILRA5 can be expressed as four different isoforms; we have presented data using primers designed for the mRNA sequences of isoforms 1 & 3 (also known as LIR9m1

& LIR9s1) because our primers for isoforms 2 & 4 (LIR9m2 & LIR9s2) produced poor qPCR product yield; we were unable to design primers that could detect mRNA

sequences that were common to all four LILRA5 isoforms.

https://doi.org/10.1371/journal.pone.0260119.t001
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Mann-Whitney or Kruskal-Wallis (Dunn’s post hoc) test. For qPCR data, all geometric mean

values were log10 transformed to permit parametric analysis (of lognormal populations) using

a two-tailed Welch’s t test or Brown-Forsythe & Welch (Dunnett’s T3 post hoc) ANOVA. Sta-

tistical significance was identified as p�0.05 and p values from comparisons between�3

groups were adjusted for multiplicity of pairings.

Results

Participant demographics and clinical characteristics

Demographic and clinical characteristics details for all participants are summarised in Tables 2

and 3 (RNA-seq cohort [21]; n = 22) and Table 4 (second cohort; n = 16), where reasons for

Caesarean section are presented.

DEGs associated with labour classified by status of cervical dilatation

To evaluate the overall impact of cervical dilatation (Table 2) on myometrial transcriptome

profiles, samples from women within the RNA-seq cohort were grouped as TNL (n = 8), TEaL

(n = 8) and TEsL (n = 6). Median (and range) of RNA integrity numbers (RINs) were 7.9

(TNL; 7.2–8.3), 7.6 (TEaL; 6.7–7.9) and 8.0 (TEsL; 7.6–8.2). PCA visualisation of variance [35]

Table 2. Patient demographics for myometrium & placenta biopsies of the RNA-seq cohort—Grouped by phases of labour as determined by cervical dilatation.

Term No Labour (TNL, No Cervical

Dilation; n = 8)

Term Early Labour (TEaL,�3 cm

Cervical Dilation; n = 8)

Term Established Labour

(TEsL, >3 cm Cervical

Dilation; n = 6)

p Values from Kruskal-

Wallis Test (All

Groups)

Maternal Age (Years;
Median & Range)

34.0 (27–39) 35.5 (29–38) 32.5 (29–37) 0.529

Gestational Age
(Weeks+Days; Median &
Range

39+0 (38+5–40+0) 40+0 (37+3–40+5) 39+0 (38+3–41+1) 0.866

Gravida (Median & Range) 1 (1–4) 2 (1–4) 2 (1–6) 0.671

Parity (Median & Range) Viable = 0 (0 to 1)

Non-viable & abortus = 0 (0 to 3)

Viable = 1 (0 to 2)

Non-viable & abortus = 0 (0 to 2)

Viable = 1 (0 to 1)

Non-viable & abortus = 0 (0 to

3)

0.596

0.770

Booking Body Mass Index
(BMI, kg/m2; Median &
Range)

21 (19 to 25) 22 (19 to 24) 20 (19 to 21) 0.051 (Dunn’s post hoc:
TEsL vs TEaL = 0.050)

Ethnicity (as self-specified
by participant)

• White European = 3 British

• White other = 1 North American

(USA)

• Stated as ‘other’ = 1 unspecified

• Not stated = 3

• White European = 4 British, 1

Russian

• White other = 1 Brazilian

• Mixed ethnicity = 1 unspecified

• Not stated = 1

• White European = 3 White

British, 1 unspecified

• White other = 1 South

African

• Mixed ethnicity = 1 White &

Black Caribbean

n/a

Reason for Caesarean
Section

• Breech = 3

• Maternal request: Personal

choice = 1; Previous traumatic

delivery = 2; Tocophobia = 2

• Breech = 3

• Fetal distress = 1

• Maternal request: Previous

Caesarean = 3; Previous

traumatic delivery = 1

• Breech = 4

• Fetal distress = 1

• Maternal request: Previous

traumatic delivery = 1

n/a

Rupture of Fetal
Membranes

None Spontaneous = 2; Artificial = 1 Spontaneous = 4; Artificial = 1 n/a

Time of Birth by Caesarean
Section (hh:mm, 24 h clock
format)

09:46, 09:56, 10:07, 10:54, 11:58,

12:25, 13:23, 13:32

01:45, 06:57, 15:02, 15:10, 18:33,

20:02, 20:12, 22:08

06:16, 07:28, 10:19, 11:00, 12:26,

23:25

0.306

https://doi.org/10.1371/journal.pone.0260119.t002
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at whole transcriptome level (Fig 1) showed TNL was the group with biological replicates that

shared greatest similarity to each other. In contrast, biological replicates for TEaL broadly

formed two clusters, whereby half mostly overlapped with TNL and the other half were more

similar to TEsL samples; TEsL whole transcriptome profiles showed relatively less overlap with

TNL than TEaL samples.

DESeq2, edgeR and baySeq analysis were combined to identify statistically significant

DEGs, which were consistently identified as differentially expressed despite high variance

between overall transcriptome profiles. DEGs with a q value (i.e. FDR-adjusted p value)�0.05

in at least two of these methods was defined as a ‘shared’ potential DEG. To remove back-

ground noise derived from genes with a low expression level but a high FC for each two-group

comparison, these shared DEGs were filtered according to the following rationale: if their

median TPM was <1 in any one of the two sample groups, they were only designated as a

‘robust’ DEG for further analysis if FC was still�1.5 when this median TPM value was artifi-

cially set to 1 [36]. Total numbers of DEGs, both before and after this FC�1.5 filtering, are

shown in Table 5 (full lists of filtered DEGs in S1 Dataset). TEsL vs TNL was associated with

5.9 (before FC�1.5 filtering) and 7.6 (after FC�1.5 filtering) fold more DEGs than TEaL vs
TNL; thus, the further the progress of cervical dilatation, the more differential gene expression

occurred in the myometrium at labour (albeit a small proportion of all genes that contribute to

the total myometrial transcriptome).

Table 3. Patient demographics for myometrium & placenta biopsies of the RNA-seq cohort—Grouped by status of fetal membrane rupture (ROM).

Term No Labour (TNL, No Cervical

Dilation; n = 8)

Term Labour with Absence of

ROM (TL-ROM; n = 8)

Term Labour with Presence of

ROM (TL+ROM; n = 6)

p Values from

Kruskal-Wallis Test

(All Groups)

Maternal Age (Years;
Median & Range)

34.0 (27–39) 35.0 (30–38) 32.5 (29–37) 0.552

Gestational Age
(Weeks+Days; Median &
Range)

39+0 (38+5–40+0) 40+0 (37+3–41+1) 38+4 (38+3–40+3) 0.260

Gravida (Median & Range 1 (1–4) 2 (1–6) 2 (1–4) 0.547

Parity (Median & Range) Viable = 0 (0 to 1)

Non-viable & abortus = 0 (0 to 3)

Viable = 1 (0 to 2)

Non-viable & abortus = 0 (0 to 3)

Viable = 1 (0 to 1)

Non-viable & abortus = 0 (0 to 2)

0.596

0.605

Booking Body Mass Index
(BMI, kg/m2; Median &
Range)

21 (19 to 25) 21 (19 to 24) 21 (20 to 23) 0.893

Ethnicity (as self-specified by
participant)

• White European = 3 British

• White other = 1 North American

(USA)

• Stated as ‘other’ = 1 unspecified

• Not stated = 3

• White European = 4 British, 1

Russian

• White other = 1 South African

• Mixed ethnicity = 1 White &

Black Caribbean

• Not stated = 1

• White European = 3 British, 1

unspecified

• White other = 1 Brazilian

• Mixed ethnicity = 1

unspecified

n/a

Reason for Caesarean
Section

• Breech = 3

• Maternal request: Personal

choice = 1; Previous traumatic

delivery = 2; Tocophobia = 2

• Breech = 4

• Fetal distress = 1

• Maternal request: Previous

traumatic delivery = 1;

Previous Caesarean = 2

• Breech = 3

• Fetal distress = 1

• Maternal request: Previous

traumatic delivery = 1;

Previous Caesarean = 1

n/a

Rupture of Fetal Membranes None Spontaneous (<1 h) = 1

Artificial (<1 h) = 1

Spontaneous (>1 h) = 5

Artificial (>1 h) = 1

n/a

Time of Birth by Caesarean
Section (hh:mm, 24 h clock
format)

09:46, 09:56, 10:07, 10:54, 11:58, 12:25,

13:23, 13:32

01:45, 06:16, 06:57, 07:28, 11:00,

15:10, 18:33, 20:02

10:19, 12:26, 15:02, 20:12, 22:08,

23:25

0.067

https://doi.org/10.1371/journal.pone.0260119.t003
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DEGs associated with labour classified by status of ROM

To assess the overall impact of ROM on myometrial transcriptomes, using the same analyses

methods applied to labour grouped by cervical dilatation, the same RNA-seq cohort of samples

from labouring women were grouped as TL-ROM (n = 8) and TL+ROM (n = 6) instead to gen-

erate a separate output of DEGs (Table 3). Median ROM duration was ~9 hours (~4–26 hours

range) for TL+ROM, and only the artificial ROM case (sample #66; Fig 1) was>24 hours ROM

prior to Caesarean section. Median cervical dilatation was 3 cm for both TL-ROM (1–8 cm

range) and TL+ROM (2–6 cm range), which showed no statistically discernible difference

(p = 0.87) unlike cervical dilatation status at TEaL (2 cm; 1–3 cm) vs TEsL (4 cm, 4–8 cm) where

p = 0.0003. Median and range of RINs were 7.7 (TL-ROM; 6.7–8.2) and 7.8 (TL+ROM; 7.4–8.2).

PCA plot annotation for ROM status (Fig 1) showed TL-ROM samples were relatively less

distinct than TL+ROM when compared to TNL. One TL+ROM sample (labelled ‘#51’ at Fig 1)

showed no distinction in its overall transcriptomic profile from TNL samples despite being

associated with a ROM duration of ~9 hours. DEGs identification and FC�1.5 filtering for

ROM groupings were undertaken as described for cervical dilatation groupings; total DEG

numbers and full lists of filtered DEGs are provided in Table 5 and S2 Dataset, respectively.

TL+ROM vs TNL had 15.6 (before FC�1.5 filtering) and 21.3 (after FC�1.5 filtering) fold

more DEGs than TL-ROM vs TNL; thus, more myometrial genes were differentially expressed

at labour when ROM was present than absent, and ROM was associated with more DEGs than

cervical dilatation.

Differences between labour classifications at enriched GO terms

GO enrichment was undertaken with consideration of both the number of DEGs assigned to

each GO term and their expression FC values; terms for biological process (BP), molecular

Table 4. Patient demographics for myometrium, placenta & choriodecidua biopsies used as independent ‘second cohort’ for qPCR validation of RNA-seq findings.

Term No Labour (TNL, No Cervical

Dilation; n = 8)

Term Early Labour (TEaL,�3 cm

Cervical Dilation; n = 8)

p Values from Mann-Whitney

Test (All Groups)

Maternal Age (Years; Median & Range) 34.5 (31–38) 34.0 (31–42) 0.741

Gestational Age (Weeks+Days; Median &
Range)

39+1 (38+4–39+5) 38+5 (37+3–40+0) 0.152

Gravida (Median & Range) 2 (1–3) 2 (2–4) 0.094

Parity (Median & Range) Viable = 1 (0–2)

Non-viable & abortus = 0 (0–1)

Viable = 1 (0–2)

Non-viable and abortus = 1 (0–1)

0.543

0.282

Booking Body Mass Index (BMI, kg/m2;
Median & Range)

22.0 (18.1–38.0) 21.9 (19.9–23.4) >0.999

Ethnicity (as self-specified by
participant)

• White European = 2 British, 1 Bulgarian, 1

Dutch, 1 Irish, 1 Lithuanian

• Asian = 1 Armenian

• Stated as ‘other’ = 1 unspecified

• White European = 2 British, 1 Italian,

1 Irish

• Asian = 1 Indian, 1 Sri Lankan

• White other = 1 Australian, 1 South

American (Argentina)

n/a

Reason for Caesarean Section • Breech / transverse lie = 3

• Maternal request: Previous traumatic

delivery = 3

• Placenta previa = 1

• Recurrent perineal abscess and fistula = 1

• Breech = 2

• Maternal request: Previous

Caesarean = 6

n/a

Rupture of Fetal Membranes None Spontaneous = 3

Artificial = 0

n/a

Time of Birth by Caesarean Section (hh:

mm, 24 h clock format)
09:29, 09:32, 09:48, 11:15, 11:17, 11:19, 12:46,

16:39

09:13, 09:29, 10:10, 12:44, 12:57, 15:26,

15:31, 16:03

0.594

https://doi.org/10.1371/journal.pone.0260119.t004
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function (MF) and cellular component (CC) GO classes were identified. For labour grouped

by cervical dilatation, GO terms enriched from TEaL vs TNL and TEsL vs TNL for all three

classes are presented in S3 Dataset, and the top five BP terms are listed in Table 6. Immune/

inflammation-related BP terms dominated the up-regulated DEGs at both TEaL and TEsL;

whereas for down-regulated DEGs, ‘rhythmic process’ was the only enriched BP term for

TEaL and the top five BP terms for TEsL were all related to the regulation of muscle contrac-

tions. For labour grouped by ROM status, all GO terms for BP, MF and CC classes enriched

from TL-ROM vs TNL and TL+ROM vs TNL are presented in S4 Dataset, and the top five

BP terms are also listed in Table 6. As with cervical dilatation groupings, immune/

Fig 1. PCA for RNA-seq of myometrium biopsies from term pregnant women at different stages of labour. Summary by principal component

analysis (PCA) of overall differences in transcriptome profiles from human myometrium biopsies obtained from term gestation singleton pregnant

women, which were grouped by status of cervical (Cx) dilatation or fetal membrane rupture (ROM;>1 hour prior to fetal delivery) at time of Caesarean

section; sample identification numbers are shown next to their respective data points. For Cx dilatation, labouring women were grouped as either in

early (�3 cm; TEaL, n = 8) or established (>3 cm; TEsL, n = 6) labour. For ROM, women were grouped as either labouring in the absence (TL-ROM,

n = 8) or presence (TL+ROM, n = 6) of ROM. The non-labouring (TNL, n = 8) group was the same for both sets of comparisons.

https://doi.org/10.1371/journal.pone.0260119.g001

Table 5. Number of differentially expressed genes in human myometrium identified by RNA-seq for different labour states.

Condition (T2 vs T1) DESeq edgeR baySeq Shared After FC�1.5 filtering # T2 relative to T1 " T2 relative to T1

Cervical Dilatation TEaL vs. TNL 6 189 128 60 33 3 30

TEsL vs. TNL 842 403 53 354 251 58 193

TEsL vs. TEaL 0 1 11 1 0 0 0

Fetal Membrane Rupture TL-ROM vs. TNL 13 96 81 37 20 6 14

TL+ROM vs. TNL 838 701 151 578 426 43 383

TL+ROM vs. TL-ROM 2 5 5 0 0 0 0

Down-regulated (#) and up-regulated (") genes during term (37+3–41+1 weeks) gestation singleton pregnancy/labour; labour status defined at time of Caesarean section.

Abbreviations: T1, sample group 1; T2, sample group 2; FC, median fold change; ROM, fetal membrane rupture; TNL, no labour (no cervical dilatation and no ROM);

TEaL, early labour (�3 cm cervical dilatation); TEsL, established labour (>3 cm cervical dilatation); TL-ROM, labour with 0–1 h ROM; TL+ROM, labour with >1 h

ROM.

https://doi.org/10.1371/journal.pone.0260119.t005
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inflammation-related processes dominated the top five BP terms for up-regulated DEGs at

both TL-ROM and TL+ROM, some of which were the same to those enriched by TEaL and

TEsL. Contrastingly, no BP terms were enriched by DEGs down-regulated at TL-ROM,

whereas TL+ROM down-regulated DEGs enriched ‘rhythmic process’ and ‘circadian rhythm’

terms.

Unique and shared DEGs across all labour classifications

Venn diagrams (Fig 2) show the numbers of DEGs for TEaL, TEsL, TL-ROM and TL+ROM,

each relative to TNL, that were unique or shared amongst all four labour groups. For up-regu-

lated transcription, TL+ROM had the most and TL-ROM had the least unique DEGs. For

down-regulated transcription, TEsL had the most unique DEGs and none were found for both

TEaL and TL-ROM. Four up-regulated DEGs were shared between all labour classifications;

Table 6. Top five enriched gene ontology (biological processes) terms for human myometrium in different labour states.

Comparison Enriched GO terms (GO Identifier) Raw p value FDR-adjusted p value

Cervical Dilatation TEaL " vs. TNL defense response (GO:0006952) 5.13 x 10−12 3.50 x 10−9

complement activation (GO:0006956) 4.62 x 10−11 2.17 x 10−8

phagocytosis (GO:0006909) 7.94 x 10−11 2.94 x 10−8

inflammatory response (GO:0006954) 1.63 x 10−10 4.39 x 10−8

immune response (GO:0006955) 4.16 x 10−9 5.21 x 10−7

TEaL # vs. TNL rhythmic process (GO:0048511) 2.40 x 10−4 2.63 x 10−2

TEsL " vs. TNL inflammatory response (GO:0006954) 1.48 x 10−25 6.97 x 10−22

defense response (GO:0006952) 5.24 x 10−19 6.15 x 10−16

immune response (GO:0006955) 2.18 x 10−18 2.05 x 10−15

cell activation (GO:0001775) 8.90 x 10−15 5.23 x 10−12

leukocyte activation (GO:0045321) 6.06 x 10−13 1.58 x 10−10

TEsL # vs. TNL muscle contraction (GO:0006936) 1.78 x 10−4 2.75 x 10−2

cardiac conduction (GO:0061337) 1.96 x 10−4 2.75 x 10−2

action potential (GO:0001508) 2.65 x 10−4 3.01 x 10−2

membrane repolarization (GO:0086009) 6.63 x 10−4 3.76 x 10−2

membrane depolarization (GO:0051899) 1.19 x 10−3 4.84 x 10−2

Fetal Membrane Rupture TL-ROM " vs. TNL phagocytosis, recognition (GO:0006910) 6.97 x 10−12 1.14 x 10−9

phagocytosis, engulfment (GO:0006911) 1.02 x 10−10 9.97 x 10−9

defense response (GO:0006952) 1.41 x 10−6 3.17 x 10−5

endocytosis (GO:0006897) 3.49 x10-6 6.45 x 10−5

membrane organization (GO:0061024) 4.85 x 10−6 8.81 x 10−5

TL-ROM # vs. TNL N/A N/A N/A

TL+ROM " vs. TNL inflammatory response (GO:0006954) 4.28 x 10−33 2.60 x 10−29

defense response (GO:0006952) 4.10 x 10−29 1.25 x 10−25

immune response (GO:0006955) 7.38 x 10−28 1.28 x 10−24

cell activation (GO:0001775) 8.76 x 10−22 7.61 x 10−19

leukocyte activation (GO:0045321) 1.34 x 10−18 5.82 x 10−16

TL+ROM # vs. TNL rhythmic process (GO:0048511) 6.24 x 10−6 9.81 x 10−3

circadian rhythm (GO:0007623) 1.98 x10-4 3.41 x 10−2

Down-regulated (#) and up-regulated (") differential gene expression during term (37+3–41+1 weeks) gestation singleton pregnancy/labour; labour status defined at time

of Caesarean section. Abbreviations: GO, gene ontology; FDR, false discovery rate; ROM, fetal membrane rupture; TNL, no labour (no cervical dilatation and no ROM);

TEaL, early labour (�3 cm cervical dilatation); TEsL, established labour (>3 cm cervical dilatation); TL-ROM, labour with 0–1 h ROM; TL+ROM, labour with >1 h

ROM.

https://doi.org/10.1371/journal.pone.0260119.t006

PLOS ONE Impact of cervical dilatation and fetal membrane rupture at labour on myometrium transcriptome

PLOS ONE | https://doi.org/10.1371/journal.pone.0260119 November 19, 2021 10 / 22

https://doi.org/10.1371/journal.pone.0260119.t006
https://doi.org/10.1371/journal.pone.0260119


namely AREG, LIF, LILRA5 and NAMPT (S5 Dataset). Only one down-regulated DEG, PER3,

was shared between the same labour groups (S6 Dataset). Median FC and q values from differ-

ential expression analysis for these five DEGs are listed in Table 7 (summarised from S1 and

S2 Datasets).

Myometrial DEGs of all labour classifications in placenta and

choriodecidua

Myometrial AREG, LIF, LILRA5, NAMPT and PER3 mRNA abundance was assessed by qPCR

to further determine their status as common DEGs for all four classifications of labour (Fig 2)

using RNA-seq samples and those from a second cohort of women; the latter were grouped as

TNL (n = 8) and TEaL (n = 8, median 1.5 cm (1–3 cm range) cervical dilatation; comprised of

n = 5 for TL-ROM and n = 3 for TL+ROM) (Table 4). For the RNA-seq cohort, labour-associ-

ated changes to all except LILRA5 were consistent to what was observed from transcriptome

analysis albeit to different extents of ANOVA-based significance (Fig 3). For the second

cohort, where only the TEaL vs TNL comparison was considered, myometrial AREG and

PER3 expression patterns were the most consistent to those identified from RNA-seq samples

(Fig 4). PER3 and NAMPT are regulated by circadian rhythm [37] but differences in times of

fetal delivery for each labour group vs TNL were not statistically significant for both cohorts

(Tables 2–4; S1 Fig).

RNA extracts from placenta biopsies obtained from the same two cohorts of women, along

with choriodecidua available for only the second cohort, were also analysed by qPCR for their

expression of these five genes to determine whether they follow the same patterns as their

patient-matched myometrium. From this, placental mRNA levels for these five genes were

Fig 2. Grouping human myometrium FC�1.5 DEGs according to cervical dilatation or ROM status at labour. Venn diagrams generated from lists

of labour-associated up-regulated (") and down-regulated (#) differentially expressed genes (DEGs) in myometrium biopsies, which were obtained

from term gestation singleton pregnant women. Values shown only represent number of DEGs that demonstrated median fold change (FC)�1.5, when

compared to the non-labouring state (TNL, n = 8), in transcript abundance for each of type of labour, which was classified by status of cervical

dilatation or fetal membrane rupture (ROM;>1 hour prior to fetal delivery) at time of Caesarean section. For cervical dilatation, labouring women

were grouped as either in early (�3 cm; TEaL, n = 8) or established (>3 cm; TEsL, n = 6) labour. For ROM, women were grouped as either labouring in

the absence (TL-ROM, n = 8) or presence (TL+ROM, n = 6) of ROM.

https://doi.org/10.1371/journal.pone.0260119.g002
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found to not be different for all labour groups relative to TNL (Fig 5); the same was observed

for choriodecidual mRNA abundance at TEaL vs TNL comparison for the second sample

cohort.

Discussion

We used our RNA-seq dataset to show the extent to which transcriptomic analysis of myome-

trium biopsies from healthy term labouring women can produce different outcomes for differ-

ent states of cervical dilatation and ROM. Thus, our present work demonstrates that this

physiologically dynamic process [22] cannot be represented by a single state of the myometrial

transcriptome from initiation to completion. To identify signalling networks specifically

involved in ensuring that labour starts at the right time, which will be the most promising ther-

apeutic targets for preventing its mistiming, it is important for samples of interest to represent

the beginning (rather than the middle or end) of labour. This is an important consideration

for use of transcriptomics, when it is common practice for individual (non-integrated) RNA-

seq studies to comprise of 2–6 samples per group as a reasonable compromise between eco-

nomic cost and variance minimisation [38, 39]; the latter is particularly difficult for human

samples and makes stringent clinical phenotyping necessary [40, 41].

Table 7. RNA-seq summary for differentially expressed genes common to four labour classifications in human myometrium.

Condition Gene Symbol Median Fold Change (high:low TPM) Differential Expression Analysis q values

DESeq EdgeR baySeq

Cervical Dilatation TEaL vs. TNL AREG 2.97 n/a 3.55 x 10−4 2.18 x 10−3

LIF 1.51 n/a 4.86 x 10−4 1.99 x 10−4

LILRA5 2.01 n/a 5.21 x 10−3 2.69 x 10−3

NAMPT 1.54 n/a 2.85 x 10−3 4.42 x 10−3

PER3 4.06 1.77 x 10−5 4.30 x 10−6 3.98 x 10−4

TEsL vs. TNL AREG 2.68 2.22 x 10−7 2.17 x 10−8 2.29 x 10−3

LIF 2.22 1.50 x 10−3 3.23 x 10−6 3.74 x 10−4

LILRA5 3.11 4.52 x 10−5 3.52 x 10−6 5.07 x 10−3

NAMPT 2.90 3.93 x 10−5 1.00 x 10−6 1.03 x 10−2

PER3 2.42 4.34 x 10−4 1.43 x 10−4 4.85 x 10−2

Fetal Membrane Rupture TL-ROM vs. TNL AREG 2.68 4.24 x 10−4 1.70 x 10−5 2.83 x 10−3

LIF 1.85 n/a 5.35 x 10−3 7.04 x 10−3

LILRA5 2.23 n/a 1.14 x 10−2 1.56 x 10−2

NAMPT 1.66 n/a 1.42 x 10−2 4.26 x 10−2

PER3 2.84 3.83 x 10−3 2.63 x 10−4 4.69 x 10−3

TL+ROM vs. TNL AREG 3.36 3.32 x 10−3 3.28 x 10−6 2.00 x 10−3

LIF 9.71 3.53 x 10−4 5.80 x 10−8 5.61 x 10−5

LILRA5 3.11 1.26 x 10−3 1.04 x 10−5 1.30 x 10−3

NAMPT 6.01 2.31 x 10−4 3.55 x 10−7 2.18 x 10−3

PER3 2.90 3.36 x 10−5 4.11 x 10−6 4.01 x 10−3

GeneID in S1 and S2 Datasets: ENSG00000109321 (AREG), ENSG00000128342 (LIF), ENSG00000187116 (LILRA5), ENSG00000105835 (NAMPT), ENSG00000049246

(PER3). Values associated with increased (AREG, LIF, LILRA5 and NAMPT) or decreased (PER3) expression at labour relative to the non-labouring state. Labour status

defined at time of Caesarean section. Abbreviations: TPM, transcripts per million; ROM, fetal membrane rupture; TNL, no labour (no cervical dilatation and no ROM);

TEaL, early labour (�3 cm cervical dilatation); TEsL, established labour (>3 cm cervical dilatation); TL-ROM, labour with 0–1 h ROM; TL+ROM, labour with >1 h

ROM.

https://doi.org/10.1371/journal.pone.0260119.t007
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PCA, which was used to visualise overall (unfiltered) differences between transcriptome

profiles, showed a high degree of variance for myometrium biopsies from labouring women.

Relatively tighter clustering for TNL samples suggests that labour-associated variance was

caused by biological, rather than technical, factors. Upon filtering at differential expression

analysis, the absence of FC�1.5 DEGs from comparison of labour groups to each other (i.e.

TEsL vs TEaL and TL+ROM vs TL-ROM) emphasised the impact of variance specifically for

samples from labouring women. It is likely that no FC�1.5 DEGs were identified because nei-

ther labour group in each paired analysis contained sufficiently similar TPM values between

biological replicates for FCs to be consistent. Similarities between labouring samples for status

of ROM (at TEaL vs TEsL) or cervical dilatation (at TL+ROM vs TL-ROM) may have mini-

mised differences at PCA. High variance may also be explained by human myometrial tissue

heterogeneity, which arises from its physiological state, specifically distribution of functional

output (i.e. contractile activity) at organ level, and/or cell type diversity during labour.

Functional heterogeneity at the myometrium has been evidenced by studies that measured

in vivo labour contractions, which showed that they occur at discreet and randomly localised

Fig 3. Relative mRNA abundance determined by qPCR for transcriptomics-identified myometrial DEGs common to four labour classifications in

RNA-seq cohort tissues. Log10 transformed qPCR data (mean with standard deviation; n = 6–8) for myometrial mRNA levels of genes identified by

RNA-seq (Fig 2) to be differentially expressed (DEGs) for all four classifications of labour, when compared to the non-labouring state (TNL), in the

same biopsies. For cervical dilatation, labour was classified as early (�3 cm; TEaL) or established (>3 cm; TEsL) at time of Caesarean section. These

TEaL and TEsL samples were alternatively classified by fetal membrane rupture (ROM) status, whereby either ROM was absent (TL-ROM) or present

(TL+ROM) for>1 hour prior to fetal delivery, to assess the effect of ROM irrespective of cervical dilatation. All data for DEGs of interest were

normalised to both β2-microglobulin (B2M) and ribosomal protein L19 (RPL19). Brown-Forsythe & Welch ANOVA (Dunnett’s T3 post-hoc) was used

for statistical analyses of TEaL / TEsL vs TNL (a p�0.05, aa p�0.01) and TL-ROM / TL+ROM vs TNL (b p�0.05, bb p�0.01).

https://doi.org/10.1371/journal.pone.0260119.g003
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regions of the uterus, rather being evenly distributed in force and frequency across the entire

organ, especially during its onset [42, 43]. Such unpredictable distribution of myometrial con-

tractility, especially at the beginning of labour, makes it difficult to confirm whether the 60–

100 mg tissue samples used for RNA-seq were all representative of uterine regions that were

activated or quiescent to the same extent for each set of biological replicates [44]; their overall

transcriptome differences may thus reflect their difference in activation status. Cell type het-

erogeneity also exists in the myometrium, which consists of mostly myometrial smooth muscle

cells but also contains leukocytes, Cajal-like interstitial cells, fibroblasts and vascular smooth

muscle cells [45–47]. Bulk RNA-seq is not designed to delineate the transcriptomes of different

cell types. Thus, our findings support the use of single cell (sc)RNA-seq [48–50] and “compu-

tational deconvolution” [51, 52], ideally in an integrative manner [53], to determine whether it

is tissue function and/or cell population heterogeneity that impacts on human myometrial

transcriptome profiling the most at labour.

Myometrial DEGs identification showed labour mostly enhances (rather than suppresses)

transcriptional activity and ROM is its biggest driver. GO analysis was only used for robust

DEGs that were most consistent in their expression patterns despite apparent sample heteroge-

neity. Enrichment of immune/inflammation-related GO terms by up-regulated DEGs for all

labour groups was expected because parturition is generally accepted as an inflammatory pro-

cess [46, 54–56]. Cells of the immune system, along with those of the reproductive tissues, can

Fig 4. Relative mRNA abundance determined by qPCR for transcriptomics-identified myometrial DEGs common to TEaL in second cohort

tissues. Log10 transformed qPCR data (mean with standard deviation; n = 7–8) for myometrial mRNA levels of genes identified by RNA-seq (Fig 2) to

be differentially expressed (DEGs) during early phase labour (defined as�3 cm cervical dilatation; TEaL), when compared to the non-labouring state

(TNL), in biopsies obtained from a cohort of term gestation singleton pregnant women separate to those in the RNA-seq cohort. All data for DEGs of

interest were normalised to both β2-microglobulin (B2M) and ribosomal protein L19 (RPL19). Two-tailed Welch’s t-test was used for statistical analysis

of TEaL vs TNL (�� p�0.01, ���� p�0.0001).

https://doi.org/10.1371/journal.pone.0260119.g004
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Fig 5. Placenta and choriodecidua tissue expression levels for transcriptomics-identified myometrial DEGs

common to four labour classifications. Log10 transformed qPCR data (mean with standard deviation) for mRNA

expression levels in placenta and choriodecidua biopsies of genes identified from myometrium RNA-seq data (Fig 2) to

be differentially expressed (DEGs) for four classifications of labour, when compared to the non-labouring state (TNL),

in biopsies from the RNA-seq (‘#1’; n = 5–8) and second (‘#2’; n = 7–8) cohorts of term gestation singleton pregnant

women. For cervical dilatation, labour was classified as early (�3 cm; TEaL) or established (>3 cm; TEsL) at time of

Caesarean section. These TEaL and TEsL samples were alternatively classified by fetal membrane rupture (ROM)

status, whereby either ROM was absent (TL-ROM) or present (TL+ROM) for>1 hour prior to fetal delivery, to assess
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release pro-inflammatory mediators [57, 58] that potentially increase the expression of myo-

metrial contraction-associated genes [59]. However, other GO terms that were also enriched

should not be ignored because immunology-related GO terms are the most well-annotated in

knowledgebases and thus can be overrepresented by GO analyses [60, 61]. For down-regulated

FC�1.5 DEGs, their low frequency for all labour groups (relative to TNL) resulted in less, or

none in the case of TL-ROM, enriched GO terms when compared to up-regulated DEGs.

Technical bias caused by insufficient GO annotation within knowledgebases may have also

resulted in lack of GO enrichment for down-regulated DEGs [62]. Afterall, there were more

enriched GO terms for up-regulated TL-ROM than down-regulated TL+ROM DEGs, despite

the former having 3.1-fold less FC�1.5 DEGs.

Down-regulated FC�1.5 DEGs did not enrich immune/inflammation-related GO terms.

Instead, rhythmic process/circadian rhythm GO terms were enriched for TEaL and TL+ROM.

Roles of circadian rhythm genes in labouring human myometrium have so far not been

directly assessed but there is rationale from related research to support focus on their contribu-

tion. Rhesus macaques in vivo spontaneous uterine contractures follow a maternal circadian

rhythm [63, 64]. A nocturnal peak in circulating oxytocin concentration has been observed in

pregnant rhesus macaques [65] and women [66]. Chronodisruption during human pregnancy

[67] has been associated with increased rates of adverse outcomes [68–71]. For TEsL, we

observed a down-regulation of GO terms associated with muscle contractions. This would

appear to suggest enhanced cervical dilatation coincides with reduced myometrial contractil-

ity, at least in the lower uterine segment where relaxation near the cervix may aid fetal expul-

sion. Alternatively, these transcriptomic changes may indicate negative feedback in response

to sufficient accumulation of proteins required to maintain contractility for the rest of the

labouring process. Proteomics and physiology-based comparisons of TEsL and TEaL will be

needed to determine whether either interpretation is true.

Only AREG, LIF, LILRA5, NAMPT and PER3 were identified as differentially expressed

throughout labour. Additional analysis using qPCR helped to demonstrate whether these five

DEGs are worthy of further investigation, especially for instances when high sensitivity tech-

niques like RNA-seq are not readily available. LILRA5 was not observed as a DEG using qPCR

and, unlike the other four DEGs, is known only to be expressed in leukocytes and other

hematopoietic cells [72]. Only AREG and PER3 were identified by qPCR as myometrial DEGs

for two different cohorts of women, which made them the most convincing DEGs for labour.

Furthermore, labour-related AREG and PER3 expression was specific to myometrium, at least

when compared to in utero adjacent choriodecidua and placenta. Lack of differential expres-

sion in placenta, which is more vascularised than myometrium, suggests changes in myome-

trial AREG and PER3 expression at labour is unlikely due to dominance of transcriptional

activity by surrounding leukocytes.

In the end, only two myometrial DEGs were confidently identified to be relevant to onset at

labour out of a possibility of 20465 protein-coding genes in the Ensembl knowledgebase;

namely AREG and PER3. A key limitation of the present study was that cervical dilatation and

ROM status groupings had to be analysed independently of each other (using the same pool of

15 samples) due to a small cohort. A larger sample cohort that would allow each TEaL and

TEsL group to be sub-divided by ROM status (rather than each being a mix of TL-ROM and

the effect of ROM irrespective of cervical dilatation. Data for all DEGs of interest were normalised to both

β2-microglobulin (B2M) and ribosomal protein L19 (RPL19). For statistical analyses of cohort #1 data, Brown-

Forsythe & Welch ANOVA (Dunnett’s T3 post-hoc) was used for TEaL / TEsL vs TNL and TL-ROM / TL+ROM vs
TNL; all p>0.05. For statistical analysis of cohort #2 data, Welch’s t-test was used for TEaL vs TNL; all p>0.05.

https://doi.org/10.1371/journal.pone.0260119.g005
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TL+ROM) could potentially reveal more distinct labour-related PCA clustering, as well as pro-

vide more certainty to the identification of DEGs associated specifically with the start of

labour. Nevertheless, there is evidence from previous research that supports further assessment

of AREG and PER3 as novel labour-related DEGs, which may make their signalling pathways

the most promising therapeutic targets for reducing the risk of labour mistiming. AREG
encodes amphiregulin, a ligand of epidermal growth factor receptors (EGFRs), which are

expressed in human uterine tissues at labour [73] and EGFR signalling was identified as rele-

vant to human parturition by previous integrative analysis [21]. PER3 is a circadian rhythm

gene, which encodes a transcriptional repressor that controls the circadian clock system in

peripheral tissues [74] and, incidentally, a genetic polymorphism within its ‘rs228669’ coding

region [74] has been linked to high risk spontaneous preterm births [75].

Conclusions

Refined sample groupings for our bulk RNA-seq dataset showed ROM, which typically occurs

after uterine contractions have initiated, has substantial effects on the myometrial transcrip-

tome. Thus, ROM, along with cervical dilatation, status needs to be defined when profiling

myometrium biopsies for investigating mechanisms of labour onset. Our findings highlight

the need to consider labour as a dynamic process that should not be represented by a single

profile of changes at the uterus. Molecular events at different stages of labour need to be differ-

entiated for its full characterisation from start to finish, which will increase the chance of dis-

covering novel therapeutic targets with the highest potential in improving obstetric outcomes

that are dependent on the timing of labour. Moving forward with the use of transcriptomics,

alternative methodologies (with integrative approach) and additional sample cohorts are

needed to determine whether our observation of low DEG numbers for the beginning of

labour (represented mostly by TEaL and TL-ROM) was due to (i) cell type-specific localisation

of labour-inducing transcriptomic changes, or (ii) changes at the proteome level or other

aspect of myometrial activity playing a more vital role at labour onset than gene transcription.

AREG and PER3 were validated by qPCR out of the five DEGs shared between all four of our

labour classifications, both of which are supported for further investigation in the context of

labour onset by rationale from the findings of previous research; it will be interesting to see

whether AREG or PER3 remain as candidate DEGs after further studies.
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