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Arterial stenosis plays an important role in the progressions of thrombosis and stroke. In the present study, a standard
axisymmetric tube model of the stenotic artery is introduced and the degree of stenosis η is evaluated by the area ratio of the
blockage to the normal vessel. A normal case (η = 0) and four stenotic cases of η = 0 25, 0.5, 0.625, and 0.75 with a constant
Reynolds number of 300 are simulated by computational fluid dynamics (CFD), respectively, with the Newtonian and Carreau
models for comparison. Results show that for both models, the poststenotic separation vortex length increases exponentially
with the growth of stenosis degree. However, the vortex length of the Carreau model is shorter than that of the Newtonian
model. The artery narrowing accelerates blood flow, which causes high blood pressure and wall shear stress (WSS). The pressure
drop of the η = 0 75 case is nearly 8 times that of the normal value, while the WSS peak at the stenosis region of η = 0 75 case
even reaches up to 15 times that of the normal value. The present conclusions are of generality and contribute to the
understanding of the dynamic mechanisms of artery stenosis diseases.

1. Introduction

At present, arterial stenosis has been clinically regarded as
playing a key role in some cardiovascular or cerebrovascular
diseases, such as atherosclerotic plaque, thrombosis, and
stroke [1, 2]. As the artery narrows, blood flow patterns and
the vessel wall shear stress (WSS) will change greatly, which
contributes to both thrombus formation and plaque cap
rupture. However, it is difficult to directly measure hemody-
namic factors of the diseased artery in vivo. CFD has become
a very useful technique for predicting detailed information
on human blood flows including flow patterns, pressures,
and WSS [3].

Steinman et al. [4] simulated blood flows in both concen-
trically and eccentrically stenosed carotid bifurcation models
to study geometrical effects on flow patterns. They proposed
that the stenosed carotid bifurcation geometry may provide
more specific indicators for vulnerable plaques. Long et al.
[5] calculated blood flows in both axisymmetrical and asym-
metrical stenosis models with three different area reductions
and found that in axisymmetrical models, the poststenotic

blood flow is more sensitive to variations of the stenosis
degree than in asymmetrical cases. Khader et al. [6] used
CFD to study the blood flow in a simple vessel model of
66% eccentric stenosis generated from Doppler scan and
demonstrated that blood flows changed dramatically with
the increase in the severity of stenosis at throat region, which
can cause a growth in velocity and WSS. Sui et al. [7]
employed CFD to investigate the WSS, velocity, and pressure
distributions in areas near carotid artery plaques and ana-
lyzed the relative change of hemodynamic parameters with
different stenosis degrees.

Although many arterial stenosis cases have been investi-
gated by the CFD technique, there remain several problems.
On one hand, in some previous simulation works, the blood
was treated to be Newtonian, while the real blood is non-
Newtonian with rheological effects [8, 9]. On the other hand,
most stenosis models used in prior CFD studies were always
patient specific [10, 11], which could illustrate some unique
flow characteristics in diseased arteries, but the conclusions
may be lacking in theoretical generalization. Therefore,
the present study introduces a standard axisymmetrical
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cylindrical tube model as the stenosed artery and defines the
corresponding degree of stenosis. Then, the blood flows
through arterial models of different stenosis degrees are
solved by CFD, respectively, with the Newtonian and a
non-Newtonian constitutive model (the Carreau model
[12]) for comparison. Finally, the hemodynamic characteris-
tics of flow patterns, pressure drops, and WSS distributions
are investigated quantitatively.

2. Stenosed Artery Model

The stenosed artery is simplified into a parameterized cylin-
drical tube model and currently only the axisymmetric steno-
sis case is investigated for preliminary study. As shown in
Figure 1, x and r represent axial and radial coordinates,
respectively; R and D are the tube radius and diameter,
respectively; Rt is the radius of the stenosis throat; and Ls is
the length of the stenosis region. A cosine curve is selected
to describe the stenosis shape. The degree of stenosis η is
defined as the ratio of the blockage area to the normal vessel
cross-sectional area and is as follows:

η = πR2 − πR2
t

πR2 = 1 − Rt
R

2
1

3. Numerical Schemes and Validation

Assuming laminar flow and neglecting the influence of body
force, the arterial blood flow can be described by the incom-
pressible viscous Navier-Stokes (N-S) equations as follows:

∇ ⋅U = 0,
∂ρU
∂t

+ ∇ ⋅ ρUU = −∇p + ∇ ⋅ τ,
2

where U is the flow velocity vector; ρ is the blood density,
with a value of 1050 kg/m3; and p is the pressure. τ is the
viscous stress tensor and is expressed as follows:

τ = μ ∇U + ∇U T , 3

where μ is the dynamic viscosity. If the blood is treated as a
Newtonian fluid, the viscosity μ will be a constant. However,
the real blood is a multicomponent mixture consisting of
blood cells and plasma, which behaves rheologically [13]. In
this paper, the non-Newtonian effects of blood are calculated
by the Carreau model as follows:

μ = μ∞ + μ0 − μ∞ 1 + λγ 2 n−1 /2 4

Equation (4) is an empirical expression, and γ is the local
shear rate. There are μ∞ = 0 00345 Pa · s (the plasma viscos-
ity), μ0 = 0 056 Pa · s, λ = 3 313 s, and n = 0 3568. Figure 2
compares the blood viscosity calculated by the Carreau
model with experimental data from various sources (Merrill
et al. [14]; Cokelet [15]; Skalak et al. [16]), which demon-
strate that the Carreau model used in this work has a reason-
able accuracy.

When implementing CFD simulations, (2), (3), and (4)
are solved by the semi-implicit method for pressure-linked
equations (SIMPLE) [17], which has been widely used to
compute incompressible viscous flow problems. In the SIM-
PLE algorithm, the pressure and momentum equations are
both discretized in second-order schemes to give accurate
viscous blood flow results. A case of non-Newtonian tube
blood flow calculated by Tabakova et al. [18] is employed to
validate the present numerical scheme with the Carreau
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Figure 1: Axisymmetrical tube model of the stenosis artery.
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Figure 2: Comparison of blood viscosity given by the Carreau
model with experimental data.
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Figure 3: Validation of the present numerical scheme.

2 Journal of Healthcare Engineering



model. In this case, the tube radius is R = 0 0031m, and the
flow rate is Q = 5 98 × 10−5 m3/s. The blood density is set to
be ρ = 1000 kg/m3. Figure 3 shows that the present results

are very consistent with the data of Tabakova et al., which
validate that the present numerical scheme can solve the tube
blood flow accurately by the Carreau model.

Wall
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Figure 4: Computational grids and boundary conditions of the η = 0 75 case.
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Figure 5: Flow patterns: (a) Newtonian, η = 0 25; (b) Carreau, η = 0 25; (c) Newtonian, η = 0 5; (d) Carreau, η = 0 5; (e) Newtonian, η = 0 625;
(f) Carreau, η = 0 625; (g) Newtonian, η = 0 75; (h) Carreau, η = 0 75.
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4. Grids and Boundary Conditions

Five cases with different stenosis degrees, η = 0, 0.25, 0.5,
0.625, and 0.75, are simulated, respectively, by using the
Newtonian and Carreau models for comparison in this
paper, where η = 0 represents the normal vessel without ste-
nosis as the base case. For all cases, the radius of the arterial
vessel is fixed at R = 5mm (D = 10mm) and Ls = 4R. Compu-
tational grids of all cases are structural quadrangle elements
and distributed nonuniformly. Close to the vessel wall and
the stenosis, grid nodes are denser than other regions, so that
the simulation can capture and recognize the flow patterns
and hemodynamic characteristics clearly. Figure 4 shows
the computational grids of the η = 0 75 case.

For all cases, boundary condition settings are the same.
As illustrated in Figure 4, the left boundary is set to be the
blood flow inlet, the top is the wall, the bottom is the axis,
and the right is outlet. The blood flow rate of the inlet is
constant with a value of Qb = 0 465 L/min (the mean veloc-
ity Um = 0 0986m/s). Under this flow rate, the Reynolds
number is 300, which is calculated by using the vessel diam-
eter and plasma viscosity.

5. Results and Discussions

This work focuses on analyzing the CFD results of flow
patterns, pressure drops, and WSS distributions, which have
the profound influence on the progression and diagnosis of
artery stenosis in clinical settings.

5.1. Flow Patterns. Blood flow patterns have been considered
to be specific indicators of vulnerable plaques [4]. Once ste-
nosis happens in the artery, flow patterns can change greatly.
A very important phenomenon is that there will be flow sep-
aration vortexes in the poststenotic regions of severe stenosis
cases, which is validated by the present CFD results. Figure 5
demonstrates that for both the Newtonian and Carreau
models, the more severe the stenosis is, the bigger the separa-
tion vortex becomes. When the stenosis degree relieves to
0.25, the vortex disappears completely. Another notable phe-
nomenon in Figure 5 is that for all cases, there is a poststeno-
tic slow velocity region (blue-colored region) and this region
enlarges as the stenosis becomes severe. In this region, the
mass transportation is weak and the WSS is also small, where
thrombosis is most likely to happen in clinical settings.

Figure 6 plots the vortex lengths nondimensionalized by
the vessel radius R for cases of different stenosis degrees. As
the vessel narrows gradually, the separation vortex lengths
of the Newtonian and Carreau models both increase expo-
nentially. When η = 0 75, the non-Newtonian vortex length
can reach up to nine times that of the vessel radius.
Figure 6 also shows that the vortex length of the Newtonian
model is longer than that of the Carreau model, which sub-
stantiates that the Carreau model predict higher viscous
dissipation than the Newtonian model. Therefore, the use
of the Newtonian model for blood flow simulation should
be cautious.

5.2. Pressure. Figure 7 shows the axial wall pressure (WP) dis-
tributions of all cases from x = −3R to x = 9R predicted,

respectively, by the Newtonian and Carreau models. The zero
pressure point is set at x = 9R. For both models, the axial WP
reduces linearly without stenosis, while it varies tortuously
around the stenosis. The trend can be elucidated with the
variation of the blood flow velocity. For the normal case
(η = 0), the blood flow is fully developed with the unchanged
velocity profile and the pressure gradient only needs to bal-
ance with the constant WSS along the axis. Therefore, the
axial pressure reduces linearly. Once the stenosis happens,
the velocity increases and the pressure decreases with the ste-
nosis severity by the Bernoulli’s theorem. Figure 8 illustrates
that for both models, the pressure drop of η = 0 75 case is
nearly 8 times that of the normal case. Therefore, artery
stenosis can cause high blood pressure, which has been
explained in [19]. For the Newtonian flow, if the flow rate
Q is constant, there is

δ Δp
Δp = −4 δD

D
, 5

where δ is the differential operator, Δp is the pressure drop,
and D is the tube radius. Equation (5) means that the varia-
tions of pressure drop and radius have opposite trends.
According to (5), when the radius decreases, the pressure
drop necessarily rises. The present CFD results validate the
same for the non-Newtonian blood flow.

5.3. WSS. Existing studies always focus on analyzing the WSS
characteristics of stenosis diseases. High WSS in the partially
occluded vessel has been known to activate platelet-platelet
binding events that play a very important role in thrombosis
[4]. This work also predicts the WSS distributions of all ste-
nosis and normal cases, respectively, by the Newtonian and
Carreau models. Figure 9 displays the WSS distributions
from x = −3R to x = 9R along the axis of the normal (η = 0),
η = 0 5, and η = 0 75 cases for both models. Under each ste-
nosis degree, the WSS of the Carreau model is a little greater
than that of the Newtonian model but both have imilar
trends. For two models, at the stenosis region (x = −2R to
x = 2R), the stenosis WSS is remarkably higher than that
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Figure 6: Separation vortex length.
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of the normal case and WSS peaks both appear around the
stenosed centre (x = 0). The WSS peak increases dramati-
cally with the growth of the stenosis degree. When the ste-
nosis degree rises to η = 0 75, the WSS peaks of both
models reach up to about 7.5 Pa, almost 15 times that of
the normal value (about 0.5 Pa). Therefore, artery stenosis
indeed causes a remarkable WSS increase. In fact, according
to Figure 5 and (3), the high-speed flow at the stenosis
region results in a high WSS, and clinically, this region
may be the fibrous cap in the vessel. The corresponding
mechanical stress can contribute to plaque rupture and dis-
lodged material [20].

6. Conclusions

Although the CFD technique has been widely used to inves-
tigate arterial stenosis, many previous studies solved the
blood flows through unique patient-specific artery models,

the conclusions of which may be the lack of generalization.
In addition, some research employed only the Newtonian
constitutive model for CFD simulation, which cannot reflect
the rheological behaviour of blood. Therefore, the current
study introduces a standard tube model of arterial stenosis
and simulates tube blood flows, respectively, by the Newto-
nian and (non-Newtonian) Carreau models for comparison.

A normal (η = 0) and four diseased cases of different
stenosis degrees, η = 0 25, 0.5, 0.625, and 0.75, are all com-
puted with a constant Reynolds number, Re = 300. For the
Newtonian and Carreau models, both results quantitatively
show that the severe narrowing can cause the remarkable
poststenotic flow separation and the length of separation vor-
tex elongates exponentially as the tube contracts. However,
the non-Newtonian vortex is shorter than the Newtonian
vortex, because the viscous dissipation of the Carreau model
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Figure 7: Axial wall pressure distributions of all stenosis cases: (a) Newtonian; (b) Carreau.
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is higher than that of the Newtonian model. The arterial
stenosis accelerates the blood flow and causes the high blood
pressure drop. For both models, the pressure drop of η = 0 75
case is nearly 8 times that of the normal value. The WSS
of the Carreau model is a little greater than that of the
Newtonian model. The artery narrowing leads to a high
WSS increase at the stenosis region. For both models,
the WSS peak of η = 0 75 case even reaches up to 15 times
that of the normal.
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