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We develop a new formulation, mathematically elegant, to detect critical points of 3D scalar images. It is based on a topological
number, which is the generalization to three dimensions of the 2D winding number. We illustrate our method by considering three
different biomedical applications, namely, detection and counting of ovarian follicles and neuronal cells and estimation of cardiac
motion from tagged MR images. Qualitative and quantitative evaluation emphasizes the reliability of the results.

1. Introduction

Critical points are very helpful for different purposes and
applications in computer vision as key points, landmark
points, anchor points, and others. In segmentation, for
example, critical points have been used to characterize
deforming areas of the brain [1] or to enhance ridges and
valleys in MR images [2]. In image matching, mappings
between the considered images are computed based on
their critical points [3, 4]. Image matching has been also
performed through the so-called top points, critical points for
which the determinant of the Hessian matrix is equal to zero
[5, 6], or through the popular Harris points [7] and the SIFT
keypoint detector [8]. Critical points have also been used in
motion estimation algorithms, where the optic flow field is
generated from a sparse set of velocities associated to multi-
scale anchor points [9, 10].

Critical point detection is an established research field.
Blom [11], for example, classifies critical points by count-
ing the sign changes between the analyzed pixels and its
neighbors in a hexagonal grid. Nackman [12] defines the
image topology in terms of slope districts. The ridge and
valley lines are described as the ascending and descending
slopes coming from saddle points. The dales and hills are
identified as districts whose lines of slope converge to/come

from the same pit/peak. These methods have been extensively
employed for 2-dimensional applications. In recent years,
there has been a strong increase of computational power, and
3D scalar images are becoming the standard data of inves-
tigation, especially in medical imaging. Three-dimensional
critical point techniques allow for a more realistic analysis
of human organ behavior. For example, tracking algorithms
applied on a 2-dimensional heart image sequence retrieve
only in-plane contractions and rotations of the cardiac walls
but miss the through-plane components. The through-plane
components are instead retrieved with 3-dimensional optic
flow approaches. In this paper, we show an application where
the presented critical point detection algorithm is embedded
in a feature point-based motion estimation technique.

In this paper, we work with a topological number (from
homotopy theory) that can locate critical points of scalar
images in an arbitrary number of dimensions. In two dimen-
sions, it reduces to the so-called winding number and has
been studied in detail in [13–15]. In physics, and in modern
cosmology in particular, the winding number appears in the
context of topological defects such as monopoles, cosmic
strings, and domain walls (see, e.g., [16] and references
therein). We consider this topological number in three
dimensions and refer to it as 3D winding number. Properties
of this approach are significant.
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(i) The 3D winding number provides information on
the character of the critical points.

(ii) The winding number is independent of the shape of
hypersurface S around which it is calculated. It is a
topological entity.

The paper is organized in the following way. After
some preliminaries (Section 2.1), we treat extensively the
theoretical aspects of the winding number in three dimen-
sions and explain the implementation of our algorithm
(Sections 2.2 and 2.3). In Sections 2.4 and 2.5, we describe
a methodology to refine the position of the retrieved critical
points, and we propose a classification of critical points based
on the winding number. Furthermore, we test the viability
of our method by considering three different biomedical
applications, namely, follicle and neuronal cell counting and
cardiac motion estimation in Sections 3.1, 3.2, and 3.3,
respectively. Finally, in Section 4, we discuss the results and
possibilities for future work.

2. Theory

2.1. Preliminaries. A critical point of a smooth function
f (x1, . . . , xn) is a point x = (x1, . . . , xn) for which the
gradient of f vanishes,∇ f |x = 0. In any other case, the point
is said to be regular. Critical points can be further classified
depending on whether the Hessian matrix at the considered
point is singular:

det(∂i∂ j f )
∣
∣
∣

x
= 0. (1)

This is obviously the case if one or more matrix eigenvalues
are zero. Such critical points are called degenerate. Other-
wise, we deal with nondegenerate critical points.

We are interested in finding and classifying critical points
of a scalar image L(x). We will do so by computing a
topological quantity ν at every point in the image. The
topological number of a d-dimensional scalar image at a
point x (with at most isolated singularities) is defined by [13]

ν =
∮

S
Φ(x), (2)

where Φ is a (d − 1)-form depending on the image intensity
and its derivatives (see, e.g., [17] for a general discussion
of differential forms). The precise definition of Φ in d
dimensions can be found in [13]. In this paper, we will only
consider the case d = 3 (further details are given in the next
section). The integration is performed on a closed, oriented
(hyper) surface S around the considered point.

An important property of Φ is the fact that it is a closed
form, dΦ = 0. If the image has no singularities in the region
V enclosed by S, the generalized Stoke’s theorem can be
applied to (2):

ν =
∮

S
Φ(x) =

∫

V
dΦ(x) ≡ 0. (3)

Therefore, the quantity ν is just zero at a regular point. At
a singular point, it takes values of kπ, with k some nonzero

integer number depending on the number of dimensions and
the character of the singularity. (This is true for d ≥ 2.)

The described number is called topological because it
does not depend on the chosen hypersurface of integration
in (2). Another important property is the fact that it is
conserved within such a hypersurface; that is, when two or
more singularities are enclosed, their topological numbers
add up. We refer to [13] for a more detailed discussion on
these and other properties of ν in an arbitrary number of
dimensions.

2.2. Winding Number in Three Dimensions. In three dimen-
sions, the integrand in equation (2) is a 2-form given by [13]:

Φ = LidLj ∧ dLkεi jk

(LlLl)
3/2 , i, j, k, l = x, y, z. (4)

Here, the indices i, j, k, l can take on values x, y, or z,
L = L(x, y, z) is the intensity function of a 3-dimensional
image, Lx,Ly ,Lz are the components of the spatial gradient
of the intensity function, ∇L = (Lx,Ly ,Lz), and ε is the
3-dimensional Levi-Civita symbol. The wedge product is
represented by ∧. In this paper, we use Einstein’s summation
convention; that is, a sum is taken over repeated indices
appearing in both subscripts and superscripts. In explicit
form, (4) reads

Φ = 2

‖∇L‖3

(

LxdLy ∧ dLz + LydLz ∧ dLx + LzdLx ∧ dLy

)

,

(5)

where ‖∇L‖ is the gradient norm. Using the following
relations:

dLi = Lixdx + Liydy + Lizdz, (6)

we can rewrite (5) as

Φ = 2

‖∇L‖3

{

dx ∧ dy
[(

LyxLzy − LyyLzx
)

Lx

+
(

LzxLxy − LzyLxx
)

Ly

+
(

LxxLyy − LxyLyx

)

Lz
]

+ dy ∧ dz
[(

LyyLzz − LyzLzy
)

Lx

+
(

LzyLxz − LzzLxy
)

Ly

+
(

LxyLyz − LxzLyy

)

Lz
]

+ dz ∧ dx
[(

LyzLzx − LyxLzz
)

Lx

+(LzzLxx−LzxLxz)Ly

+
(

LxzLyx−LxxLyz

)

Lz
]}

.

(7)
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This expression was also given in [18]. After further
inspection, we notice that it can be reformulated in the
following way:

Φ = 2

‖∇L‖3

{

dx ∧ dy
[(

∇Lx ×∇Ly

)

· ∇L
]

+ dy ∧ dz
[(

∇Ly ×∇Lz
)

· ∇L
]

+dz ∧ dx[(∇Lz ×∇Lx) · ∇L]
}

,

(8)

where ∇L = (Lx,Ly ,Lz) and

∇Lx ≡ ∂x(∇L) =
(

Lxx ,Lyx,Lzx
)

, (9)

∇Ly , ∇Lz are defined analogously. This new form is more
elegant and simpler to work with. Comparing (7) and (8) it
is also clear that the latter form will be easier to implement.
In what follows, we will therefore use expression (8) rather
than (7). In compact form, we have

Φ = 1

‖∇L‖3

(

∇Li ×∇Lj

)

· ∇Ldxi ∧ dx j , (10)

where i, j take on values x, y, or z. In this formulation, it is
trivial to check that Φ is antisymmetric as the vector product
is anticommutative.

2.3. Implementation. We study the nature of every voxel by
performing the integration of expression (8) on a 3 × 3 ×
3 cube that contains it. Note that, for each face of the cube,
only one term in (8) survives in the integration given by (2).
For example, if we integrate on a cube face with z = constant,
it is clear that dz = 0, and therefore only the first term has to
be taken into account.

One of the issues we face in the implementation is
the integration of differential forms. We make use of the
following identity for integration of differential forms in
Euclidean space [19]:

∫

Ω
f
(

x1, . . . , xn
)

dx1 ∧ ·· · ∧ dxn

= ±
∫

Ω
f
(

x1, . . . , xn
)

dx1 · · · dxn.
(11)

Here, f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn is an n-form in Rn

and Ω is an oriented domain. (If the considered differential
form has more than one component the identity simply
holds for each one of them.) Note that the integral on the
right-hand side is just the usual integral of the function
f (x1, . . . , xn). The sign on the right-hand side depends on
the orientation of the considered integration domain (+ for
positively oriented, − for negatively oriented). For example,

from (8) and (11), the integration on z = constant opposite
cube faces reads

νxy =
∫

z=const.
Φ

= 2

‖∇L‖3

(∫

up

(

∇Lx ×∇Ly

)

· ∇Ldxdy

−
∫

down

(

∇Lx ×∇Ly

)

· ∇Ldxdy
)

.

(12)

We consider the image intensity function on the faces of
a 3 × 3 × 3 cube to be L = L(xα+a, yβ+b, zγ+c), where a,
b, c are shifting indices of a plane on the cube taking on
values 0, 1, 2 and α = 1, . . . ,NBx − 2, β = 1, . . . ,NBy − 2,
γ = 1, . . . ,NBz − 2 are indices of the image volume with
NBx, NBy, and NBz representing the volume size in x, y, and
z directions. With these conventions, equation (12) can be
expressed numerically as

ν
α,β,γ
xy =

2
∑

a,b=0

(

∇Lx ×∇Ly

)

· ∇L
(

xα+a, yβ+b, zγ+2

)

−
2
∑

a,b=0

(

∇Lx ×∇Ly

)

· ∇L
(

xα+a, yβ+b, zγ
)

.

(13)

The winding numbers on planes x = constant and y =
constant can be computed in a similar way. The total winding
number for the considered cube is then

να,β,γ = ν
α,β,γ
xy + ν

α,β,γ
yz + ν

α,β,γ
zx . (14)

The numerical implementation of the 3D winding
number algorithm can be summarized in the following steps.

(i) Load scalar image L(x, y, z).

(ii) Calculate the winding number for all voxels in the
image volume

for α = 1 to NBx − 2 do
for β = 1 to NBy − 2 do

for γ = 1 to NBz − 2 do

να,β,γ = ν
α,β,γ
xy + ν

α,β,γ
yz + ν

α,β,γ
zx

end for
end for

end for

(iii) Divide the outcomes of να,β,γ by 4π.

(iv) In order to distinguish the type of critical points
retrieved (maxima or minima from saddles), extract
the sign of the Hessian matrix determinant at loca-
tions, where να,β,γ /=0.

2.4. Refinement of Critical Point Positions. Due to signal
discretization, the retrieved critical point location might not
be completely accurate (see Figure 1 for an illustration of this
issue for the 1D and 2D case). The position can be refined
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(a) (b)

Figure 1: Critical point refinement. (a) A continuum Gaussian signal in 1 dimension and the corresponding sampled signal. The sampled
signal shows maxima at two nearby positions (points in red), which are at different locations from the real maximum (point in green).
(b) Rasterized version of a 2-dimensional Gaussian signal. Red points are the retrieved maxima, whereas the green point is the true maximum
obtained after the refinement.

at subpixel level by considering the Taylor expansion of the
intensity gradient around the retrieved point:

∇L(x) =
(

Lx(xe) + (x− xe)Lxx(xe) +
(

y − ye
)

Lxy(xe)

+ (z − ze)Lxz(xe),

Ly(xe) + (x − xe)Lyx(xe) +
(

y − ye
)

Lyy(xe)

+ (z − ze)Lyz(xe),

Lz(xe) + (x− xe)Lzx(xe) +
(

y − ye
)

Lzy(xe)

+(z − ze)Lzz(xe)
)

,

(15)

where x = (x, y, z) and xe = (xe, ye, ze) denote the true and
estimated critical point locations, respectively. We can write
equation (15) in a more compact form:

Li(x) = Li(xe) +
(

j − je
)

Li j(xe), (16)

where i, j can take on values x, y, or z. The intensity gradient
at a critical point vanishes. The refined critical point position
is therefore

⎛

⎜
⎜
⎝

x

y

z

⎞

⎟
⎟
⎠
=

⎛

⎜
⎜
⎝

xe

ye

ze

⎞

⎟
⎟
⎠
−H−1(xe)

⎛

⎜
⎜
⎝

Lx(xe)

Ly(xe)

Lz(xe)

⎞

⎟
⎟
⎠
. (17)

Here, H is the Hessian matrix. Equation (17) provides the
critical point position at subpixel level and can be iterated
until the desired accuracy has been reached.

2.5. Classification of Critical Points. In three dimensions,
there are four types of nondegenerate critical points, namely,
minima, 1-saddles, 2-saddles, and maxima. They are charac-
terized by the number of negative eigenvalues of the 3 × 3

Table 1: Index and winding number of critical points in 2D.

2D Index Winding number

Minimum 0 +2π

Saddle 1 −2π

Maximum 2 +2π

Hessian matrix, the index, at the corresponding point: 0, 1,
2, or 3. Each 1-saddle (2-saddle) point is connected to two,
not necessarily distinct, minima (maxima) by integral lines.
A more detailed description of 3D saddle points can be found
in [20].

The winding number at a certain image point is given
by the integral of expression (10) on an appropriate surface
enclosing the point. The winding number of (isolated)
critical points in three dimensions takes values of 4 kπ, with
k = ±1 [18, 21]. We will argue that the winding number can
be used for classification of extrema and saddle points in 3D.
As a matter of fact, the winding number is able to distinguish
between the two types of saddle points in 3D.

In Tables 1 and 2, we summarize the explicit values for the
index and winding number of the different types of critical
points. For completeness, we treat also the 2-dimensional
case. Note that extrema in 3D can have either positive or
negative winding number, unlike the 2D case. Saddles have
positive or negative winding number as well, depending
on the type of saddle point. It is now possible to classify
critical points according to their winding number. Once the
sign has been calculated, it suffices to examine the image
intensity at the considered point and its close neighborhood
to distinguish between a minimum and a 2-saddle or a
maximum and a 1-saddle.

The proposed correspondence between the index and
winding number in three dimensions is well grounded.



International Journal of Biomedical Imaging 5

Table 2: Index and winding number of critical points in 3D.

3D Index Winding number

Minimum 0 +4π

1-saddle 1 −4π

2-saddle 2 +4π

Maximum 3 −4π

The following has been shown for a nondegenerate critical
point in an arbitrary number of dimensions [13]:

ν = sign(detH)Cd, (18)

where H is the Hessian matrix and Cd is a constant
depending only on the number of dimensions d. In three
dimensions, Cd is equal to 4π. The relation between the
winding number and the sign of the Hessian in d = 3 is given
in Table 3. This is clearly in agreement with the postulated
winding number for the different types of critical points.

3. Experiments

The proposed algorithm has been implemented in Math-
ematica [22], and it has been tested on three different
biomedical applications, namely, follicle detection, neuronal
cell counting, and cardiac left ventricle motion analysis.
In order to perform the experiments we make use of the
scale-space framework [21, 23–26]. The Gaussian scale-space
representation L : R3 × R+ of a 3-dimensional static image
x �→ f (x) ∈ L2(R3) is given by the spatial convolution with a
Gaussian kernel

L(x, s) = ( f ∗ φs
)

(x) with φs(x) = 1
4πs

exp

(

−x2

4s

)

,

(19)

where x = (x, y, z) ∈ R3 and s > 0 represents the scale. In the
remainder of the paper, the image intensity function should
be regarded as a function of both location and scale, L =
L(x, s).

3.1. Follicle Detection. Ovarian follicles are the basic eggs of
the female reproductive system. In particular, the number
of primordial follicles decreases with the age reaching a
minimum during the menopause. Therefore, follicle analysis
and counting may provide information on fertility prospects
[27–29]. At the stage of development that they can be
measured with 3D ultrasound, the human follicles present
roughly a spherical shape with a typical diameter of two to
five mm and appear darker with respect to surrounding tissue
on ultrasound images (see Figures 2 and 3) [30].

Detection and counting of follicles is usually carried out
manually by inspecting the 2D slices from a 3D data set.
This is a repetitive and tedious task which might introduce
mistakes especially in the typically noisy data sets. Robust
and automated detection of follicles is therefore useful.

In the experiments, we automatically locate and count
ovarian follicles of three different patients using ultrasound

Table 3: Correspondence between the sign of the Hessian determi-
nant and winding number for critical points in 3D.

3D Sign (detH) Winding number

Minimum + +4π

1-saddle − −4π

2-saddle + +4π

Maximum − −4π

image volumes with a size of 128 × 110 × 180, 138 ×
116 × 176, and 180 × 108 × 126 voxels, respectively.
Image acquisition has been carried out by an experienced
echographer with 3D ultrasound system Combison 5600
(Kretz Technik AG, Medicor, Austria/Korea), which has been
equipped with a 12 MHz transvaginal 3D probe of 2.2 cm.
The system performs image volume acquisition in about 2
seconds and allows to reliably detect follicles with diameter
of 3 mm or bigger. The image data were processed in order to
include only the ovary after the scanning.

In the images, the center of the follicles exhibits a local
minimum intensity. In these points, the intensity gradient
vanishes. Due to the noisy nature of the images, the data
sets exhibit several locations, where minima occur outside
the follicle structure, producing false positives. The follicle
detection algorithm consists of two main steps as follows.

(i) The 3D volume images were isotropically smoothed
using different scales.

(ii) Evaluation of the 3D winding number is carried out
in order to retrieve the follicle centers.

In this procedure, we observe a tradeoff situation for the
choice of the proper scale. We notice that follicles present
a larger structure with respect to grains of the raw data. In
the experiments, the scale is heuristically chosen sufficiently
high to avoid grain detection (see Figure 2(a), for critical
point detection at small scale), but not so high that smaller
follicles are missed. In this experiment, the results of follicles
extraction have been achieved at scale s = 9 voxels. The same
critical point detection procedure has been followed also
for the experiments on neuronal cell counting and cardiac
motion estimation.

After critical point localization, the ovarian tissue has
been manually segmented in each slice in order to create a
mask and filter out the minima retrieved outside the ovarian
boundaries (false positives) (see Figures 2(b) and 2(c)).

In the three data sets, results establish the presence of 19
follicles for patient one, 8 for patient two, and 11 for patient
three. Manual counting of an expert revealed 17 follicles for
patient one, 7 for patient two, and 10 for patient 3 ([18, page
68, Table 2, patient one, two, and three]). The computational
time for each data set at scale s = 9 is less than 5 minutes
on a PC with Intel Core 2 Duo 2 GHz processor and 4 GB
RAM. The same computer has been used to carry out
the experiments of neuronal counting and cardiac motion
estimation. For each individual, the amount of detected
follicles indicates relatively good fertility prospects according
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(a) (b) (c)

Figure 2: Follicle detection. The red dots highlight the detected minima. (a) The image shows detected minima at scale s = 2. The image is
very noisy, and the algorithm detects also the minima corresponding to noisy grains (false positives). (b) The image shows minima detected
at scale s = 9. The arrow shows a minimum detected outside the ovarian tissue (false positive), whereas the red dot inside the ovarian tissue
corresponds to the center of a follicle. (c) In this image, the false positive outside the ovarian boundaries has been filtered out.

(a) (b)

(c) (d)

Figure 3: Follicle detection. 2D slices of the 3D ultrasound image smoothed data set corresponding to one of the patients. Lighter areas
display the ovary; dark circular blobs are the follicles. Red dots indicate retrieved local minima in 3D at scale s = 9 voxels.

to [31], especially in the case of patient one. In Figures 2 and
3, retrieved minima are associated to red dots.

3.2. Neuronal Cell Counting in Cerebellum. The cerebellum is
a region of the central nervous system located in the so-called
hindbrain. It is responsible for motor activity and regulation
of muscle tone and also plays an important role in cognitive
and language functions in humans. In spite of occupying
only around ten per cent of the whole brain volume, the
cerebellum contains about fifty percent of all neurons. The
number of neurons varies depending on the age and health
condition, such as in Alzheimer’s disease [32]. Cell density
is useful biomarker; however, neuronal cell counting is often
done manually. This is a time-consuming task, where human
mistakes cannot be excluded. The eye of the observer will
perform increasingly worse at such repetitive tasks. As a
result, estimations made for large number of cells may

become unreliable. For example, the number of Purkinje
cells (the principal neurons of the cerebellum) in humans
has been estimated to be between 14 and 26 millions [33].
Automatic counting methods are therefore preferable.

Several cell counting methods can be found in the liter-
ature. They are mostly based on the cell density distribution
in a certain volume and a good guess of the scientist [33–
38]. These methods assume that the cell distribution in the
volume of reference stays uniform in the whole region of
interest. If this is not the case, such methods will not provide
a reliable outcome. The algorithm proposed in this paper
carries out automatic detection and counting without any
assumptions about the cell distribution. Therefore, it may
overcome the shortcomings of such techniques and provide
more accurate results.

In the experiments, we consider two image volumes of
neurons labeled with propidium iodide with dimensions
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20 µm

(a)

20 µm

(b)

Figure 4: Cerebellum cell counting. (a) A slice of stack 1. (b) A slice of stack 2. Red dots indicate neurons retrieved by the algorithm.

2048 × 2048 × 25 (164.5 × 164.5 × 42.7 μm) and 2048 ×
2048 × 15 (230.3 × 230.3 × 32 μm) voxels, respectively.
The images were acquired with a confocal microscope. They
correspond to two different regions of an 18-day-old rat
cerebellum. The neuron cell bodies are seen to be roughly
spherical (see Figure 4). Part of the first image volume shows
dense labeling which could not be discriminated into single
cells (see right-hand side of Figure 4(a)). As a consequence
we could not investigate the whole volume.

Neurons have been retrieved as local minima with the
proposed algorithm using scale 9 voxels, after enhancing
the blobs in the image volume using a scale-normalized
Laplacian operator. Our method retrieved 250 cells in stack 1
and 376 cells in stack 2 (Figure 4). A careful visual counting
has been carried out on the first 8 slices of stack 1 by an
expert neurobiologist, who could recognize 102 neuronal
cells. Every slice was carefully inspected in order not to count
the same cell twice and not to miss smaller cells closer to
the bigger ones. This investigation took between 20 and 30
minutes. Although our method has not been optimized for
speed purposes, it needed roughly 10–15 minutes to detect
112 neurons on the same data subset.

Additionally, we compared the algorithm outcomes with
the performance of a simple and fast technique based on the
extraction of maxima and minima taking into account the
local image intensity [21]. In this method, the intensity of
each voxel is compared with the intensity of the respective
26 neighbors. Both approaches provided similar results: 250
cells and 376 cells for stacks 1 and 2 using the 3D winding
number and 271 cells and 361 for stacks 1 and 2 using the
critical point detector based on intensities.

3.3. 3D Cardiac Motion Estimation. Cardiac disease may
strongly influence the dynamic behavior of the cardiac
muscle. Estimation and visualization of the cardiac motion
may become an important tool for diagnosis, providing

indications of progress of the disease and/or therapy. Optic
flow methods measure the apparent velocity of moving
patterns in an image sequence. At the beginning of the
1980s, Horn and Schunck [39] introduced an optic flow
approach based on brightness constancy, estimating the
motion by solving the so-called Optic Flow Constraint
Equation (OFCE). This technique, however, may not be the
preferable choice for extracting motion from tagged MR
images (see Figure 5 row 1). (The term tags refers to the
sinusoidal pattern on the MR images, introduced with the
goal to enhance the visualization of the tissue movement
[40].) For these images, the constant intensity assumption
does not hold due to tag fading under spin-lattice relaxation
time (indicated by T1).

Over the years cardiac motion estimation has become
a well-established research field. In the literature, however,
there are few optic flow algorithms for 3D cardiac images
[41, 42] due to the lack of data sets and sufficient available
computational power in the past years.

A 3D motion field exhibits expansions, contractions,
and twistings of the cardiac tissue, making the results more
realistic with respect to the ones provided by a 2D velocity
field, where the through-plane motion component is miss-
ing. In the experiments, we investigate a 3D tagged MR image
sequence of a human heart. Cardiac motion is estimated
by calculating the velocity of critical points, maxima in this
case, which are located at the tag crossings. This optic flow
technique is not based on brightness conservation; therefore,
it can be robustly applied directly on tagged MRI. In [43], a
similar 3D motion estimation procedure has been presented.
In this case, the critical points have been extracted by a
methodology based on zerocrossings.

3.3.1. Cardiac Image Data Set. The cardiac data used in the
experiments consists of 23 frames with a temporal resolution
of 30 ms, acquired by a 3D CSPAMM sequence [44]. Each
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Figure 5: Cardiac tagged MR images, frame 3. Rows 1 and 2 from left to right: Short axis view with horizontal tags, 2 long axis views with
vertical and horizontal tags, respectively. Row 3: Combination of the image planes. Row 4 displays the outcome of the combination of image
planes. The images exhibit a chessboard pattern.
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(a) (b) (c)

Figure 6: (a) The image shows a 2-dimensional slice of the 3-dimensional artificial phantom. (b) and (c) The images display the vector field
of two successive frames of the phantom.

frame presents 14 slices in the short axis and two different
long axis views (Figure 5 row 1); the images display a size of
112 × 112 pixels, with 1 × 1 mm2 of pixel resolution. The
recorded slices are perpendicular with respect to each other,
and, in the experiments, we combine them to obtain a grid
(Figure 5 rows 2, 3, and 4, resp.). Due to sparseness in the
slices, we interpolate the 14 slices in each frame in order to
obtain image voxels of 112 × 112 × 112 pixels.

3.3.2. Calculation of Velocity at Critical Points Position. As
already mentioned, we are interested in tracking the critical
points (maxima) that occur at the tag crossings of the
chessboard-like pattern displayed in row 4 of Figure 5. In this
case, we have a sequence of images, and therefore the image
intensity is also a function of time, that is, L(x(t), s, t), where
x(t) = (x(t), y(t), z(t)). The feature points move along with

the cardiac tissue, since they are part of the tags. We also
mentioned that MR tags fade due to relaxation time T1. This
property does not influence the vanishing image gradient as
long as the tags are visible, and therefore it does not affect the
maxima detection at the tag crossings.

By definition, the gradient of an image sequence
L(x(t), s, t) vanishes at critical point positions

∇L(x(t), s, t) = 0, (20)

where∇ denotes the spatial gradient and s and t represent the
scale and time, respectively. In order to calculate the velocity
at points with local maximum intensity (tag crossings) over
time, we differentiate (20) with respect to time t and apply
the chain rule for implicit functions. Hence,

V(t) = d

dt

(

∇L(x(t), s, t)T
)

=

⎛

⎜
⎜
⎝

Lxx(x(t), s, t)u(t) + Lxy(x(t), s, t)v(t) + Lxz(x(t), s, t)w(t) + Lxt(x(t), s, t)

Lyx(x(t), s, t)u(t) + Lyy(x(t), s, t)v(t) + Lyz(x(t), s, t)w(t) + Lyt(x(t), s, t)

Lzx(x(t), s, t)u(t) + Lzy(x(t), s, t)v(t) + Lzz(x(t), s, t)w(t) + Lzt(x(t), s, t)

⎞

⎟
⎟
⎠ = 0,

(21)

where d/dt is the total time derivative, T indicates transpose
and u(t) = dx/dt, v(t) = dy/dt, and w(t) = dz/dt represent
the velocity components in horizontal, vertical, and through-
plane directions. In the experiments described in this section,
we use a fixed scale s for all frames, for each experiment.
Equation (21) can be reformulated in order to extract the
velocities u, v, and w. Hence,

V(t) =

⎛

⎜
⎜
⎝

u(t)

v(t)

w(t)

⎞

⎟
⎟
⎠
= −H(x(t), s, t)−1

∂
(

∇L(x(t), s, t)T
)

∂t
,

(22)

where H represents the spatial Hessian matrix of image L.
In the literature, similar optic flow approaches that calculate
velocity estimation at feature point location using the
Hessian matrix are discussed in [9, 10, 43, 45].

3.3.3. Experiments on 3D Image Sequences. In order to
assess the accuracy of the extracted vector field, the motion
algorithm has been tested on a sine phase grid artificial
phantom (see Figure 6(a)) that exhibits contractions and
expansions (see vector fields in Figures 6(b) and 6(c)).
The phantom consists of 19 frames with resolution of
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79 × 79 × 79 voxels and tags of 9 voxels wide. The ground
truth velocity vector of the phantom is given by

VGT(t) = (uGT, vGT,wGT)

= (m− 2n · t)
(l + (m− n · t)t)

(

x− l, y − l, z − l
)

,
(23)

where x, y, z, t represent the spatial and temporal coordinates
and l, m, n are constant parameters (related to the length of
the vectors) set to 40, 4, and 0.2, respectively.

The accuracy has been described in terms of average
angular error [46]:

AAE = arccos

⎛

⎝
VGT(t)

√

uGT(t)2 + vGT(t)2 + wGT(t)2

· V(t)
√

u(t)2 + v(t)2 + w(t)2

⎞

⎠.

(24)

The motion estimation of the artificial phantom has been
carried out from frame 8 to frame 11 in order to avoid
outliers due to temporal boundary conditions and at scale
s = 3.5 voxels. The computation of the optic flow field took
roughly 5 to 10 minutes per frame. The average angular error
is AAE = 2.68, degrees and the respective standard deviation
(std) is std = 2.89 degrees.

The optic flow algorithm has also been applied on a
real sequence of 23 tagged volume MR images representing
a human beating heart. The images exhibit a resolution of
112 × 112 × 112 voxels and contained tags of 8 voxels wide.
The velocity estimation is carried out at the tag crossings,
the locations where critical points (maxima) are detected.
The computation is carried out at a fixed scale of s = 3
voxels and also took roughly 5 to 10 minutes per frame. In
Figure 7, we show the retrieved motion field for the cardiac
data set investigated in the experiments. The images display
the left ventricle in phase of contraction. After a qualitative
inspection, we notice that the algorithm retrieves a critical
point velocity in all three directions, providing valuable
information for the quantitative analysis of the patient heart’s
dynamic behavior.

4. Discussion and Conclusion

This paper investigates the 3D winding number as a effi-
cient tool to retrieve and classify critical points in volume
images. We provide a new formulation of the 3D winding
number, simplifying the mathematics and implementation
involved with respect to previous work [18]. We discuss the
advantages of the proposed technique such as its ability to
both locate and classify critical points. We carry out tests on
three different real applications (ovarian follicle and neuron
counting and cardiac motion estimation from tagged MRI).
We finally discuss the experimental results, and we show their
qualitative and quantitative reliability.

In our applications, we highlight the usefulness of
our algorithm in tedious and repetitive operations such

as particle counting. The algorithm is able to find blobs
and distinguish different cells located next to each other
in all data sets. In order to carry out manual counting,
the user may either count cells slice by slice or, to speed
up the procedure, may perform a 3D projection of the
slices and carry out manual counting. In this latest case, he
may miss certain cells that are close but behind the ones
located on the top. On the neuronal data set, for instance,
our method detected 4 cells with roughly similar in-plane
location (distance less than 3.6 μm with respect to each
other) but different height.

In the experiment with the follicles and neurons, we
highlight that our algorithm detects a similar amount
of follicles and neurons as a trained echographer and
neurobiologist, which is already a strong advantage of the
proposed method. However, critical point detection has
been carried out with a scale chosen globally. A critical
point extraction performed at small scale might detect noisy
grains (false positives). On the other hand, a critical point
search carried out at too high scales may miss locations
of follicles/neurons that present a smaller structure with
respect to the other follicles/neurons in the data set. These
problems might be avoided by choosing different scales for
follicles/neurons with different sizes. In the future, we will
carry out experiments in this direction.

In the experiments, we assume that the cells have a
roughly spherical shape. The neurons, however, have a
roughly spherical head (the soma), connected to a tail (the
axon). In this case, extremal points were sometimes found
in the axons. The algorithm may, therefore, count twice the
same cell, increasing the error of the final estimation (see
Figure 4). A way to overcome this problem would be to
take into account the geometry of the neuron and remove
outcomes coming from the axon. In future research, we will
tune the algorithm to this specific application.

So far, we have considered the winding number in the
context of scalar images. However, other applications of the
3D winding number might be investigated such as detection
of singularities in 3D vector fields [47]. These have been
proved to be helpful in the visualization of 3D flow fields
[48]. In the biomedical context, this could be applied to
improve the visualization of blood flow.

In the literature, as we already discussed, other critical
point retrieval methodologies are known. Critical points
estimation can be carried out by taking into account the
local intensity [21], where the intensity of each voxel is
compared with that of the respective 26 neighbors. In
Section 3.2, we compared the performance of the 3D winding
number algorithm with respect to that of the critical point
detection method based on local intensity estimation. Both
methods provided similar counting estimation. However,
the intensity-based method is able to locate only maxima
and minima, while the 3D winding number provides also
information for saddle points. The 3D winding number
algorithm is, therefore, preferable since it is able to charac-
terize all types of critical points. In the future, we will carry
out experiments on 3D saddle points detection, which have
interesting applications in flow visualization [49, 50]. Finally,
we will also compare the 3D winding number algorithm
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Figure 7: Three-dimensional velocity flow field of one frame of the left ventricle in phase of contraction (column 1) under 3 different views
and the correspondent cross-sections of the cardiac image volume (column 2). In column 2, the left ventricle is highlighted by white arrows.
Row 1 displays the short axis view, whereas rows 2 and 3 show the 2 long axis views. The retrieved 3-dimensional vectors illustrate with
accuracy the cardiac motion behavior and overcome shortcomings typical of the 2-dimensional optic flow methods, such as through-plane
motion detection.
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with other feature points detectors such as SIFT for 3D
applications.
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