Cancers 2011, 3, 789-801; doi:10.3390/cancers3010789

Cancers

ISSN 2072-6694
www.mdpi.com/journal/cancers

Article

Mastic Oil Inhibits the Metastatic Phenotype of Mouse Lung
Adenocarcinoma Cells

Heleni Loutrari *, Sophia Magkouta !, Andreas Papapetropoulos > and Charis Roussos '

! “G.P. Livanos and M. Simou Laboratories”, Evangelismos Hospital, Department of Critical Care

and Pulmonary Services, School of Medicine, University of Athens, 3 Ploutarchou Street, 10675
Athens, Greece; E-Mails: smagkouta@med.uoa.gr (S.M.); croussos@med.uoa.gr (C.R.)
Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504
Patras, Greece; E-Mail: apapapet@upatras.gr

* Author to whom correspondence should be addressed; E-Mail: elloutrar@med.uoa.gr;
Tel.: +30-210-7235521; Fax: +30-210-7239127.

Received: 30 December 2010; in revised form: 9 February 2011 / Accepted: 15 February 2011 /
Published: 23 February 2011

Abstract: Mastic oil from Pistacia lentiscus variation chia, a natural combination of
bioactive terpenes, has been shown to exert anti-tumor growth effects against a broad
spectrum of cancers including mouse Lewis lung adenocarcinomas (LLC). However, no
studies have addressed its anti-metastatic actions. In this study, we showed that treatment
of LLC cells with mastic oil within a range of non-toxic concentrations (0.01-0.04% v/v):
(a) abrogated their Matrigel invasion and migration capabilities in transwell assays;
(b) reduced the levels of secreted MMP-2; (c) restricted phorbol ester-induced actin
remodeling and (d) limited the length of neo-vessel networks in tumor microenvironment
in the model of chick embryo chorioallantoic membrane. Moreover, exposure of LLC and
endothelial cells to mastic oil impaired their adhesive interactions in a co-culture assay and
reduced the expression of key adhesion molecules by endothelial cells upon their
stimulation with tumor necrosis factor-alpha. Overall, this study provides novel evidence
supporting a multipotent role for mastic oil in prevention of crucial processes related to
cancer metastasis.
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1. Introduction

Lung cancers are among the most mortal cancer types characterized by rapid metastasis and
frequent resistance to current chemotherapy regimens and radiotherapy [1]. Therefore, novel agents
preventing both cancer onset and metastatic spreading are urgently required for their treatment.
Recently much attention has been focused on phytochemicals, i.e., bioactive compounds isolated from
plants, due to their low toxicity and multiple chemopreventive/chemotherapeutic actions that have
been attributed to the fine tuning of intracellular and intercellular signal transduction pathways
regulating cell homeostasis [2,3]. Current data support that natural combinations of phytochemicals
often possess enhanced reactivity compared to isolated substances due to their additive and/or
synergistic interactions [4]. Mastic gum from Pistacia lentiscus var. chia and its essential oil, two
natural products traditionally used for their food flavoring and medicinal properties, seem to be
promising in this respect as they contain a wide spectrum of bioactive components, mainly terpenes [5-7]
and have proved to be safe in humans and experimental animals at oral daily doses as high as
40-60 mg mastic gum/kg of body weight for a period of 3-6 weeks [8-11]. Among mastic oil
components, the isoprenoid perillyl alcohol (POH), an established inhibitor of the mevalonate
biosynthetic pathway [12], has proved to efficiently attenuate tumor growth [13,14], metastasis [15]
and angiogenesis [16] and it is undergoing phasel/ll clinical trials [17,18]. In concert, mastic gum and
mastic oil have been also shown to exert in vitro anti-tumor growth activities against various cancer
types including human prostate, leukemia and colon cancers [19-22] within a range of effective
non-toxic concentrations (0.001-0.6% v/v). Using a Lewis lung adenocarcinoma (LLC) transplantation
model we have further demonstrated that mastic oil (45 mg/kg body weight, i.p., every other day for
about three weeks) can significantly limit tumor expansion in syngeneic mice without toxicity, by
targeting in vivo cancer cell apoptosis, tumor-associated neovascularization and inflammation, in part
through negative modulation of Ras/RhoA GTPases and NF-kappaB-dependent gene transcription [23].
Recently, by combining high-throughput transcriptomic technology and bioinformatics on mastic oil-
treated LLC cells we have been able to identify a number of target genes, such as those encoding
PTEN, E2F7, HMOX1 (up-regulation) and NOD1 (down-regulation) and provide insights into the
pathways involved in oncogenic growth inhibition [24]. Although some of the reported actions could
also support a potential role of mastic oil in metastasis prevention, this issue has not yet been
investigated.

Metastasis unequivocally marks an advanced and generally incurable stage of tumor progression by
which cells from the primary tumor invade the basement membrane, enter the circulation through
newly formed blood vessels and disseminate to distant sites [25,26]. In the present work we
explored—for the first time—the consequences of mastic oil treatment on this complex cascade using
highly metastatic LLC cells in a series of assays simulating stages that critically influence cell
invasiveness and tumor interactions with neighboring vasculature. POH was included for comparison
as a reference bioactive component.
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2. Results and Discussion

Despite the substantial advancement in cancer treatment, metastasis remains the main cause of
cancer fatality [27]. Discovering new relatively non-toxic agents capable of preventing this lethal
condition is an important challenge with major implications for clinical practice. In this study, by
combining a number of biological assays, we were able to demonstrate for the first time that mastic oil,
a dietary plant extract with established anti-tumor growth activity, can negatively control pivotal steps
of metastasis.

2.1. Viability of Mastic Oil-Treated LLC Cells

Using different experimental tumor growth models, we have previously shown that mastic oil combines
pleiotropic anti-cancer actions with low toxicity even at relatively high concentrations [20,23]. In this
study, we initially wished to confirm cell viability in LLC cultures under treatment conditions (cell
density, culture media, concentrations of test agents, incubation time) simulating those of applied
experimental protocols. Using an MTT-based method, we found that compared to vehicle control,
mastic oil at concentrations ranging from 0.01 to 0.04 % v/v and POH at 0.5-1.0 mM for various time
periods up to 48 h, did not significantly altere (p > 0.05) the number of living cells (Table 1). These
concentrations were used in all the different assays. Viability tests were also performed in endothelial
cells (EC) and no toxicity was observed (data not shown).

Table 1. Viability of Lewis lung adenocarcinoma (LLC) cells after treatment.

Incubation Mastic Oil Concentration (% v/v) POH Concentration (mM)
Time (h) 0.01 0.02 0.04 0.5 1.0

6 99.6 £1.5 94.7+1.6 95.8 +2.4 98.4 +£2.0 94.7+14

24 101.7 £1.7 98.2 +£2.9 96.1 £2.5 100.7 £1.7 91.2+1.0

48 102.6 2.0 97.1+24 93.3+1.9 97.2+25 92.1+15

Confluent cultures of LLC cells grown in 96-well plates were serum-starved for 24 h and
then treated with test agents or vehicle for 6-48 h. Results are expressed as mean % of
control £SEM, n = 12.

2.2. Mastic Oil Inhibits Tumor Cell Invasiveness

Since invasion of the extracellular matrix (ECM) by cancer cells is essential for their dissemination,
we first examined in a transwell in vitro assay the capability of mastic oil-treated tumor cells to invade
and move through Matrigel-coated filters. Migration of tumor cells through identical uncoated
membranes was also assessed in parallel using similar experimental conditions. As shown in Figure 1A,
mastic oil even at low concentrations (0.01% and 0.02% v/v) significantly limited tumor cell invasiveness
and migration capabilities indicating that it could target both the enzymatic machinery involved in
ECM degradation and the cell motility mechanism [28]. Notably, POH at 0.5 mM (Figure 1A) and 1.0 mM
(not shown) although affecting LLC cell migration, was not able to cause any significant change in the
number of invading LLC cells, thus underlining the contribution of additional bioactive ingredients
into mastic oil.
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Figure 1. Mastic oil effects on tumor cell invasion/migration and MMP expression.
(A) Mastic oil attenuates tumor cell invasion and migration. Serum starved LLC cells were
treated with Moil (0.01-0.02% v/v), POH (0.5mM) or vehicle (CTL) for 2 h and then
loaded onto BD Matrigel Invasion or Control chambers. The lower chambers were filled
with complete medium containing test agents and plates were incubated for 20 h. Migrating
cells were counted (200 X magnification, 10 HPF/membrane) and results are expressed as
mean =SEM; n = 9, *P < 0.05 from vehicle. (B) Mastic oil effects on MMP-2 and MMP-9
expression. Serum starved LLC cultures were treated with Moil (0.02-0.04 % v/v), POH
(1 mM) or vehicle (CTL) for 48 h and supernatants were analyzed for MMP-2 and MMP-9
levels by ELISA. Results were normalized to total protein and are expressed as
mean =SEM; n = 12, *P < 0.05 from vehicle.
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In view of the pivotal role of type IV collagenases, matrix metalloproteinases 2 (MMP-2) and 9
(MMP-9) on ECM degradation and local invasion by solid cancers [29-31], we next evaluated the
effect of mastic oil on their basal expression by LLC cells. In agreement with previous reports [29] we
were able to detect only low constitutive levels of these enzymes (Figure 1B). Nevertheless, treatment
with mastic oil further reduced the expression of MMP-2 but only when applied at the highest
concentration (0.04% v/v). Similarly, POH decreased MMP-2 levels only at 1 mM (0.5 mM did not
cause any significant effect, data not shown). Although these results do not directly correlate MMP-2
reduction with the observed inhibition of in vitro anti-invasive activity (Figure 1A), which could be
achieved at lower concentrations of mastic oil (0.01-0.02% v/v), they are, however, indicative of a
negative modulation of signaling pathways controlling MMP-2 expression. This finding may have
therapeutic relevance as MMP-2, unlike many other MMPs, is constitutively expressed by a wide
range of malignant cell types and its over-expression has been suggested to be of independent
prognostic value in cancer patients [31]. As for MMP-9, its secreted levels were not significantly
affected by mastic oil nor POH. However, the chance of detecting some decrease was technically
limited by the fact that the levels of MMP-9 at basal state of LLC cells were quite near the detection
threshold of the applied assay.
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Figure 2. Mastic oil inhibits actin polymerization in PMA-induced LLC cells.
Serum-starved LLC cells were treated with Moil (0.04% v/v), POH (1.0 mM) or vehicle
(CTL) for 3 h and then induced by 1 uM PMA or vehicle (basal) for 30 min. Cells were
fixed and F-actin was visualized by phalloidin staining. Top panel: representative
micro-photographs (630 X magnification); bottom panel: graphs from image analysis of
F-actin staining normalized to cell numbers and expressed as mean (% of control) =SEM,;
n =96-160, *P < 0.05.
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2.3. Mastic Oil Reduces Actin Remodeling

It has been well established that the process of cell motility requires the dynamic organization of the
actin cytoskeleton, which in turn involves the polymerization and depolymerization of actin filaments
in response to chemotactic stimuli [32]. Therefore, to explore the basis of mastic oil-mediated
inhibitory action on LLC cell motility, we subsequently investigated its potential effects on actin
cytoskeleton remodeling using phorbol 12-myristate 13-acetate (PMA) as inducer, a tumor promoter
signaling phospholipid [33]. Actin rearrangement in mastic oil (0.01-0.04 % v/v), POH (0.5-1.0 mM)
or vehicle treated LLC cells was assessed before and after addition of PMA by means of
immunofluorescent labeling and confocal microscopy of filamentous (F)-actin. As shown in Figure 2
(which illustrates the effects in the high concentration range), although non-induced LLC cells
displayed low basal levels of polymerized F-actin, exposure to PMA caused a prominent staining
especially at the periphery, indicating an increase in de novo actin polymerization. Importantly,
pre-incubation with mastic oil and POH resulted in a significant attenuation of F-actin fiber formation
in PMA-stimulated cells thus suggesting the ability of these agents to attenuate pathways triggering
changes in the actin cytoskeleton such as those induced by the used phospholipid [32-34].
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2.4. Mastic Oil Inhibits Tumor Interactions with Vascular Microenvironment

We subsequently wished to address the consequences of mastic oil treatment on critical connections
between tumor cells and the neighboring vasculature leading to tumor-related angiogenesis,
endothelial adhesion and vascular penetration [25,35]. Previous experimental evidence from our
laboratory indicated an inhibitory role of mastic oil on vascularization of LLC tumors and on the
expression of two important chemotactic/pro-angiogenic mediators, namely vascular endothelial
growth factor and monocyte chemoattractant protein-1 [23]. Herein, by using an alternative tumor
growth model in chicken embryo chorioallantoic membrane (CAM), which recapitulates several of the
in vivo tumor-host interactions [16,36], we were able to directly estimate the length of the vascular
network in tumor microenvironment. As revealed by image analysis of pictures taken two days after
the initial inoculation of tumor cells on the CAM, mastic oil treatment at 0.01% to 0.04% v/v reduced
the length of the microvessel networks surrounding LLC implants in a concentration-dependent
manner, compared to the vehicle control, whereas POH (0.5 and 1.0 mM) had a similar but weaker
effect. Figure 3 shows the effects of test agents at the lower concentration range. Although MMP-2 has
been shown to promote tumor-associated vascular remodeling [30,31], the anti-angiogenic effects
presented in Figure 3 may not be related to the decrease of secreted MMP-2 by mastic oil as it was
mediated only at the highest test concentration (0.04% v/v, Figure 1B).

Figure 3. Mastic oil attenuates tumor-related angiogenesis. Tumor cells pre-treated with
vehicle (CTL), Moil (0.01-0.02 % v/v) or POH (0.5 mM) for 2 h were applied onto the
CAM and further incubated for 48 h at 37 °C in the presence of test agents.
(A) Representative photographs of vessel networks in the CAM; (B) Graphs from image
analysis of vessel network length (mean % of control =SEM, n = 30, *P<0.05 from vehicle.
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Furthermore, by using a simple quantitative assay, we examined whether mastic oil was able to
modify tumor cell adhesiveness to EC monolayers. Results were similar for EC originated from two
different vascular beds (human umbilical vein and bovine coronary vein, HUVEC and CVEC,
respectively) and are presented in total. As shown in Figure 4A, pre-treatment of LLC and EC with
mastic oil at the high concentration range (0.02-0.04% v/v) reduced the number of tumor cells
adhering to endothelial monolayers in a concentration-dependent manner. In line with this data,
Western blot analysis of mastic oil-treated EC revealed a dose-dependent reduction, at an overlapping
concentration range (0.01-0.02% v/v), in the expression of two important adhesion mediators, ICAM-1
and VCAM-1 [37], upon induction with an inflammatory cytokine known to potentate in vivo cancer
metastasis, tumor necrosis factor-o. (TNF-a, Figure 4B) [38]. POH (0.5-1 mM) displayed a similar

activity pattern to mastic oil in both assays (Figure 4A and 4B).

Figure 4. (A) Mastic oil inhibits LLC cell adhesion to endothelial cell (EC) monolayers.
Fluorescently labeled tumor cells treated with Moil (0.02-0.04% v/v), POH (0.5-1 mM) or
vehicle (CTL) for 2 h were loaded onto confluent EC monolayers treated similarly and
co-cultures were further incubated in the presence of test agents for 1 h. After washing,
LLC adherent cells were lysed and fluorescence was measured at 485-535 nm. Results are
expressed as means =SEM; n = 18. (B) Mastic oil decreases the expression of endothelial
ICAM-1 and VCAM-1. HUVEC monolayers were treated with Moil (0.01-0.02% v/v), POH
(0.5-1 mM) or vehicle (CTL) for 2 h and then TNF-a (10 ng/mL) was added and incubated
for 4 h. Cell lysates were analyzed for the presence of ICAM-1 and VCAM-1 by Western
blotting. Blots are representative of three independent experiments. Total densitometry
data were normalized to [3-actin and expressed as mean % of control Z5EM, *P < 0.05.
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Taken together, our data indicate that mastic oil could limit the metastatic potential of LLC cells
through negative regulation of MMP-2 expression, actin cytoskeleton remodeling and tumor
endothelial adhesion. Although additional experiments are required to provide further mechanistic
insights, several of these actions may be associated with the established inhibitory effects of mastic oil
on small RhoA GTPase [20,23] and NF-xB [22-24] signaling known to control relevant metastasis-
promoting processes [39,40]. Furthermore, up-regulation of tumor suppressor pten in LLC cells treated
by mastic oil, previously revealed by genomic microarray analysis [24], may also provide an additional
mechanistic link, as PTEN over-expression has been shown to suppress the process of lung cancer
invasion [41]

3. Experimental Section
3.1. Phytochemicals

Mastic oil was from Chios Gum Mastic Growers Association (Chios, Greece) and POH was from
Fluka (Buchs, Switzerland). Chemical composition of mastic oil was in accordance with published
data [5,6]. Different batches of extract displayed significant reproducibility in all types of assays.
Selection of bioactive concentrations was based on previous studies [16,20,23] and verified by
preliminary experiments. POH concentration (0.5-1 mM) corresponded always to molar excess
compared to its content (about 1%) into the examined concentrations of mastic oil. Working dilutions
contained up to 0.1% DMSO (Sigma, St. Louis, MO, USA).

3.2 Cell Culture and Viability Assay

LLC cells (American Type Culture Collection, Manassas, VA, USA) were cultured according to [23].
Human umbilical vein and bovine coronary vein endothelial cells (HUVEC and CVEC, respectively)
were isolated and maintained as described before [16,42]. Cell viability was monitored under
experimental conditions specified for each biological test by the methylthiazoletetrazolium (MTT)
assay (Sigma, St. Louis, MO, USA) and by trypan blue exclusion. Briefly for MTT assay, 90%
confluent LLC cultures grown in 96-well plates were serum-starved for 24 h. Test agents were then
added (mastic oil at 0.01-0.04 % v/v, POH at 0.5-1.0 mM or DMSO vehicle) and incubation continued
for various times up to 48 h. After the exposure period, MTT (5 mg/mL) was added and cells were
further incubated for 4 h at 37 <C. The MTT formazan crystals were solubilised by the addition of
0.1N HCI in anhydrous isopropanol and the absorbance was measured on a microtiter plate reader at
595 nm with correction at 630 nm. Sample absorbance was correlated with cell number using a
reference standard curve.

3.3. Invasion and Migration Assays

Invasion and migration of LLC cells were assayed using 8um-pore size membrane BD BioCoat
Matrigel Invasion and Control Chambers respectively (BD Biosciences, Erembodegen, Belgium).
Confluent tumor cell cultures grown in 6-well plates were serum-starved for 24 h and then treated with
mastic oil (0.01-0.04% v/v), POH (0.5-1.0 mM), or DMSO for 2 h. Cells were then trypsinized and
0.5 mL of suspension containing 3 < 10* cells were loaded on the upper compartment, the lower
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chamber was filled with DMEM containing 10% FCS (or serum-free medium in controls) in the
presence of test agents or vehicle and the plate was incubated for 20 h at 37 <C. Membranes were then
fixed and stained using the Rapi- Diff Il kit (Bios Europe, Lancashire, UK). Cells located in randomly
chosen fields on the lower surface of the membrane were counted in blind on a microscope (A = 200;
10 high power field/membrane).

3.4. Determination of MMP Expression

LLC cells were seeded onto 12-well plates at a density of 1 < 10° cells/well and 24 h later the cells
were treated with mastic oil (0.01-0.04% v/v), POH (0.5-1.0 mM) or DMSO-vehicle for 24-48 h in
serum-free medium. Culture supernatants were analyzed for the presence of total MMP-2 and MMP-9
by ELISA (R&D Systems, Minneapolis, MN, USA) according to the manufacturers’ instructions.
Results were normalized to total protein.

3.5. Immunofluorescent Detection of F-Actin

Localization of F-actin was performed by immunofluorescent cell labeling as described before [43]
Briefly, tumor cells (1 <10° cells/mL) were plated on 1% gelatin-coated glass culture coverslips in
complete medium for 24 h. The medium was replaced with serum-free DMEM containing 0.25% BSA and
cultures were further incubated for 24 hours. Cells were then treated with mastic oil (0.01-0.04 %v/v),
POH (0.5-1.0 mM) or DMSO for 3 h and then 1 uM PMA (Sigma, St. Louis, MO, USA) or vehicle
was added for 30 min. Cells were then washed twice with PBS, fixed with 3.7% formaldehyde solution
for 5 min, lysed with 1% Triton X-100 and dyed with 5 units Alexafluor 488 phalloidin (Invitrogen,
Carlsbad, CA, USA). Coverslips were mounted onto slides with Prolong Gold antifade reagent with
DAPI (Invitrogen, Carlsbad, CA, USA) for nuclear staining. Pictures from non-overlapping random
fields were taken under a confocal laser scanning microscope (DMI400B, Leica Microsystems AG,
Wetzlar, Germany) using a 630x oil immersion objective. For quantification of F-actin, photographs
were analyzed with ImageJ software (NIH Image, Bethesda, MD, USA) and data normalized to
cell number.

3.6. Tumor Angiogenesis Model in the Chorioallantoic Membrane (CAM)

To asses neo-vessel formation in tumor microenvironment, we used the CAM of the chick embryo
model in a modified version that combined two previously described protocols [16,36]. Briefly, 5 < 10°
tumor cells that had been pre-treated for 2 h with mastic oil (0.01-0.04% v/v, POH (0.5-1 mM) or
vehicle (0.05% DMSO), were applied on the exposed upper part of the membrane on day 9 of embryo
development, onto an area of 1 cm? restricted by a plastic ring. After incubation of eggs for 48 hours at
37 T in the presence of test compounds, the upper CAM was fixed in situ, excised from the eggs and
pictures were taken from the tumor periphery through a stereoscope equipped with a digital camera.
The total vessel length was measured using image analysis software (Scion Image, Scion Corporation,
Frederick, MD) according to [16].
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3.7. Tumor-Endothelial Cell Adhesion Assay

Adhesion capability of LLC cells to EC monolayers was evaluated as described previously [44]
with some modifications. Tumor cells pre-treated with mastic oil (0.01-0.04% v/v), POH (0.5-1 mM),
or DMSO vehicle for 3 h at 37 °C, were labeled with 10 pg/mL of 2,7-bis-(2-carboxyethyl)-5-(6)-
carboxyfluorescein acetoxymethyl ester (BCECF-AM; Sigma, St. Louis, MO) for 30 min at 37 <C,
washed twice with PBS and collected. Subsequently, 1 < 10° labeled cells were seeded onto EC grown
in 96-well plates similarly pre-treated with test agents and co-cultures incubated for 1 h. After three
washes with PBS, cells were solubilized by 0.5% Triton X-100 and fluorescence of lysates measured
at 485/535 nm excitation/emission wavelengths. Numbers of adherent cells were evaluated using a
reference standard curve.

3.8. Detection of ICAM-1 and VCAM-1 by Western Blotting

EC were treated with medium containing various concentrations of mastic oil (0.01-0.04% v/v),
POH (0.5-1.0 mM) or DMSO vehicle (0.1%) for 2 h. Subsequently, tumor necrosis factor-alpha (TNF-a,
10 ng/mL) or PBS was added and cultures were further incubated for 4 h. Cells were then solubilized
and lysates were resolved by 10% SDS-PAGE as described previously [20] using anti-human ICAM-1,
VCAM-1 (R&D Systems, Minneapolis, MN, USA) or anti-beta-actin (Chemicon, Temecula, CA,
USA) antibodies. Gel-Pro Analyzer software (Media Cybernetics, Silver Spring, MD, USA) was used
for densitometry analysis of blots and results were normalized to beta-actin.

3.9. Data Analysis and Statistics

Data are presented as means + SEM of the indicated number of observations. Statistical
comparisons between groups were performed using one-way ANOVA followed by a post hoc test as
appropriate. Differences among means were considered significant when P < 0.05.

4. Conclusions

Overall, in this study, by using experimental models and assays evaluating critical processes of the
metastatic cascade, we provided novel evidence for the inhibitory actions and some potential
underlying mechanisms of mastic oil against cancer cell metastatic spreading.
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