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The accurate automatic segmentation of gliomas and its intra-tumoral structures is

important not only for treatment planning but also for follow-up evaluations. Several

methods based on 2D and 3D Deep Neural Networks (DNN) have been developed to

segment brain tumors and to classify different categories of tumors from different MRI

modalities. However, these networks are often black-box models and do not provide any

evidence regarding the process they take to perform this task. Increasing transparency

and interpretability of such deep learning techniques is necessary for the complete

integration of such methods into medical practice. In this paper, we explore various

techniques to explain the functional organization of brain tumor segmentationmodels and

to extract visualizations of internal concepts to understand how these networks achieve

highly accurate tumor segmentations. We use the BraTS 2018 dataset to train three

different networks with standard architectures and outline similarities and differences in

the process that these networks take to segment brain tumors. We show that brain tumor

segmentation networks learn certain human-understandable disentangled concepts on

a filter level. We also show that they take a top-down or hierarchical approach to localizing

the different parts of the tumor. We then extract visualizations of some internal feature

maps and also provide ameasure of uncertainty with regards to the outputs of themodels

to give additional qualitative evidence about the predictions of these networks.We believe

that the emergence of such human-understandable organization and concepts might aid

in the acceptance and integration of such methods in medical diagnosis.
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1. INTRODUCTION

Deep learning algorithms have shown great practical success in various tasks involving image, text
and speech data. As deep learning techniques start making autonomous decisions in areas like
medicine and public policy, there is a need to explain the decisions of these models so that we can
understand why a particular decision was made (Molnar, 2018).

In the field of medical imaging and diagnosis, deep learning has achieved human-like results
on many problems (Esteva et al., 2017; Weng et al., 2017; Kermany et al., 2018). Interpreting the
decisions of such models in the medical domain is especially important, where transparency and a
clearer understanding of Artificial Intelligence are essential from a regulatory point of view and to
make sure that medical professionals can trust the predictions of such algorithms.
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Understanding the organization and knowledge extraction
process of deep learning models is thus important. Deep neural
networks often work in higher dimensional abstract concepts.
Reducing these to a domain that human experts can understand
is necessary—if a model represents the underlying data
distribution in a manner that human beings can comprehend
and a logical hierarchy of steps is observed, this would provide
some backing for its predictions and would aid in its acceptance
by medical professionals.

However, while there has been a wide range of research on
Explainable AI in general (Doshi-Velez and Kim, 2017; Gilpin
et al., 2018), it has not been properly explored in the context of
deep learning for medical imaging. Holzinger et al. (2017) discuss
the importance of interpretability in the medical domain and
provide an overview of some of the techniques that could be used
for explaining models which use the image, omics, and text data.

In this work, we attempt to extract explanations for models
which accurately segment brain tumors, so that some evidence
can be provided regarding the process they take and how
they organize themselves internally. We first discuss what
interpretability means with respect to brain tumor models. We
then present the results of our experiments and discuss what
these could imply for machine learning assisted tumor diagnosis.

2. INTERPRETABILITY IN THE CONTEXT
OF BRAIN TUMOR SEGMENTATION
MODELS

Interpreting deep networks which accurately segment brain
tumors is important from the perspectives of both transparency
and functional understanding (by functional understanding, we
mean understanding the role of each component or filter of the
network and how these relate to each other). Providing glimpses
into the internals of such a network to provide a trace of its

FIGURE 1 | Proposed pipeline for interpreting brain tumor segmentation models to aid in increasing transparency. The dotted backward arrow shows the possibility of

using the inferences from such an experiment to enhance the training process of networks.

inference steps (Holzinger et al., 2017) would go at least some
way to elucidating exactly how the network makes its decisions,
providing a measure of legitimacy.

There have been several methods explored for trying to
look inside a deep neural network. Many of these focus on
visual interpretability, i.e., trying to extract understandable
visualizations from the inner layers of the network or
understanding what the network looks at when giving a particular
output (Zhang and Zhu, 2018).

For a brain tumor segmentation model, such methods
might provide details on how information flows through the
model and how the model is organized. For example, it might
help in understanding how the model represents information
regarding the brain and tumor regions internally, and how these
representations change over layers. Meaningful visualizations of
the internals of a network will not only helpmedical professionals
in assessing the legitimacy of the predictions but also help deep
learning researchers to debug and improve performance.

In this paper, we aim to apply visual interpretability and
uncertainty estimation techniques on a set of models with
different architectures to provide human-understandable visual
interpretations of some of the concepts learned by different parts
of a network and to understand more about the organization
of these different networks. We organize our paper into
mainly three parts as described in Figure 1: (1) Understanding
information organization in the model, (2) Extracting visual
representations of internal concepts, and (3) Quantifying
uncertainty in the outputs of the model. We implement our
pipeline on three different 2D brain tumor segmentation
models—a Unet model with a densenet121 encoder (Henceforth
referred to as the DenseUnet) (Shaikh et al., 2017), a Unet model
with a ResNet encoder (ResUnet) (Kermi et al., 2018), and a
simple encoder-decoder network which has a similar architecture
to the ResUnet but without skip or residual connections
(SimUnet). All models were trained till convergence on the BraTS
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TABLE 1 | Performance metrics of our networks.

Model type WT dice TC dice ET dice

DenseUnet 0.830 0.760 0.685

ResUnet 0.788 0.734 0.649

SimUnet 0.743 0.693 0.523

WT, Whole Tumor; TC, Tumor Core; ET, Enhancing Tumor.

2018 dataset (Menze et al., 2014; Bakas et al., 2017a,b, 2018).
A held out validation set of 48 volumes (including both LGG
and HGG volumes) was used for testing. Table 1 shows the
performance of the three models on this test set.

Our models are not meant to achieve state of the art
performance. Instead, we aim to demonstrate our methods on a
set of models with different structures commonly used for brain
tumor segmentation and compare them to better understand the
process they take to segment the tumors. In this primary study,
we do not use 3D models, since the visualization and analysis
of interpretability related metrics is simpler for 2D models.
Also, it is not clear how some of our results would scale to 3D
models and whether it would be possible to visualize these. For
example, disentangled concepts observed by performing network
dissection might not be meaningful when visualized slice wise
and would have to be visualized in 3D. This and the related
analysis poses an additional layer of difficulty.

We now give a brief introduction of each interpretability
techniques in our pipeline. Network Dissection aims to quantify
to what extent internal information representation in CNNs
is human interpretable. This is important to understand what
concepts the CNN is learning on a filter level, and whether
these correspond with human level concepts. Grad-CAM allows
us to see how the spatial attention of the network changes
over layers, i.e., what each layer of the network looks at in a
specific input image. This is done by finding the importance
of each neuron in the network by taking the gradient of the
output with respect to that neuron. In feature visualization, we
find the input image which maximally activates a particular
filter, by randomly initializing an input image and optimizing
this for a fixed number of iterations, referred to as activation
maximization. Such an optimized image is assumed to be a good
first order representation of the filter, which might allow us
to understand how a neural network “sees.” Test-time dropout
is a computationally efficient method of approximate Bayesian
Inference on a CNN to quantify uncertainty in the outputs of
the model.

In the following sections, each element of the proposed
pipeline is implemented and its results and implications
are discussed.

3. UNDERSTANDING INFORMATION
ORGANIZATION IN THE MODEL

3.1. Network Dissection
Deep neural networks may be learning explicit disentangled
concepts from the underlying data distribution. For example,

Zhou et al. (2014) show that object detectors emerge in networks
trained for scene classification. To study whether filters in brain
tumor segmentation networks learn such disentangled concepts,
and to quantify such functional disentanglement (i.e., to quantify
to what extent individual filters learn individual concepts), we
implement the Network Dissection (Bau et al., 2017) pipeline,
allowing us to determine the function of individual filters in
the network.

In-Network Dissection, the activation map of an internal filter
for every input image is obtained. Then the distribution α of
the activation is formulated over the entire dataset. The obtained
activation map is then resized to the dimensions of the original
image and thresholded to get a concept mask. This concept mask
might tell us which individual concept a particular filter learns
when overlaid over the input image.

For example, in the context of brain-tumor segmentation,
if the model is learning disentangled concepts, there might be
separate filters learning to detect, say, the edema region, or the
necrotic tumor region. The other possibility is that the network
somehow spreads information in a form not understandable by
humans - entangled and non-interpretable concepts.

Mathematically, Network Dissection is implemented by
obtaining activation maps 8k,l of a filter k in layer l, and
then obtaining the pixel level distribution α of 8k,l over the
entire dataset.

A threshold Tk,l(x) is determined as the 0.01-quantile level of
αk,l(x), which means only 1.0% of values in 8k,l(x) are greater
than Tk,l(x). (We choose the 0.01-quantile level since this gives
the best results qualitatively (visually) and also quantitatively in
terms of dice score for the concepts for which ground truths are
available). The concept mask is obtained as:

Mk,l(x) = 8k,l(x) ≥ Tk,l(x) (1)

A channel is a detector for a particular concept if:

IoU(Mk,l(x), gt) =
|Mk,l(x) ∩ gt|

|Mk,l(x) ∪ gt|
≥ c (2)

In this study, we only quantify explicit concepts like the core
and enhancing tumor due to the availability of ground truths gt
and recognize detectors for other concepts by visual inspection.
We post-process the obtained concept images to remove salt-
and-pepper noise and keep only the largest activated continuous
concept inside the brain region in the image. The IoU between
the final concept image and the ground truth for explicit concepts
is used to determine the quality of the concept.

The results of this experiment, shown in Figures 2–4, indicate
that individual filters of brain-tumor segmentation networks
learn explicit as well as implicit disentangled concepts. For
example, Figure 2E shows a filter learning the concept whole
tumor region i.e., it specifically detects the whole tumor region for
any image in the input distribution, the filter in Figure 2B seems
to be learning the edema region, while Figure 2A shows a filter
learning the white and gray matter region, an implicit concept
which the network is not trained to learn. Similar behavior is
seen in all networks (Figures 2–4). This means that we can make
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FIGURE 2 | Disentangled concept mask M learned by individual filters of the ResUnet overlaid over brain image. This includes explicit concepts for which ground truth

labels are available as well as implicit concepts for which their are no labels. IoU scores are mentioned in the sub-captions for all 3 images. L, Layer; WT, Whole

Tumor; TC, Tumor Core; ED, Edema.

FIGURE 3 | Disentangled concepts learned by filters of the DenseUnet. L, Layer; WT, Whole Tumor; TC, Tumor Core; ED: Edema.
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FIGURE 4 | Disentangled concepts learned by filters of the SimUnet. L, Layer; WT, Whole Tumor; TC, Tumor Core; ED: Edema.

attributions based on function to the network at a filter level—
indicating a sort of functional specificity in the network i.e.,
individual filters might be specialized to learn separate concepts.

Neural Networks are inspired by neuroscientific principles.
What does this functional specificity mean in this context?
Debates are ongoing on whether specific visual and cognitive
functions in the brain are segregated and the degree to which they
are independent. Zeki and Bartels (1998) discuss the presence of
spatially distributed, parallel processing systems in the brain, each
with its separate function. Neuroscientific studies have shown
that the human brain has some regions that respond specifically
to certain concepts, like the face fusiform area Kanwisher and
Yovel (2006)—indicating certain visual modularity. Studies based
on transcranial magnetic stimulation of the brain also show
separate areas of the visual cortex play a role in detecting concepts
like faces, bodies, and objects (Pitcher et al., 2009).

The emergence of concept detectors in our study indicates
that brain-tumor segmentation networks might show a similar
modularity. This indicates that there is some organization in
the model similar to the process a human being might take
to recognize a tumor, which might have an implications with
regards to the credibility of these models in the medical domain,
in the sense that they might be taking human-like, or at least
human understandable, steps for inference.

The extracted disentangled concepts can also be used for
providing contextual or anatomical information as feedback to
the network. Though we do not explore this in this study, 3D
concept maps obtained from networks can be fed back as multi-
channel inputs to the network to help the network implicitly learn
to identify anatomical regions like the gray and white matter,
tumor boundary etc. for which no labels are provided, which
might improve performance. This would be somewhat similar to
the idea of feedback networks discussed by Zamir et al. (2017),
where an implicit taxonomy or hierarchy can be established
during training as the network uses previously learned

concepts to learn better representations and increase speed
of learning.

3.2. Gradient Weighted Class Activation
Maps
Understanding how spatial attention of a network over an input
image develops might provide clues about the overall strategy
the network uses to localize and segment an object. Gradient
weighted Class Activation Maps (Grad-CAM) (Selvaraju et al.,
2017) is one efficient technique that allows us to see the networks
attention over the input image. Grad-CAM provides the region
of interest on an input image which has a maximum impact on
predicting a specific class.

Segmentation is already a localization problem. However, our
aim here is to see how attention changes over internal layers of
the network, to determine how spatial information flows in the
model. To understand the attentions of each layer on an input
image, we convert segmentation to a multi-label classification
problem by considering class wise global average pooling on
the final layer. The gradient of the final global average pooled
value is considered for attention estimation in Grad-CAM. To
understand the layer-wise feature map importance, Grad-CAM
was applied to see the attention of every internal layer.

This mathematically amounts to finding neuron importance
weights βc

l,k
for each filter k of a particular layer l with respect

to the global average pooled output segmentation for a particular
channel c:

y(c) =
1

P

∑

i

∑

j

8c(x) (3)

βc
l,k =

1

N

∑

i

∑

j

∂y(c)

∂A
ij

l,k
(x)

(4)

OGradCAM(c) = ReLU

(

∑

k

βc
l,kAl,k(x)

)

(5)
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FIGURE 5 | This figure depicts the gradient based class activation maps obtained at selected intermediate layers of all the three networks in ascending order.

L, Layer; E, Encoding; B, Block; D, Decoding.

Where, P and N are the number of pixels in the output
segmentation map and the activation map of the relevant layer
for channel c respectively, 8c is the output segmentation map
for class c of network 8, y(c) describes the spatially pooled final
segmentation map, Al,k(x) is the activation map for the kth filter
of the lth layer, and OGradCAM(c) represents an output map which
is the result of GradCAM for channel c.

We posit that model complexity and residual connections
might have an impact on how early a model can localize
the tumor region. For example, the DenseUnet and ResUnet
localize the tumor region in the first few layers, while the
SimUnet, which has no skip or residual connections, localizes
the tumor region only in the final few layers (Figure 5).
This indicates that skip and residual connections help learn
and propagate spatial information to the initial layers for
faster localization. While previous literature indicates that skip
connections allow upsampling layers to retain fine-grained
information from downsampling layers (Drozdzal et al., 2016;
Jégou et al., 2017), our results indicate that information might
also be flowing in the other direction i.e., skip and residual
connections help layers in the downsampling path to learn spatial
information earlier.

Drozdzal et al. (2016) also discuss that layers closer to the
center of the model might be more difficult to train due to
the vanishing gradient problem and that short skip or residual
connections might alleviate this problem. Our results support
this as well - middle layers of the SimUnet, which does not have
residual or skip connections, seem to learn almost no spatial
information compared to the other two networks (Figure 5A).

Our results in Figure 5 also show that models take a largely
top-down approach to localizing tumors - they first pay attention
to the entire brain, then the general tumor region, and finally
converge on the actual finer segmentation. For example, attention
in all three models is initially in the background region. In the
DenseUnet and ResUnet, attention quickly moves to the brain
and whole tumor within the first few layers. Finer segmentations
are done in the final few layers. The necrotic tumor and enhancing
tumor are often separated only in the last few layers for all models,
indicating that segregating these two regions might require a
lesser number of parameters.

This top-down nature is consistent with theories on visual
perception in humans–the global-to-local nature of visual
perception has been documented. Navon (1977) showed through
experiments that larger features take precedence over smaller
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features, called the Global Precedence Effect. While this effect
has its caveats (Beaucousin et al., 2013), it is generally
robust (Kimchi, 2015). Brain tumor segmentation models seem
to take a similar top-down approach, and we see in our
experiments that such behavior becomes more explicit as model
performance improves.

While the results from the last two sections are not
unexpected, they are not trivial either—the models do not
need to learn disentangled concepts, especially implicit ones
like the whole brain or the white matter region for which
no explicit labels have been given, nor do they need to take
a hierarchical approach to this problem. The fact that such
human-understandable traces of inference can be extracted from
brain tumor segmentation models is promising in terms of their
acceptance in the medical domain.

4. EXTRACTING VISUAL
REPRESENTATIONS OF INTERNAL
CONCEPTS

4.1. Activation Maximization
Visualizing the internal features (i.e., the representations of
the internal filters obtained on activation maximization) of a
network often provides clues as to the network’s understanding
of a particular output class. For example, visualizing features of
networks trained on the ImageNet (Deng et al., 2009) dataset
shows different filters maximally activated either by textures,
shapes, objects or a combination of these (Olah et al., 2018).
However, this technique has rarely been applied to segmentation
models, especially in the medical domain. Extracting such
internal features of a brain-tumor segmentation model might
provide more information about the qualitative concepts that the
network learns and how these concepts develop over layers.

We use the Activation Maximization (Erhan et al., 2009)
technique to iteratively find input images that highly activate a
particular filter. These images are assumed to be a good first-
order representations of the filters. Mathematically, activation
maximization can be seen as an optimization problem:

x∗ = argmax
x

(8k,l(x)− Rθ (x)− λ||x||22) (6)

Where, x∗ is the optimized pre-image, 8k,l(x) is the activation of
the kth filter of the lth layer, and Rθ (x) are the set of regularizers.

In the case of brain-tumor segmentation, the optimized
image is a 4 channel tensor. However, activation maximization
often gives images with extreme pixel values or random
repeating patterns that highly activate the filter but are not
visually meaningful. In order to prevent this, we regularize our
optimization to encourage robust images which show shapes and
patterns that the network might be detecting.

4.2. Regularization
A number of regularizers have been proposed in the literature to
improve the outputs of activation maximization. We use three
regularization techniques to give robust human-understandable
feature visualizations, apart from an L2 bound which is included
in Equation (6).

4.2.1. Jitter
In order to increase translational robustness of our visualizations,
we implement Jitter (Mordvintsev et al., 2015). Mathematically,
this involves padding the input image and optimizing a different
image-sized window on each iteration. In practice, we also rotate
the image slightly on each iteration. We find that this greatly
helps in reducing high-frequency noise and helps in crisper
visualizations.

4.2.2. Total Variation
Total Variation (TV) regularization penalizes variation between
adjacent pixels in an image while still maintaining the sharpness
of edges (Strong and Chan, 2003). We implement this regularizer
to smooth our optimized images while still maintaining the edges.
The TV regularizer of an image I with (w, h, c) dimension is
mathematically given as in Equation (7):

RTV (I) =

c
∑

k = 0

h
∑

u = 0

w
∑

v = 0

([I(u, v+ 1, k)

− I(u, v, k)]+ [I(u+ 1, v, k)− I(u, v, k)]) (7)

4.2.3. Style Regularizer
In order to obtain visualizations which are similar in style
to the set of possible input images, we implement a style
regularizer inspired from the work of Li et al. (2017). We
encourage our optimization to move closer to the style of the
original distribution by adding a similarity loss with a template
image, which is the average image taken over the input data
distribution. In style transfer, the gram matrix is usually used for
this purpose. However, we implement a loss which minimizes the
distance between the optimized and template image in a higher
dimensional kernel space, as implemented in Li et al. (2017),
which is computationally less intensive.

Mathematically, Equation (6) is modified to the following:

x∗ = argmax
x

(8k,l(x)− ζRTV (x)+ γ L(x, s)− λ||x||22) (8a)

L(x, s) =
∑

i

∑

j

(k(xi, xj)+ k(si, sj)− 2k(xi, sj)) (8b)

k(x, y) = exp(−
||x− y||22

2σ 2
) (8c)

Where L(x, s) it the style loss between the optimized pre-
image and the template image s, k(x, y) is the Gaussian kernel,
8k,l(x) is the filter for which activations need to be maximized,
RTV (x) is the Total Variation Loss, and ||x||22 is an upper bound
on the optimized pre-image x∗. Approximate values of the
regularization coefficients are λ ∼ 10−4, γ ∼ 10−2, and ζ ∼

10−5. For jitter and rotation, the image is randomly shifted by
∼8 pixels, and rotated by∼10 degrees.

The effect of varying the hyperparameters for each of the
regularizers is shown in Supplementary Figure 6. The effect
of jitter is most pronounced—adding jitter by just 2-3 pixels
helps reduce high frequency noise and clearly elucidate shapes
in the image. Increasing total variation regularization increases
smoothness while maintaining shapes and boundaries, reducing
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FIGURE 6 | This figure depicts the effect of regularizers on visualized features of brain tumor segmentation models. The four columns on the left show the four

channel feature map obtained on optimizing without regularization, while the columns on the right show the effect of adding regularizers.

salt and pepper noise. Increasing style regularization brings
the image closer to an elliptical shape similar to a brain. The
effect of changing the regularization hyperparameters from a
medical perspective in the context brain-tumor segmentation,
however, is not clear and further studies would be required in
this direction.

We find that style constraining the images and making
them more robust to transformations does help in extracting
better feature visualizations qualitatively–optimized pre-images
do show certain texture patterns and shapes. Figure 6 shows
the results of such an experiment. The effect of regularizers
is clear–not regularizing the image leads to random, repeating
patterns with high-frequency noise. Constrained images show
certain distinct shapes and patterns. It is still not clear,
however, that these are faithful reflections of what the filter is
actually detecting.

Not a lot of prior work has been done in this area in the
context of medical imaging, and our results are useful in the
sense that they show that constrained optimization generates
such patterns and shapes as compared to noisy unregularized
images, which has also been seen in the domain of natural images.
In the natural image domain, the resulting pre-images, after
regularization, have less high frequency noise and are more easily
identifiable by humans. As discussed in the work of Olah et al.
(2017) and Nguyen et al. (2016), jitter, L2 regularization, Total
Variation, and regularization with mean images priors are shown
to produce less noisy and more useful objects or patterns. In
medical imaging, however, the resulting patterns and shapes are
harder to understand and interpret.

In order to extract clinical meaning from these, a
comprehensive evaluation of which regularizers generate
medically relevant and useful images based on collaboration
with medical professionals and radiologists would be required.
This could provide a more complete understanding of what a
brain tumor segmentation model actually detects qualitatively.

However, this is out of scope of the current study. As we have
mentioned in section 7, this will be explored in future work.

5. UNCERTAINTY

Augmenting model predictions with uncertainty estimates are
essential in the medical domain since unclear diagnostic cases are
aplenty. In such a case, a machine learning model must provide
medical professionals with information regarding what it is not
sure about, so that more careful attention can be given here.
Begoli et al. (2019) discuss the need for uncertainty in machine-
assisted medical decision making and the challenges that we
might face in this context.

Uncertainty Quantification for deep learning methods in
the medical domain has been explored before. Leibig et al.
(2017) show that uncertainties estimated using Bayesian dropout
were more effective and more efficient for deep learning-based
disease detection. Yang et al. (2017) use a Bayesian approach
to quantify uncertainties in a deep learning-based image
registration task.

However, multiple kinds of uncertainties might exist in deep
learning approaches–from data collection to model choice to
parameter uncertainty, and not all of them are as useful or can
be quantified as easily, as discussed below.

Epistemic uncertainty captures uncertainty in the model
parameters, that is, the uncertainty which results from us not
being able to identify which kind of model generated the given
data distribution. Aleatoric uncertainty, on the other hand,
captures noise inherent in the data generating process (Kendall
and Gal, 2017). However, Aleatoric Uncertainty is not really
useful in the context of this work—we are trying to explain and
augment the decisions of the model itself, not the uncertainty in
the distribution on which it is fit.

Epistemic uncertainty can, in theory, be determined using
Bayesian Neural Networks. However, a more practical and
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FIGURE 7 | Uncertainty estimations (shown in red) for the DenseUnet using TTD for a selected set of images. Ground Truth (Left), Model Prediction (Middle), and

Uncertainty (Right). Misclassified regions are often associated with high uncertainty. (A) Misclassified Core Tumor Region which is associated with high model

uncertainty. (B) Misclassified Enhancing/Core Tumor Region which is associated with high model uncertainty. (C) High model uncertainty at class borders. (D) Tumor

region completely missed by model, captured in the model uncertainty map.

computationally simple approach is to approximate this Bayesian
inference by using dropout at test time. We use test time dropout
(TTD) as introduced in Gal and Ghahramani (2016) as an
approximate variational inference. Then,

p(y|x,w) ≈
1

T

t
∑

t = 1

8(x|wt) (9a)

varepistemic(p(y|x,w)) ≈
1

T

T
∑

t = 1

8(x|wt)T8(x|wt)

−E(8(x|wt))TE(8(x|wt)) (9b)

Where 8(x|wt) is the output of the neural network with weights
wt on applying dropout on the tth iteration. The models are
retrained with a dropout rate of 0.2 after each layer. At test
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time, a posterior distribution is generated by running the
model for 100 epochs for each image. We take the mean
of the posterior sampled distribution as our prediction and
the channel mean of the variance from Equation 9 as the
uncertainty (Kendall et al., 2015). The results of this are shown
in Figure 7.

We find that regions which are misclassified are often
associated with high uncertainty. For example, Figure 7A shows
a region in the upper part of the tumor which is misclassified
as necrotic tumor, but the model is also highly uncertain about
this region. Similar behavior is seen in Figure 7B. In some
cases, the model misses the tumor region completely, but the
uncertainty map still shows that the model has low confidence
in this region (Figure 7D), while in some cases, boundary
regions are misclassified with high uncertainty (Figure 7C). In
a medical context, these are regions that radiologists should
pay more attention to. This would encourage a sort of
collaborative effort—tumors are initially segmented by deep
learning models and the results are then fine-tuned by human
experts who concentrate only on the low-confidence regions,
Figure 1 shows.

More sample images as well as uncertainty for other networks
can be found in the Supplementary Material.

6. CONCLUSION

In this paper, we attempt to elucidate the process that
neural networks take to segment brain tumors. We implement
techniques for visual interpretability and concept extraction to
make the functional organization of the model clearer and to
extract human-understandable traces of inference.
From our introductory study, we make the following inferences:

• Disentangled, human-understandable concepts are
learnt by filters of brain tumor segmentation models,
across architectures.

• Models take a largely hierarchical approach to tumor
localization. In fact, the model with the best test performance
shows a clear convergence from larger structures to
smaller structures.

• Skip and residual connections may play a role in transferring
spatial information to shallower layers.

• Constrained optimization helps to extract feature
visualizations which show distinct shapes and patterns which
may be representations of tumor structures. Correlating
these with the disentangled concepts extracted from Network
Dissection experiments might help us understand how exactly
a model detects and generalizes such concepts on a filter level.

• Misclassified tumor regions are often associated with high
uncertainty, which indicates that an efficient pipeline which
combines deep networks and fine-tuning by medical experts
can be used to get accurate segmentations.

As we have discussed in the respective sections, each of these
inferences might have an impact on our understanding of deep
learning models in the context of brain tumor segmentation.

While more experiments on a broader range of models
and architectures would be needed to determine if such
behavior is consistently seen, the emergence of such human-
understandable concepts and processes might aid in the
integration of such methods in medical diagnosis–a model which
seems to take human-like steps is easier to trust than one
that takes completely abstract and incoherent ones. This is
also encouraging from a neuroscience perspective - if model
behavior is consistent with visual neuroscience research on how
the human brain processes information, as some of our results
indicate, this could have implications in both machine learning
and neuroscience.

7. FUTURE WORK

Future work will be centered around gaining a better
understanding of the segmentation process for a greater
range of models (including 3D models) and better constrained
optimization techniques for extracting human-understandable
feature visualizations which would allow an explicit
understanding of how models learn generalized concepts.
For instance, it would be worth-wile to understand what set
of regularizers generates the most medically relevant images.
Textural information extracted from the optimized pre-images
can also be analyzed to determine their correlation with
histopathological features.

Further exploration regarding how these results are relevant
from a neuroscience perspective can also be done, which might
aid in understanding not just the machine learning model, but
also how the brain processes information. The inferences from
our explainability pipeline can also be used to integrate medical
professionals into the learning process by providing them with
information about the internals of the model in a form that they
can understand.
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Supplementary Figure 1 | Network Architectures used in our study.

Supplementary Figure 2 | Concepts learned by filters of a particular layer of the

ResUnet for an input image (Conv Layer 21).

Supplementary Figure 3 | Concepts learned by filters of a particular layer of the

DenseUnet for an input image (Encoding Block 1, Conv 2).

Supplementary Figure 4 | Grad-CAM results for consecutive layers of the

ResUnet [view: top to bottom, column (A), followed by top to bottom, column (B)].

Supplementary Figure 5 | Activation maps for layers of the ResUnet.

Supplementary Figure 6 | Effect of independently changing hyperparamaters for

each regularizer. (Top) Jitter coefficient increases [0 pixels, 1p, 6p, 12p, 20p].

(Middle) Style Coefficient increases [10−2, 10−1, 1, 5, 10]. (Bottom) Total

Variation regularization increases [10−7, 10−6, 10−5, 10−4, 10−3] to

smoothen image.

Supplementary Figure 7 | Uncertainty estimations (shown in red) for the

DenseUnet (a–d) and ResUnet (e,f). Ground Truth (Left), Model Prediction

(Middle), and Uncertainty (Right).
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