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Cells prepare for fluctuations in nutrient availability by storing energy in the form of neutral
lipids in organelles called Lipid Droplets (LDs). Upon starvation, fatty acids (FAs) released
from LDs are trafficked to different cellular compartments to be utilized for membrane
biogenesis or as a source of energy. Despite the biochemical pathways being known in
detail, the spatio-temporal regulation of FA synthesis, storage, release, and breakdown
is not completely understood. Recent studies suggest that FA trafficking and metabolism
are facilitated by inter-organelle contact sites that form between LDs and other cellular
compartments such as the Endoplasmic Reticulum (ER), mitochondria, peroxisomes,
and lysosomes. LD-LD contact sites are also sites where FAs are transferred in a
directional manner to support LD growth and expansion. As the storage site of neutral
lipids, LDs play a central role in FA homeostasis. In this mini review, we highlight
the role of LD contact sites with other organelles in FA trafficking, channeling, and
metabolism and discuss the implications for these pathways on cellular lipid and
energy homeostasis.
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INTRODUCTION

Maintaining energy homeostasis is obligatory for cellular survival and fitness. In general, cells store
energy in the form of fatty acids (FAs) when nutrients are abundant or in excess. Stored FAs can be
released under stress conditions or when nutrients are limited, in order to be used for the synthesis
of membrane lipids or to fuel energy production. FAs are stored in the form of neutral lipids, with
triacylglycerol (TAG) and sterol esters (SE) being the most abundant in most cells. These neutral
lipids are incapable of forming membranes; therefore, they are sequestered in specific organelles
known as Lipid Droplets (LDs) that form at the ER (Fujimoto and Ohsaki, 2006; Walther et al.,
2017; Olzmann and Carvalho, 2019). LDs have a unique structure, consisting of a hydrophobic
neutral lipid core, coated by a lipid monolayer studded with proteins (Tauchi-Sato et al., 2002).
Different enzymes and proteins are targeted to the surface of LDs which reflects their functional
heterogeneity (Kory et al., 2016; Bersuker et al., 2018; Prévost et al., 2018).

LDs are dynamic organelles that are regulated in response to cellular and physiological
conditions. As the storage site of neutral lipids, LDs play a central role in energy and lipid
metabolism. LD size, number, and composition vary depending on the cell type, nutrient
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availability, and metabolic state (Thiam and Beller, 2017). LD
growth has been linked to human diseases including obesity and
hepatic steatosis (Dietrich and Hellerbrand, 2014; Xu et al., 2016;
Sans et al., 2019). In general, many cell types increase LDs number
and size when a carbon source (glucose or fats) is abundant, as
a results of increased NL production. Vice versa, under carbon
restriction, stored FAs are utilized, leading to reduction in LD size
and number. Notably, it was also reported that during prolonged
periods of nutrient deprivation when autophagy is activated, the
amount of LDs increases sequestering free FAs released during
autophagic degradation of membranous organelles. This provide
a buffering system to reduce lipotoxic accumulation of free FAs
(Nguyen et al., 2017). Furthermore, there are notable examples
where LD size and number do not correlate. For instance, in non-
alcoholic fatty liver disease hepatocytes can present with either
an increased numbers of large LDs (marcovesicular steatosis) or
very small LDs (microvesicular steatosis) (Tandra et al., 2011;
Takahashi and Fukusato, 2014). Finally, LD size and number are
influenced by cellular processes that are not necessarily related
to cellular nutrient status, such as LD fusion. These events are
mediated by specialized proteins that enrich at the interface
where LDs interact with each other (Gong et al., 2011; Xu
et al., 2016; Sans et al., 2019). For example, in adipocytes, Fsp27
promotes directional transfer of TAG from smaller to larger LDs
to promote LD growth (Gong et al., 2011).

LDs as neutral lipid storage site are instrumental in FA
metabolism, and LD contact sites are thought to play a
key role in coordinating FA synthesis, storage, release, and
breakdown. The role of LDs in FA metabolism is highlighted
under stress conditions. For example, when cells accumulate
excess FAs, efficient regulation of FAs flux to LDs is required
to prevent lipotoxicity (Listenberger et al., 2003; Petschnigg
et al., 2009). As many processes involved in energy and lipid
metabolism are not localized to LDs, close collaboration and
communication with other organelles is required. To this
extent, LDs form contact sites with various organelles (Gao
and Goodman, 2015; Schuldiner and Bohnert, 2017; Figure 1).
Primarily, LDs have contacts with the ER, which supplies the
bulk of the LD constituents. In addition, LDs form contact
sites with mitochondria, peroxisomes, other LDs, and lysosomes
(mammals) or the vacuole (yeast) (Valm et al., 2017; Shai
et al., 2018). These contacts play important roles in maintaining
energy homeostasis and balancing LD synthesis and turnover to
maintain the complex cellular needs. Additionally, LD-organelle
contacts form metabolic hubs that regulate LD biogenesis,
growth, and distribution. Interestingly, the cellular localization of
LDs and the sites of LD biogenesis have recently been indicated
to respond to the cellular metabolic state (Hariri et al., 2018;
Ugrankar et al., 2019; Henne et al., 2020). Consequently, proteins
involved in maintaining LD contact sites have been implicated in
various metabolic disorders (Herker et al., 2021).

FA metabolism requires extensive collaboration between
different intracellular organelles. Although many of the enzymes
and transporters involved in FA metabolism have been identified,
major questions remain regarding how FA metabolic pathways
are spatially organized and coordinated such that they can
respond to the diverse, ever-changing physiological demands

of cells. It has been previously proposed that the efficiency of
metabolic pathways can be enhanced by organizing sequential
enzymes of a metabolic process into transient functional
complexes called metabolons (Srere, 1987; Ovádi and Sreret,
1999). Enzymes in a metabolon cooperate and efficiently
hand-over substrates and products without releasing them
to the bulk cytosol, thereby increasing local concentrations
and stimulating metabolic reactions. This process is known
as “metabolic channeling.” To date, several proteins have
been reported to reside and function at LD-organelle contact
sites possibly functioning in the formation of neutral lipid
metabolon to locally regulate FA metabolism (Henne et al., 2020).
These proteins include lipid-transfer proteins and FA-modifying
enzymes suggesting that LD-organelle sites are specialized
cellular locales where FA metabolism is compartmentalized.
This mini review focuses on key FA metabolic processes
that occur specifically at LD-organelle contact sites. First, we
briefly overview the biochemical pathways involved in bulk
FA synthesis and metabolism. Then, we describe the current
knowledge of how these pathways and their enzymes are spatially
organized at LD-organelle contact sites. Lastly, we discuss the
implications of this organization on cellular metabolism and
lipid homeostasis.

FATTY ACID METABOLISM AT A GLANCE

Fatty Acid Synthesis, Desaturation, and
Elongation
Bulk FAs are synthesized de novo by the fatty acid synthase
(FAS) complex as acyl-CoA, and this process takes place in
the cytosol. FA synthesis starts from acetyl-CoA (C2-CoA),
which is elongated in a cyclic reaction using malonyl-CoA
(a C3-CoA) as the carbon chain donor. Malonyl-CoA is
synthesized from acetyl-CoA by the acetyl-CoA carboxylase
(ACC) enzymes, and production of this substrate is a rate-
limiting step for FA synthesis.

FA synthesis starts with ligation of the acetyl- and malonyl-
to an acyl carrier protein (ACP), by a trans-acylase enzyme.
Acetyl-ACP is elongated with the addition of two carbon atoms
in a cyclic cascade of four subsequent reactions. First, the (Cn)
acyl chain is coupled to the malonyl-ACP in a condensation
reaction, yielding 3-ketoacyl-ACP. The 3-keto group is reduced
to an alcohol, yielding 3-hydroxyacyl-ACP, which is subsequently
dehydrated to yield 2-enoyl-acyl-ACP. Finally, the C2–C3 double
bond is reduced, yielding the elongated acyl chain (Cn+2). After
several reaction cycles, the end product acyl chain is transferred
from ACP to acyl-CoA.

Cells require a plethora of acyl chains of varying length and
unsaturation to establish different membrane lipid molecular
species, which play a key role in maintaining membrane physical
properties (Harayama and Riezman, 2018; Renne and de Kroon,
2018). FA synthesis only produces saturated FAs, mainly C16:0
or C18:0; therefore, cells harbor specific enzymes that can be
elongated and/or desaturate acyl-CoA (Maier et al., 2006). The
acyl-CoA chain length can be increased by elongase enzymes.
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FIGURE 1 | Overview of FA metabolic steps taking place at LD contact sites. LDs form contact sites with the endoplasmic reticulum (ER), mitochondria (Mito),
peroxisomes (Pex), and lysosome/vacuole (Lyso/Vac). Boxes show examples of FA metabolic processes taking place at these contact sites. Arrows indicate
enzymatic conversions; dashed arrows indicate trafficking/transport steps.

FA elongation requires multiple enzymes and follows a multi-
step process similar to FA synthesis by FAS. In contrast to FAS,
enzymes of FA elongation are ER-localized.

In addition to synthesizing FAs de novo, cells can utilize dietary
lipids or their own storage lipids. The lipids are hydrolyzed
to provide FAs, which are subsequently activated by ligation
to coenzyme-A. Synthesis of acyl-CoA is catalyzed by acyl-
CoA synthetases (ACS/ACSL in mammalian cells, FAA in
budding yeast). There are 13 different ACS isoforms in mammals
that function in different tissues and subcellular locations
(Grevengoed et al., 2014). The movement of the acyl-CoAs within
cells is thought to be highly compartmentalized, yet how this
occurs remains obscure (Cooper et al., 2015). ACSLs are found
on the plasma membrane, ER, mitochondria and peroxisomes.

In yeast, the main FAAs are soluble proteins, but are also found
on the ER and on lipid droplets depending on yeast growth and
nutritional state (Hariri et al., 2018).

Lipid Biosynthesis and Turnover
The bulk of cellular FAs are incorporated into membrane lipids
and neutral lipids (also known as storage lipids). Acyl-CoA
and FFAs are only minor components of the cellular lipidome.
Therefore, lipid biosynthesis is a major player in FA metabolism.
FAs are incorporated in two major membrane lipid families:
glycerophospholipids and sphingolipids.

Glycerophospholipids (GPL) are bulk constituents of
membranes, thus a major sink for acyl chains. Most steps
in GPL biosynthesis take place in the ER. The precursor to
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all GPLs is phosphatidic acid (PA), which is produced by
acylation of glycerol-3-phosphate (G3P) at the sn-1 and sn-2
positions subsequently, catalyzed by ER localized acyltransferases
(GPAT and AGPAT enzymes, respectively). PA can be either
activated to CDP-diacylglycerol by CDP-DAG synthase or
dephosphorylated to diacylglycerol (DAG) by PA hydrolase
(Pah1 in yeast, Lipin in mammals) (Smith et al., 1957; Han
et al., 2006). CDP-DAG is utilized to produce bulk GPLs such
as phosphatidylcholine (PC), phosphatidylethanolamine (PE),
and phosphatidylinositol (PI). In addition, PC and PE can
be produced from DAG via the Kennedy-pathway (Kennedy
and Weiss, 1956). Alternative to PL biosynthesis, DAG can be
esterified to yield the neutral lipid TAG (as described below).
Lipin/Pah1 serve as master regulators of lipid flux toward
synthesis of membrane lipids (via CDP-DAG) or neutral
lipids (via DAG), and their activity is tightly regulated by
phosphorylation (O’Hara et al., 2006; Harris et al., 2007; Peterson
et al., 2011). For example, yeast Pah1 is a cytosolic protein
in its phosphorylated state, and dephosphorylation by the
Nem1/Spo7 phosphatase complex is required for ER association
and enzymatic activity (Siniossoglou et al., 1998).

Sphingolipid synthesis starts with the formation of the
sphingosine backbone. First, 3-ketodihydrosphingosine is
formed by condensation of serine and palmityl-CoA, catalyzed
by serine palmitoyltransferase (SPT). The keto-group of 3-
ketosphinganine is reduced to an alcohol, yielding sphinganine,
which is N-acylated to yield the basic sphingolipid ceramide. In
metazoans, ceramide is the precursor to simple sphingolipids,
such as sphingomyelin, and complex glycosphingolipids such as
cerebrosides and gangliosides. In yeast, ceramide is the precursor
to inositol-phosphoceramide and derived glycosphingolipids.

In addition to membrane lipids, FAs are incorporated in
storage lipids. This process takes place mainly in the ER.
Storage lipids are synthesized by O-acylation of their respective
precursors. In yeast and mammals these are mainly TAG and SE,
synthesized from DAG and sterols by DGAT and SAT enzymes,
respectively. In addition, there are minor storage lipids such as
O-acyl ceramides (Voynova et al., 2012; Senkal et al., 2017) and
retinol esters (Blaner et al., 2009; Orban et al., 2011; Molenaar
et al., 2021).

Fatty Acid Catabolism: β-Oxidation
To be used for energy production fatty acids must be broken
down to acetyl-CoA, which can enter the citric acid cycle.
This process is known as β-oxidation, named after oxidation
of the acyl-CoA β-carbon. In yeast, β-oxidation takes place in
peroxisomes, whereas in higher eukaryotes both peroxisomes and
mitochondria are required. In metazoans, medium- and long
chain FAs (Cn < 22) are oxidized in mitochondria, yielding
acetyl-CoA. Very long chain FAs (Cn > 22) and branched chain
FAs cannot be handled by mitochondria, and are first partially
oxidized in peroxisomes, after which intermediate short chain
FAs are transferred to mitochondria for the final oxidation steps.

FA β-oxidation follows the same enzymatic steps in
mitochondria and in peroxisomes. First, FAs are activated
to acyl-CoA, after which they enter a cycle of dehydrogenation,
hydration, oxidation, and finally thiolysis. Each cycle shortens

the acyl-CoA by 2 carbon atoms, yielding one acetyl-CoA.
After oxidation of the FA β-carbon, the acyl chain remains only
2 carbon atoms long, providing another acetyl-CoA as end-
product. Odd chain FAs yield propanoyl-CoA as end-product,
which must be further processed to succinyl-CoA to enter the
citric acid cycle.

FA METABOLIC HUBS AT
LD-ORGANELLE CONTACT SITES

LDs and the ER: Site of LD Biogenesis
and Metabolic Channeling of FAs for
Storage
It is well established that LDs originate from the ER, but the
exact mechanisms of LD biogenesis remain to be fully elucidated.
However, over the last years consensus has been reached on
a model of LD biogenesis (Walther et al., 2017; Olzmann and
Carvalho, 2019; Renne et al., 2020). In the prevalent model,
neutral lipids produced by ER-resident enzymes coalesce between
the phospholipid leaflets, forming “lens-like” structures (Thiam
and Ikonen, 2021). Upon accumulation of neutral lipids, these
lenses grow to form nascent LDs, which directionally bud
toward the cytoplasm.

Formation of LDs is dependent on the synthesis of neutral
lipids (Sandager et al., 2002). LDs are thought to originate from
specialized ER subdomains, enriched in proteins required for
proper LD formation (Joshi et al., 2018; Wang et al., 2018; Salo
et al., 2019; Choudhary et al., 2020). Yeast Pah1 was found
to be enriched at LD biogenesis sites at the ER and the NVJ,
suggesting that local DAG synthesis is involved in LD formation
(Adeyo et al., 2011; Barbosa et al., 2015b). In addition, the TAG
biosynthetic enzyme Lro1p was shown to localize to ER-sites of
LD formation upon induction of neutral lipid (NL) biosynthesis
(Choudhary et al., 2020). In mammalian cells, ACSL3 has been
shown to be recruited to LD biogenesis sites, likely to provide
local synthesis of acyl-CoA substrate required for NL formation
(Kassan et al., 2013). Recruitment of ACSL3 to LD biogenesis
sites is severely impaired by loss of Seipin, indicating a role
for Seipin in establishing the sites of LD formation (Salo et al.,
2016). In agreement with this model, the formation of discrete LD
biogenesis domains in the ER in yeast was shown to depend on
Seipin and the Pah1-phosphatase Nem1 (Choudhary et al., 2020).

How neutral lipids produced in the ER are packaged into
LDs, is a key question to be solved. The ER protein Seipin has
been implicated in facilitating this process. Seipin plays a key
role in LD biogenesis (Szymanski et al., 2007; Fei et al., 2008),
but it’s function has been elusive. Great advances were made
recently by several studies that employed structural, in silico,
biochemical, biophysical, and cell biological approaches. High
resolution structures showed that human and Drosophila Seipin
adopt a ring-like structure, mediated by protomer interactions in
the ER lumenal domain (Sui et al., 2018; Yan et al., 2018). The
ring structure formed by the protomer β-sandwiches is oriented
parallel to the membrane, whereas the α-helices point toward
the membrane. Recent in silico data indicates that these α-helices
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protrude into the membrane and bind TAG, likely to facilitate
efficient packaging into LDs (Zoni et al., 2019; Prasanna et al.,
2021).

ER-LD contacts are likely key sites of protein and lipid
exchange between the ER and LDs and are important for LD
maintenance and response to cellular metabolic state. During
LD expansion the main determinant for LD size is the amount
of neutral lipids produced, and several lipid metabolic enzymes
have been identified on the LD surface, to facilitate local NL
synthesis (Wilfling et al., 2013; Currie et al., 2014; Bersuker
et al., 2018). Under such conditions, the acyltransferases GPAT3,
AGPAT3, and DGAT2 are recruited from the ER to LDs (Wilfling
et al., 2013), and this re-localization likely takes place at ER-LD
contacts. Indeed, in C. elegans the LD-localized DGAT2 activity
seems to be coordinated with the activity of the ER-localized
acyl-CoA synthethase FATP1, and these contacts are required for
LD expansion (Xu et al., 2012). Interestingly, LDs can form and
grow in the absence of LD-localized NL synthesis. Mammalian
DGAT1 and yeast LCAT (Lro1p) are ER-localized proteins, both
having their catalytic site in the ER lumen (McFie et al., 2010;
Choudhary et al., 2011). Expression of Lro1p as sole neutral lipid
biosynthetic enzyme is sufficient for formation of LDs without
apparent defects in size or number (Sandager et al., 2002). Thus,
NLs formed in the ER must be able to be efficiently targeted to
LDs, and this process is likely facilitated by ER-LD contact sites.

The ER and LDs form stable contact sites, and both organelles
have been observed to be connected via lipidic bridges LDs
(Jacquier et al., 2011). Stability of these ER-LD contacts depends
on Seipin in yeast and mammals (Grippa et al., 2015; Salo
et al., 2016), indicating a role for Seipin in maintaining ER-LD
contact sites. Furthermore, Seipin has been shown to interact with
various enzymes involved in NL formation, including glycerol-3-
phosphate acyltransferase (GPAT)-, acylglycerol acyltransferase
(AGPAT)-, and PA hydrolase (PAH) enzymes (Sim et al., 2013;
Pagac et al., 2016). This observation provides the possibility that
these enzymes are localized to ER-LD contact sites, providing
local DAG synthesis at ER-LD contacts (Figure 1). Interestingly,
Seipin was recently shown to inhibit the synthesis of serine
palmitoyltransferase (SPT), which mediates the first step in the
synthesis of sphingolipids, at ER-LD contact sites (Su et al., 2019).
As sphingolipids are not used for the synthesis of bulk neutral
lipids, it is unlikely that this inhibition is related to regulation
of neutral lipid biosynthesis. This observation could point to
a role for Seipin as a general regulator of lipid metabolism at
ER-LD contact sites.

LDs are thought to form at defined locations on the ER
membrane. What determines the sites of formation of nascent
LDs on the ER membrane is not completely understood.
Recent work revealed that MCTP1 and 2 (multiple C2 domain-
containing transmembrane proteins) colocalize with seipin and
promote LD biogenesis at specialized microdomains within
ER tubules. These proteins mediate stable ER-LD contact sites
thus regulating LD biogenesis, number, and size (Joshi et al.,
2021). Several other proteins have been recently proposed to
function as tethers between the ER and LDs in addition to
Seipin. In mammalian cells where LD expansion is stimulated
by exposing cells to exogenous FAs, the ER-localized Snx14

is be recruited to ER-LD contacts in a Seipin-independent
fashion (Datta et al., 2020). Snx14 accumulates at ER sites that are
enriched in the FAA enzyme ACSL3 and promotes TAG synthesis
in a ASCL3 dependent manner. Whether Snx14-stimulated TAG
synthesis requires specific GPAT, AGPAT, and DGAT enzymes
is not known. The Rab GTPase Rab18 establishes LD contacts
with the ER (Ozeki et al., 2005), and these contacts depend on
the NAG-RINT1-ZW10 (NRZ) tethering-complex and associated
SNARE proteins and the Rab18 binding partner DFCP1 (Xu et al.,
2018; Li et al., 2019). Overexpression of DFCP1 increases ER-
LD contacts, and when Rab18 is overexpressed LDs are strikingly
wrapped by the ER (Li et al., 2019). In adipocytes, loss of Rab18
leads to aberrant LD formation and a dramatic increase of LD size
(Xu et al., 2018), further underscoring the importance of ER-LD
contact sites in LD maintenance. Interestingly, the lipid transport
proteins VPS13A and VPC13C have also been found to localize to
ER contacts with mitochondria, LDs or lysosomes (Kumar et al.,
2018; Yeshaw et al., 2019), and likely play a role in exchanging
bulk lipids at these contacts during organelle expansion.

The endoplasmic reticulum is spread throughout the cell, with
tubules stretching from the center of the cell toward the plasma
membrane, and it forms contacts with all cellular organelles (Wu
et al., 2017). A twist to contacts between the ER-LD contacts
recently came with the that LDs could localize at contacts between
the ER and other organelles, creating an organelle trijunction. In
yeast, LDs were found to localize to the nuclear vacuole junction,
a contact site between the nuclear ER and the vacuole (discussed
in detail below). In the fly fat body, LDs are also found throughout
the cell and two distinct LD populations can be identified; one
localizing more toward the center of the cell, the other more
toward the cell periphery. Interestingly, peripheral LDs were
recently shown to spatially organized by Snazarus (Snz), that
connects LDs to ER-PM contact sites (Ugrankar et al., 2019). The
peripheral LDs were observed to be smaller than the central LDs
and were found to be metabolically distinct. These observations
underscore the notion that metabolically distinct subpopulations
of LDs may exist within the same cell and implicate LD contact
sites in regulation of these subpopulations.

LDs and Peroxisomes/Mitochondria:
Coordination of FA Flux Toward
β-Oxidation
To facilitate β-oxidation, FAs have to be released from the
NLs stored in LDs and delivered to either peroxisomes
or mitochondria (Figure 1). NL catabolism can occur via
lipolysis, catalyzed by cytosolic lipases, or through lipophagy,
in which LDs are degraded in lysosomes (mammals) or the
vacuole (yeast). The yielded FFA are then transferred to the
mitochondria or peroxisomes. How FA are released from the
LD core and directed toward mitochondria and peroxisomes
remained enigmatic. Recent advances indicate that FA transport
from LDs to peroxisomes/mitochondria may be mediated by
LD-mitochondrion and LD-peroxisome contact sites. Direct
handover of released FAs is thought to be an efficient way to
prevent accumulation of excess fatty acids, thereby omitting
possible lipotoxicity.
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In yeast and plants, peroxisomes are the sole organelles that
perform β-oxidation, whereas in metazoans they are responsible
for β-oxidation of very long-chain FAs. Therefore, LDs and
peroxisomes must collaborate to regulate flux and availability
of FAs within the cell (Kohlwein et al., 2013). Close physical
associations between LDs and peroxisomes have been observed
in mammals, yeast, and plants (Schrader, 2001; Binns et al.,
2006; Gao and Goodman, 2015). When yeast cells are grown on
oleate as sole carbon source, peroxisome numbers are increased
and they form persistent LD-pex contact sites, indicating
tight collaboration between these organelles. Interestingly,
peroxisomes have been observed to form extensions that can
protrude into LDs (Binns et al., 2006). As LD-peroxisome
contact sites are thought to play a role in facilitating local
FA trafficking among these organelles, these pexopodia could
serve as a manner to increase the contact surface between
these two organelles.

The topological details and molecular machinery that tether
LDs and peroxisomes has remained largely unknown. Recent
work demonstrated that the AAA-ATPase M1 Spastin found on
LDs can directly interact with the peroxisomal ATP binding
cassette subfamily D member 1, ABCD1. This interaction
regulates LD-peroxisome contacts and promotes FA inter-
organelle exchange (Chang et al., 2019). Interestingly, this
study showed that M1 Spastin recruit the membrane-shaping
ESCRT-III proteins, which are thought to modify LD membrane
morphology to facilitate lipid movement (Chang et al., 2019).
LD-peroxisome contacts were found to be important to maintain
energy homeostasis during fasting. Specifically, peroxisomal
protein PEX5 was found to escort adipose triglyceride lipase
ATGL to LDs to mediate fasting-induced lipolysis (Kong et al.,
2020). LD-peroxisome tethering also forms by the interaction of
peroxisomal acyl-CoA binding domain containing 5 (ACBD5)
and ER-localized VAPs (VAP-A and VAP-B) (Costello et al.,
2017; Hua et al., 2017). Disruption of this tethering complex was
found to alter peroxisome-ER contacts and prevent the growth
of peroxisomal membrane suggesting that this contact site is
required to transfer lipid from the ER to peroxisomes (Schuldiner
and Zalckvar, 2017; Chen et al., 2020).

Understanding of the physiological roles of LD-peroxisome
contact sites in localized FA trafficking and metabolism requires
more intense investigation. Specifically, understanding how
disruption of LD-peroxisome contact sites contributes to human
peroxisomal disorders is still unclear. Peroxisomal function is
also known to be altered in aging, thus contributing to a host of
age-related diseases including diabetes, neurodegeneration, and
cancer (Titorenko and Terlecky, 2011; Lodhi and Semenkovich,
2014; Cipolla and Lodhi, 2017).

In metazoans, mitochondria are a key site for β-oxidation.
FA β-oxidation in mitochondria requires release of FAs from the
LD through lipolysis and transfer to mitochondria, where they
are imported via carnitine shuttling. As such, LD-mitochondria
contact sites are highly apparent in cells with high fatty acid
oxidation rates, including brown adipose tissue and muscle
cells. In skeletal muscle cells, LDs have been observed to
be “sandwiched” between mitochondria, likely to increase the
contact surface, and these drastic LD-mitochondria contacts have

been proposed facilitate the high demand of FA trafficking for
rapid energy production (Shaw et al., 2008).

In agreement with LD-contacts facilitating FA handover to
mitochondria, LD-mitochondria contacts have been observed to
respond to metabolic state and the need for FA oxidation. For
example, when cells are acutely starved, organelles are broken
down via autophagy, releasing free fatty acids as lipid breakdown
products. The released FAs are efficiently incorporated into
LDs, and are handed over from LDs to mitochondria for β-
oxidation (Nguyen et al., 2017). Under starvation conditions,
LDs were often found in close proximity to mitochondria, likely
to facility efficient FA trafficking (Nguyen et al., 2017). Indeed,
close apposition of mitochondria to LDs has previously been
proposed to be required for efficient flux of FAs from LDs into
mitochondria (Rambold et al., 2015). Thus, LD-mitochondria
contact sites respond to cellular metabolic state to coordinate FA
mobilization, handover, and oxidation. Supporting this model,
LD-mitochondria contact sites are highly apparent in cells
with high FA oxidation rates, such as brown adipose tissue
and muscle cells.

Interestingly, contacts with LDs may dictate mitochondrial
metabolism, as mitochondria that are in contact with LDs have
been shown to form a subpopulation that is biochemically
distinct from cytosolic mitochondria. The proteome of LD-
approximate mitochondria was found to differ from cytosolic
mitochondria, and both subpopulations partake in different
metabolic processes (Benador et al., 2018). Strikingly, in
this study it was found that LDs that are in contact with
mitochondria increase TAG synthesis for LD expansion, and
that cytosolic mitochondria mainly partake in beta oxidation
(Benador et al., 2018, 2019), which is at odds with the model
that LD-mitochondria contacts are required for mitochondrial
FA oxidation. These differences could be explained by cell
type specificity, as Rambold et al. (2015) use cultured mouse
embryonic fibroblasts whereas Benador et al. (2018) used primary
mouse brown adipose tissue, or by the different methods
used to stimulate FA oxidation. Additionally, the differences
in metabolic state of cultured cells vs. primary derived tissue
is likely to influence LD and mitochondrial dynamics and
metabolism, complicating the comparison between these studies.
The interplay between mitochondria and LDs is an intriguing
topic, and the role of these contacts and how they are regulated
remains to be fully elucidated.

Several proteins have been reported to play a role in LD-
mitochondria contact site formation (Schuldiner and Bohnert,
2017), but the mechanisms facilitating local FA channeling
remain to be fully elucidated. For example, the perilipin family
member PLIN5 overexpression is sufficient to induce an increase
in LD-mitochondria contact sites (Wang et al., 2011; Benador
et al., 2019). In brown adipocytes, PLIN1 interacts with the
outer mitochondrial membrane protein mitofusin 2 (MFN2)
potentially forming a tethering complex which is stimulated
under lipolytic conditions (Boutant et al., 2017). More recently,
a new ESCRT-dependent mechanism by which FAs are trafficked
from LDs to mitochondria was described. This was shown to be
mediated by the lipid transfer protein VPS13D and the ESCRT
protein Tsg101 (Wang et al., 2021). Finally, the observation
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of LD-mitochondria contact sites in yeast, where β-oxidation
takes place solely in peroxisomes (Pu et al., 2011), as well the
notion that several lipid metabolic enzymes can localize to both
mitochondria and LDs in yeast), indicate that LD-mitochondria
contacts likely have lipid metabolic functions beyond channeling
of FA for β -oxidation.

Localized FA Storage and Mobilization at
LD-Lysosome Contacts
Lysosomes play a central role in the recycling of organelles
and biomolecules, and contain hydrolytic enzymes that can
breakdown proteins, nucleic acids, and lipids. In yeast, LDs can
be consumed by micro-autophagy (or micro-lipophagy), during
which LDs are directly internalized in the vacuole (the yeast
lysosome) and degraded by the internal hydrolases (Toulmay
and Prinz, 2013; Wang et al., 2014). This process occurs in
response to various starvation conditions including nitrogen
starvation and acute glucose starvation (Seo et al., 2017). It
remains to be elucidated whether a similar mechanism of micro-
lipophagy is responsible for LD internalization and lysosomal
degradation in mammals. Recent work in hepatocytes revealed
that interactions between mammalian lysosomes and LDs
facilitate the direct transfer of proteins and lipids to lysosomes
(Schulze et al., 2020). This suggest that the mammalian lysosomes
are indeed sufficient to mediate LD turnover independent of
an autophagosomal intermediate (Drizyte-Miller et al., 2020;
Schulze et al., 2020). Additionally, interactions between LDs
and lysosomes or autophagosomes are important not only for
LD degradation, and they also supply membrane lipids for
autophagosome biogenesis (Schütter et al., 2020).

In yeast, interactions between LDs and vacuoles (lysosome
equivalent in mammalian cells) have been shown to be tightly
regulated by metabolic state. During diauxic shift, when glucose
is exhausted and yeast cells switch from fermentative growth to
aerobic restoration, the size of the vacuole is increased. During
this stage, they also form a unique contact site between the
nucleus and the vacuole, dubbed the nuclear-vacuole junction
(NVJ), and LDs start to localize there (Barbosa et al., 2015b;
Hariri et al., 2018; Figure 1). The NVJ is proposed to function as a
metabolic platform that spatially organizes acyl chain metabolism
in response to nutrient depletion. During the diauxic shift, when,
NVJ contact sites expand in size by upregulating protein levels of
Nvj1, a major tether at the NVJ. Concomitantly, LDs are observed
to enrich at the NVJ. How sub-populations of LD form locally at
the NVJ is an ongoing topic of investigation.

Enrichment of enzymes responsible for neutral lipid
biosynthesis at the NVJ is likely to drive local LD biogenesis.
Indeed, during diauxic shift the fatty acid-CoA ligase Faa1 is
targeted to the NVJ. By locally activating free fatty acids, yielding
acyl CoA, Faa1 likely provided acyl-CoA substrate required
for the formation of neutral lipids. In addition, other lipid
metabolic enzymes (such as Tsc13 and Pah1) have also been
described to be recruited to the NVJ in different conditions
(Kohlwein et al., 2001; Barbosa et al., 2015a). These observations
partake only single enzymes from lipid metabolic pathways, but
they strongly suggest that the NVJ contributes to the spatial

compartmentalization of TG biosynthesis metabolons, though
this remains to be demonstrated (Henne et al., 2020).

How NVJ targeting is controlled remains an open question.
Recently, Faa1 was found to interact with the NVJ tether Mdm1,
likely providing the mechanism of Faa1 targeting to the NVJ and
subsequent local LD formation (Hariri et al., 2018). Supporting
this, over-expression of Mdm1 drives the accumulation of LDs
at the NVJ. Interestingly, the PXA (Phox homology-associated)
domain of Mdm1 binds FAs in vitro. Therefore, Mdm1 provides
a scaffolding function that facilitates the generation of a high local
concentration of activated FAs and promotes their incorporation
into neutral lipids (Hariri et al., 2019).

Mdm1 is conserved in fruit flies (Drosophila melanogaster)
as Snazarus (Snz), which is highly expressed in the Drosophila
fat body (FB) and was originally associate with a longevity
phenotype (Suh et al., 2008). Similar to Mdm1, Snz is an ER-
anchored protein that binds to LDs. However, this study revealed
that Snz localizes to ER-PM contacts and maintains a specific
subpopulation of LDs near the cell periphery (Ugrankar et al.,
2019). As such, Snz is thought to coordinate FA uptake with
TG synthesis and LD growth. Mdm1 is conserved in humans as
four sorting nexins (Snx) 13, 14, 19, and 25 (Henne et al., 2015).
Less is known about the human homologs of Mdm1/Snz. Snx14
was shown to localize to ER-LD contact sites and facilitates FA-
to-TG conversion, and like Mdm1, loss of Snx14 sensitizes cells
to FA-induced lipotoxicity (Datta et al., 2019). Loss of Snx13
has been implicated in heart failure; however, whether altered
FA metabolism contribute to the pathology is currently an open
question (Li et al., 2014; Yang et al., 2019).

OPEN QUESTIONS AND FUTURE
DIRECTIONS

LDs are reservoirs of FAs that are found in organisms from
microbes to humans. Survival of organisms in nutrient scarce
conditions depends on their ability to mobilize and utilize their
stored FAs. FAs have multiple cellular fates and following their
mobilization they are targeted to different cellular compartments
to be processed. How FAs are trafficked among organelles
remains a key question in biology. LDs form inter-organelle
contacts that are thought to facilitate efficient trafficking of FAs.
At the core of these contacts are tethering proteins that physically
hold these organelles together, in addition to lipid metabolic
enzymes and transfer proteins that meditate inter-organelle lipid
movement. Arguably, the least understood contact site is the one
that forms between LDs and peroxisomes. Emerging technologies
such as enzyme-mediated proximity labeling will be useful to
determine the full proteome of LD contact sites.

The size, number and cellular distribution of LDs is highly
dynamic, and can vary according to metabolic cues. However, the
regulatory mechanisms controlling LD formation, mobilization
and turnover remain largely unknown, including how LD
recruitment to specific contact sites is orchestrated. As LDs play
a central role in lipid homeostasis, it is attractive to speculate
a role for lipid signaling in dictating LD dynamics. Various
proteins found at LD contact sites and (proposed) tethers possess
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(putative) lipid binding domains, including the phosphoinositide
binding Pleckstrin homology domain found on VPS13A/C,
and Phox homology domains on Mdm1 and Snazarus (Hariri
et al., 2018; Kumar et al., 2018; Ugrankar et al., 2019).
Peroxisomal PI-4,5-P2 has been shown to be required for
trafficking of very long chain FAs from LDs to peroxisomes
(Ravi et al., 2021), possibly by regulating LD-Peroxisome contact
sites or recruiting lipid metabolic enzymes. Recently, the lipid
transfer protein ORP5 was shown to localize to ER-LD contact
sites and regulate LD PI-4-P levels (Du et al., 2019), giving
rise to the possibility of phosphoinositide signaling on LDs
(Renne and Emerling, 2020).

Future research will rely on the development of reliable
tools to monitor FA trafficking in cells. Beyond their role in
facilitating direct FA transfer, LD contact sites are viewed as
dynamic platforms that play central roles in regulating FA
metabolism. In vitro reconstitution of FA metabolism at organelle
contacts will allow for better understanding of how spatial

organization of enzymes fine tune the efficiency and outcome
metabolic reactions. Finally, the contribution of LD contact sites
to cellular lipid homeostasis and organismal health is currently
not completely understood. A key question that remains to be
answered is how the disruption of inter-organelle networks leads
to metabolic disorders of FA metabolism.
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