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ABSTRACT
Background: Although the pathophysiological mechanisms involved in the development of dyspnoea and
poor exercise tolerance in patients with COPD are complex, dynamic lung hyperinflation (DLH) plays a
central role. Diaphragmatic excursions can be measured by ultrasonography (US) with high intra- and
interobserver reliability. The objective of this study was to evaluate the effect of diaphragmatic excursions
as assessed by US on exercise tolerance and DLH in patients with COPD.
Methods: Patients with COPD (n=20) and age-matched control subjects (n=20) underwent US, which was
used to determine the maximum level of diaphragmatic excursion (DEmax). Ventilation parameters,
including the change in inspiratory capacity (ΔIC), were measured in the subjects during cardiopulmonary
exercise testing (CPET). We examined the correlations between DEmax and the ventilation parameters.
Results: The DEmax of patients with COPD was significantly lower than that of the controls
(45.0±12.8 mm versus 64.6±6.3 mm, respectively; p<0.01). The perception of peak dyspnoea (Borg scale)
was significantly negatively correlated with DEmax in patients with COPD. During CPET, oxygen uptake/
weight (V′O2

/W ) and minute ventilation (V′E) were significantly positively correlated with DEmax, while
V′E/V′O2

and V′E/carbon dioxide output (V′CO2
) were significantly negatively correlated with DEmax in

patients with COPD. DEmax was also significantly positively correlated with ΔIC, reflecting DLH, and with
V′O2

/W, reflecting exercise capacity.
Conclusion: Reduced mobility of the diaphragm was related to decreased exercise capacity and increased
dyspnoea due to dynamic lung hyperinflation in COPD patients.
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Introduction
COPD is a progressive disease characterised by minimally reversible airflow limitation. The main feature of
COPD is the inability of patients to cope with their activities of daily life because of shortness of breath.
Although the pathophysiological mechanisms involved in the development of dyspnoea and poor exercise
tolerance in patients with COPD are complex, dynamic lung hyperinflation (DLH) plays a central role [1].
DLH has a static component, which is due to the destruction of pulmonary parenchyma and loss of elastic
recoil by the lung; and a dynamic component, which occurs when patients with COPD breathe in before
achieving a complete exhalation. Airflow limitation and DLH are the main causative factors of the
dyspnoea occurring in COPD patients. DLH is tightly linked to dyspnoea and exercise tolerance. In the
DLH of COPD, the residual volume increases because of airflow limitation related to exertion. DLH is
expressed as decreased inspiratory capacity (IC) and increased functional residual capacity (FRC) due to a
continually increasing end-expiratory lung volume [2, 3]. The major consequence of DLH is an increased
ventilatory workload and decreased pressure-generating capacity by the inspiratory muscles, despite
compensatory mechanisms [4].

The diaphragm is the main muscle employed for respiration. Patients with emphysema or COPD manifest
major changes in the mass, thickness, and area of the diaphragm. Diaphragmatic contractions produce
muscle shortening and thickening. Ultrasonography has been recently proposed for use in assessing both
diaphragmatic excursions [5–7] and diaphragmatic thickness at different lung volumes [8]. The association
between thickening of the diaphragm and diaphragmatic effort, however, is tenuous; ultrasonography
measurements of diaphragmatic thickness explain only one-third (or less) of the variability in inspiratory
efforts [9, 10]. On the other hand, ultrasonographic assessment of excursions of the right diaphragm
shows high intra- and interobserver reliability [11]. Reduced movements of the diaphragm are a major risk
factor for increased mortality in patients with COPD [12]. However, the relationship between
diaphragmatic mobility and DLH remains unclear in patients with COPD. The primary purpose of this
study was to evaluate the difference between the diaphragmatic excursions of patients with COPD versus
control participants. The secondary purpose was to evaluate the effects of decreased diaphragmatic
excursion on exercise tolerance and DLH in COPD patients.

Materials and methods
Study design and participants
This was a single-centre, observational, case–control, cross-sectional study. It was approved by the
Committee for Ethics at Kindai University School of Medicine (no. 31–086), and all participants provided
written informed consent. The participants were 20 patients with clinically stable COPD who visited the
Department of Respiratory Medicine and Allergology at Kindai University Hospital between April 2019
and August 2019. The exclusion criteria included unstable medical conditions that could cause or
contribute to breathlessness (i.e. metabolic, cardiovascular, or other respiratory diseases) or any other
disorders that could interfere with exercise testing, such as neuromuscular diseases or musculoskeletal
problems. We also recruited 20 age-matched volunteers who did not have any detectable chronic
condition, including pulmonary or cardiovascular disease. Based on preliminary studies in healthy
participants (n=6) and COPD patients (n=5), the average extent of diaphragmatic excursion in the healthy
participants and COPD patients was 72.0 mm (SD=10.1) and 50.9 mm (SD=9.4) respectively. We assumed
the difference between the population means of the two groups as 10 mm with a SD of 10.0 mm With
these values, the required number of cases would be 34 (17 participants in each group) based on the t-test,
which was used to assess the difference between the maximum diaphragmatic excursions (DEmax) of the
two groups, with a significance level of 5% (both sides) and a study power of 80%. With an accounting of
participants leaving the study, the target number of participants was set at 40 (20 in each group).

Measurements
All participants underwent ultrasonography (Xario 200; Toshiba, Tokyo, Japan) for measurement of their
DEmax. Excursions of the right hemidiaphragm were measured by a convex 3.5-MHz probe according to
the techniques of TESTA et al. [7]. The liver on the left was used as an acoustic window (figure 1). The
M-mode cursor was rotated and placed on the axis of diaphragmatic displacement on the stored image,
and displacement measurements were conducted. Measurements were performed during each of three
deep breaths, and the DEmax was measured (figure 1c).

All participants underwent symptom-limited cardiopulmonary exercise testing (CPET) on a bicycle
ergometer, according to the Ramp 10 W protocol (load increase of 10 W·min−1, 1 W per 6 s). The
10-point Borg scale was used to assess the intensity of dyspnoea, and leg fatigue was determined at 1-min
intervals during both the exercise and resting period [13]. The analysis included the following: intensity of
exercise (workload in watts), peak oxygen consumption (peak V′O2

/W ), ventilation equivalents for oxygen
(V′E/V′O2

) and carbon dioxide (V′E/V′CO2
). IC manoeuvres were performed at rest, and at 1-min intervals
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and peak exercise. We measured the change in inspiratory capacity (ΔIC=IClowest−ICbaseline) during
exercise as a surrogate marker of DLH [14, 15].

Spirometry (CHESTAC-800; Chest, Tokyo, Japan) was performed according to the 2019 American
Thoracic Society recommendations [16] for measuring forced vital capacity (FVC), forced expiratory
volume in 1 s (FEV1), and IC. Respiratory muscle strength was assessed by measuring the maximum
inspiratory pressure (MIP) generated against an occluded airway at residual volume [17] (SP-370; Fukuda
Denshi, Tokyo, Japan). Quadriceps muscle strength (QMS) was measured by a hand-held dynamometer
((HHD) μTasF-1, Anima Corp, Tokyo).

Statistical analysis
All results are expressed as mean±SD. The t-test was used to compare data from the COPD patients with
data from the healthy controls. Inter-rater reliability (reproducibility) of the mean values of three DEmax

measurements for each patient was assessed by estimating intraclass correlation coefficients (ICCs). Two
ICC forms were estimated: ICC (1, 1) and ICC (1, k), representing values calculated from a single
measurement and from an average of k repeated measures, respectively. In this study, k=3. The
relationship between DEmax and the parameters of lung function (V′O2

/W, V′E/V′O2
, V′E/V′CO2

, ΔIC, and
MIP) and muscle strength of the lower extremities was evaluated by calculating Pearson correlation
coefficients, where p<0.05 was deemed to be significant. We performed a least squares regression analysis
to compute the final predictive model for V′O2

/W. Statistical analysis was performed by IBM SPSS statistics
software, version 22 (IBM SPSS, Armonk, NY, USA).

Results
Table 1 summarises the clinical characteristics of patients with COPD and the control participants. The
FEV1 of COPD patients was significantly lower than the FEV1 of the controls (p<0.01), whereas the
difference between the FVC values of the two groups was not significant. The intensity of peak dyspnoea
(Borg scale) in COPD patients was significantly larger than that in the controls (p<0.01). The peak V′O2

/W
value was significantly lower in COPD patients than in the controls (p<0.01). The V′E/V′O2

was
significantly higher in COPD patients than in the controls (p<001). The decrease in IC during CPET
was significantly greater in COPD patients than in the controls (p<0.01). The MIP was significantly lower
in COPD patients than in the controls (p<0.01). The intra-rater reliability of DEmax measurements by
ultrasonography was as follows: ICC (1, 1)=0.89, ICC (1, k)=0.91, indicating good reproducibility (tables
1S and 2S). The DEmax of COPD patients was significantly lower than that of the controls (45.0±12.8 mm
versus 64.6±6.3 mm, respectively; p<0.01) (figure 2). Peak dyspnoea perception (Borg scale) was negatively
correlated with the DEmax of patients with COPD (table 2, p<001). Peak mBorg scale dyspnoea was
negatively correlated with ΔIC (r=−0.61, p<0.05). Regarding lung function parameters, VC, IC, FVC, and
FEV1 were significantly positively correlated with the DEmax of patients with COPD. DEmax was positively
correlated with MIP (p<001). ΔIC, which reflects DLH, was significantly positively correlated with DEmax
in COPD patients but not in control participants (figure 3 and table 2). IC decreased during exercise, and
ΔIC was negative in all of the COPD patients, while IC increased during exercise and ΔIC was
non-negative in some of control participants. Regarding ventilation parameters during CPET, V′O2

/W and
V′E were significantly positively correlated with DEmax, while V′E/V′O2

and V′E/V′CO2
were significantly

negatively correlated with DEmax in both the control participants and COPD patients (table 2 and figure 4).
Multiple regression analysis was performed for V′O2

/W as the dependent variable and DEmax and % FEV1

as the independent variables. Both DEmax and % FEV1 were significantly correlated with V′O2
/W. DEmax

was found to be the most independent explanatory variable (R2=0.79, F=29.4, 95% CI 0.18 to 0.37,
p<0.0001, table 3S).

DEmax

a)

b) c)

FIGURE 1 Representative image of right diaphragm. The probe was positioned below the right costal margin between the midclavicular and
anterior axillary lines. a) Two-dimensional ultrasonographic image of the right hemidiaphragm (B-mode). Diaphragmatic movements were
recorded in b) M-mode during quiet breathing and c) during deep breathing (DEmax). DEmax: maximum diaphragmatic excursion.
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Discussion
The DEmax of COPD patients was significantly lower than that of control participants. DEmax was
associated with exercise tolerance in both the healthy participants and COPD patients. Ultrasonographic
assessment of diaphragmatic function has been widely and successfully used to detect the presence of
diaphragmatic dysfunction as a postsurgical complication [18], to identify ventilator-induced diaphragmatic
injury [19], to evaluate movement of the diaphragmatic dome [20] during spontaneous breathing in
weaning trials [21], to quantify the work of breathing [9], to titrate ventilatory support [9, 10, 21], and to
predict the success of extubation [22]. Ultrasonography has been studied in COPD patients and has shown
that diaphragmatic mobility can affect COPD patients’ dyspnoea and the 6-min walk distance [23].
Ultrasonography has also been used to identify diaphragmatic dysfunction [24]. However, to date, the
relationships between diaphragmatic mobility and DLH and exercise tolerance in patients with COPD
remain unknown. This study shows that decreased diaphragmatic mobility is associated with decreased

FIGURE 2 Maximum diaphragmatic
exertion during deep breathing
(DEmax) in COPD patients (n=20) and
control participants (n=20). DEmax
in COPD patients was significantly
smaller than that in control
participants. **: p<0.01.
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TABLE 1 Characteristics of study participants

COPD (n=20) Control (n=20) p-value

Male/female 17/3 17/3
Age years 76.8±3.6 76.4±5.1 0.80
Body mass index kg·m−2 22.9±3.3 23.9±2.3 0.65
QMS Kgf·kg−1 0.57±0.14 0.64±0.12 0.36
GOLD I/II/III 2/10/8 ND
mMRC 0/1/2/3/4 0 /13 /6 /1 /0 ND
Pulmonary function
FEV1 L 1.58±0.45 2.44±0.39 <0.01
% predicted 53.9±19.4 103.1±14.2 <0.01

FVC L 3.12±0.89 3.24±0.51 0.89
% predicted 93.4±26.9 105.1±13.4 0.25

MIP cmH2O 59.4±19.4 84.6±21.9 <0.01
% predicted 81.1±31.1 119.2±28.4 <0.01

Peak exercise measurements
Peak load W 67±20 115±22 <0.01
V′E L·min−1 42.5±12.1 52.4±11.7 <0.05
Peak V′O2

/W mL·min−1·kg−1 12.4±2.9 20.2±1.7 <0.01
V′E/V′O2

mL·mL−1 46.9±8.5 29.3±2.7 <0.01
ΔIC from rest L −0.40±0.24 0.05±0.25 <0.01
mBorg scale dyspnoea 5±1 2±2 <0.01
mBorg scale leg fatigue 5±1 4±2 0.15

Data are presented as mean±SD unless otherwise stated. QMS: quadriceps muscle strength; GOLD:
Global Initiative for Chronic Obstructive Lung Disease; mMRC: modified Medical Research Council
dyspnoea scale; FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; MIP: maximum
inspiratory pressure; ND: not done in the control group; V′O2

: oxygen uptake; V′O2
/W: oxygen uptake/weight;

V′E: minute ventilation; IC: inspiratory capacity; MIP: maximum inspiratory pressure; mBorg: modified
Borg scale.
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physical and ventilatory capacity, as well as increased dyspnoea during exercise in COPD patients. The
reduction in diaphragmatic mobility in COPD patients is similar to the reduction in mobility reported in
previous studies [24, 25].

Ultrasonography has also been used to assess the length and thickness of the zone of apposition of the
diaphragm against the rib cage [17]. Diaphragmatic thickness (Tdi) is measured by placing a
high-frequency linear probe at the level of the zone of apposition, while diaphragmatic excursion is
measured by placing a curvilinear probe in the subcostal region and recording diaphragmatic movements
in the M-mode. In healthy participants at rest, the intra- and interobserver reliability of Tdi measurements

TABLE 2 Correlations between maximum diaphragmatic excursion values with ventilatory
parameters, dyspnoea, and leg muscle fatigue in patients with COPD (n=20) and control
participants (n=20)

Independent variable COPD (n=20) Control (n=20)

Pearson correlation
coefficient

p-value Pearson correlation
coefficient

p-value

Age 0.19 0.43 0.19 0.43
BMI 0.03 0.91 −0.14 0.53
QMS 0.39 0.09 0.15 0.11
Resting measurements
IC 0.6 <0.01 0.2 0.38
FVC 0.4 <0.05 −0.06 0.79
% predicted 0.32 0.16 −0.35 1.29

FEV1 0.52 <0.05 −0.09 0.71
% predicted 0.37 0.12 −0.33 0.19

MIP 0.65 <0.01 0.24 0.29
% predicted 0.68 <0.01 0.09 0.29

Peak exercise
measurements
V′O2

/W 0.82 <0.01 0.61 <0.01
V′E 0.6 <0.01 0.52 <0.05
V′E/V′O2

−0.76 <0.01 −0.68 <0.01
V′E/V′CO2

−0.81 <0.01 −0.74 <0.01
ΔIC 0.77 <0.01 0.16 0.49
mBorg scale dyspnoea −0.75 <0.01 −0.15 0.5
mBorg scale leg fatigue 0.22 0.15 0.28 0.18

BMI: body mass index; QMS: quadriceps muscle strength; IC: inspiratory capacity; FVC: forced vital
capacity; FEV1: forced expiratory volume in 1 s; MIP: maximum inspiratory pressure; V′O2

: oxygen uptake;
V′O2

/W: oxygen uptake/weight; V′E: minute ventilation; V′CO2
: carbon dioxide output; IC: inspiratory capacity.
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FIGURE 3 Correlation between maximum diaphragmatic excursion (DEmax) and peak change in inspiratory
capacity (ΔIC) in a) patients with COPD (n=20) and b) healthy participants (n=20). ΔIC, which reflects dynamic
lung hyperinflation, was significantly positively correlated with DEmax in patients with COPD, while ΔIC was not
correlated with DEmax in control participants.
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are high [26–29], and ultrasonography estimates of Tdi are correlated with direct anatomical
measurements [29]. The temporal evolution of Tdi in patients was related to the change in VC in the
patients with recovery of diaphragmatic function, and Tdi can also be used to monitor the evolution of
diaphragmatic weakness [30]. However, ultrasonographic measurements of diaphragmatic thickening
explain only one-third (or less) of the variability in inspiratory effort [9, 10, 21]. Furthermore, the
evaluation of Tdi is difficult to perform in patients with severe COPD, because the length of the zone of
apposition is shorter in COPD patients than in control patients [31]. On the other hand, ultrasonographic
measurements of excursions of the right hemidiaphragm have shown high intra- and interobserver
reliability [32]. Diaphragmatic excursions are sensitive to changes in respiratory patterns [33], are related
to the volume-generating capacity of the diaphragm (measured by VC) following abdominal surgery [34], and
have been used to identify diaphragmatic weakness in the setting of the acute exacerbation of COPD [35].

In this study, IC decreased during CPET, and DEmax was correlated with the change in the IC of COPD
patients. DLH occurs when respiration is accelerated by exercise or exertion, and IC decreases in COPD
patients. Normally, tidal volume (TV) increases during exercise, increasing the necessary V′O2

; but in
COPD, TV does not increase because of the decreased IC, and respirations become shallow and rapid [36].
Hyperinflation of the lungs with consequent reduction in IC has been convincingly linked to the degree of
breathlessness (dyspnoea) experienced by patients with COPD during physical activity. Moreover, the
therapeutic reversal of lung hyperinflation with improvement in IC has been shown to be associated with
improvements in the intensity of dyspnoea and exercise endurance [37]. Ultrasonographic assessment of
the diaphragm can help identify the subpopulation of COPD patients with dysfunctional diaphragms and
the consequent changes in ventilatory mechanics.

There are limitations to this study. This study was conducted at a single centre on a relatively small
number of participants. Therefore, this study might have been underpowered for some of the statistical
analyses. However, the number of participants was sufficient for the primary outcome, which was a
comparison between the mean DEmax values of the COPD patients and control participants. We also did
not measure the residual volume and FRC of the control participants; therefore, we could not compare
between these parameters in the two study groups.

In conclusion, the diaphragmatic mobility of COPD patients was reduced compared with the control
participants. Diaphragmatic mobility was correlated with exercise tolerance in both the COPD patients and
control participants. Reduced mobility of the diaphragm was related to decreased exercise capacity and
increased dyspnoea due to dynamic lung hyperinflation in COPD patients. The assessment of
diaphragmatic mobility in patients with COPD could further the understanding of their limitations in
daily activities as well as inform those medical decisions related to therapeutic strategies.
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to disclose. H. Mizusawa has nothing to disclose. Y. Takeda has nothing to disclose. S. Fujita has nothing to disclose.
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