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Modified sensory feedback
enhances the sense of agency
during continuous body
movements in virtual reality

Kei Aoyagi****, Wen Wen*, Qi An2, Shunsuke Hamasaki', Hiroshi Yamakawa?,
Yusuke Tamura3, Atsushi Yamashita® & Hajime Asamat

The sense of agency refers to the feeling of control over one’s own actions, and through them, the
external events. This study examined the effect of modified visual feedback on the sense of agency
over one’s body movements using virtual reality in healthy individuals whose motor control was
disturbed. Participants moved a virtual object using their right hand to trace a trajectory (Experiment
1) or a leading target (Experiment 2). Their motor control was disturbed by a delay in visual feedback
(Experiment 1) or a 1-kg weight attached to their wrist (Experiment 2). In the offset conditions, the
virtual object was presented at the median point between the desired position and the participants’
actual hand position. In both experiments, participants reported improved sense of agency in the
offset condition compared to the aligned condition where the visual feedback reflected their actual
body movements, despite their motion being less precise in the offset condition. The results show that
sense of agency can be enhanced by modifying feedback to motor tasks according to the goal of the
task, even when visual feedback is discrepant from the actual body movements. The present study
sheds light on the possibility of artificially enhancing body agency to improve voluntary motor control.

When individuals navigate their physical environments, they experience a sense of control over their actions,
and through that, over the external events. This subjective feeling of control is called the sense of agency or the
sense of control!. Studies in cognitive science have found that the sense of agency influences many aspects of
behavior, such as perception®*™, attention®~’, and decision making®’. Research on the sense of agency has attracted
the interest of researchers in many fields besides cognitive science, such as robotics'*"* and psychiatry'*-¢,

The sense of agency is usually generated from the comparison between the predictions of sensory feedback
based on the efference copy of one’s motor commands, and the actual sensory feedbacks® (Fig. 1). Prediction
errors (i.e., mismatch between predictions and sensory feedbacks) diminish the sense of agency and trigger the
update of the internal model and action selection to reduce prediction errors'. Sense of agency is considered an
awareness accompanying motor control. However, recent studies have shown that the sense of agency is more
than a passive awareness. Feeling in control reduces the reaction time of executing an action, and increases the
frequency of action'®!®. Furthermore, a recent study showed that when people controlled a virtual limb and
felt that the virtual limb was a part of their own body, the movements of their real limb was “attracted” to the
movements of the virtual limb?. In other words, feeling in control is not only a passive “side effect” of control,
but can affect motor control itself.

This study focuses on the sense of agency during continuous body movement when one’s motor control is
disturbed. When we move our hands, we usually undoubtedly know that we are controlling our hands without
any conscious effort. However, the sense of agency over one’s body may be impaired when one’s motor ability is
impaired. For example, after stroke, many patients not only suffer from motor disabilities such as apraxia and
hemiparetic/-plegic limbs, but also report abnormal self-awareness of action'®*"*%. This is probably because
patients’ internal model for controlling their own body remains at the old state before the impairment, and large
prediction errors arise when they try to execute an action. Many rehabilitation studies have been conducted to
improve the voluntary skillful movement of hemiplegic patients*, using physical techniques such as exercises,
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Figure 1. The model of voluntary motor control depicting the role of the sense of agency. According to the
comparator model®, the sense of agency is generated from the comparison between predicted sensory feedback
and actual sensory feedback. Prediction errors reduce the sense of agency, and cause the updating of the internal
model for motor control. The sense of agency is also considered as an internal reward for voluntary motor
control'®1,

massage, and manipulation. This can physically reduce prediction errors by improving the control of one’s limbs.
However, because of the great difficulty of motor recovery, this progress is usually slow and frustrating. Here,
this study sheds light on the possibility of intervening sensory feedback. We suggest that positive intervention in
sensory feedback can artificially reduce prediction errors and improve the sense of agency, potentially enhancing
the motivation of action. Furthermore, reducing large prediction errors may also be beneficial for the updating
of the internal model to adapt to the current state of body motor control after impairment**?*. Some previous
studies attempted to use extrinsic feedback to improve motor learning in stroke patients by providing supple-
mentary sensory information to reduce the gap between the expected state of motion and the actual motion*-,
For example, visual feedback about weight distribution can improve patients’ balance performance, and audi-
tory feedback of force production can improve sit-to-stand performance?®. Here, this study examined whether
a modification of sensory feedback that reduces perceived prediction errors could enhance the sense of agency,
even when the actual motor errors are still large. If this hypothesis is valid, it means that external modification of
sensory feedback may be a useful way to enhance body agency, and potentially benefit voluntary motor learning
for people with motor disabilities.

In this study, we designed two experiments with a motor task with virtual reality (VR), using a head-mounted
display (HMD), which allowed us to prevent the participants from seeing their own body, and therefore to replace
the visual input of the body with modified visual feedback. Participants moved their hand to trace a designated
trajectory (Experiment 1) or a leading stimulus (Experiment 2). The position of their hand was presented by a
visual stimulus (i.e., a ball), which participants believed and felt matched the position of their real hand in real
space. Although the visual stimulus was an external object instead of one’s real body, controlling this object relies
on exactly the same internal model as controlling one’s own hand, requiring no spatial or temporal transforma-
tion, thus the sense of agency over the visual stimulus in our task is very close to the sense of agency over one’s
own body movements. Participants’ motor control was disturbed by a delay in visual feedback (Experiment 1)
or a 1-kg weight attached to their wrist (Experiment 2). In our offset conditions, the visual feedback of the hand
position was presented at the median point between participants’ actual hand position and the desired posi-
tion (according to the goal of each experiment, see method of each experiment). We predict that the matches
between participants’ motor intention and visual feedback should improve the sense of agency, even when the
actual motion errors are large.

Experiment 1

Participants. Fifteen participants took part in Experiment 1 (4 females; mean age=21.6 years; standard
deviation, SD =2.4). All participants had normal or corrected-to-normal visual acuity and normal motor ability,
and were right-handed. The experiment was conducted with the approval of the ethics committee of the Faculty
of Engineering at the University of Tokyo, and was performed in accordance with relevant guidelines and regula-
tions. Written informed consent was obtained from all participants.

Experimental task and design. In the experiment, a circular trajectory and a spherical stimulus were
presented in the virtual space with the HMD (Fig. 2). The circular trajectory was presented on a horizontal
surface in the virtual space in front of the participants. The diameter of the trajectory and the diameter of the
visual stimulus were 30 cm and 5 cm, respectively. The position of the visual stimulus (i.e., the ball in Fig. 2) was
synchronized with the position of the participants’ right hand using a motion capture. The color of the visual
stimulus was green when it was away from the trajectory and changed to red when it touched the trajectory. The
participants were instructed to move their right hand on this trajectory, maintaining the visual target as close
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Figure 2. The trajectory and visual stimulus (i.e., the ball) used in Experiment 1. The visual stimulus represents
the position of the participant’s hand. The color of the visual stimulus was green when it was not touching the
trajectory (right panel), and was red when it was touching the trajectory (left panel).
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Figure 3. The position of the visual stimulus in the offset condition.

to the trajectory as possible (i.e., keeping the ball red). The participants were instructed to move their hand at
a speed of 4 s per circle. A metronome of 4 s was played during the task. The participants moved four circles in
each trial. After each trial, they rated, on a 7-point scale from 1 (not at all) to 7 (very much), for the question
“How much did you feel that the ball in VR was controlled by your hand movements?”.

There were two within-individual factors: delay in visual feedback and visual modification. In the delayed
condition, there was a time lag of 600 ms in the visual feedback of participants’ hand positions. This time lag was
selected according to our pilot experiments, confirming that a delay of 600 ms was sufficient to reduce the sense
of agency in the experimental task. In the no-delay condition, the position of the visual stimulus represented the
position of the participant’s hand in real-time. For visual modification, the position of the visual stimulus was
either aligned or offset from the hand position. In the aligned condition, the visual stimulus was presented at
the actual hand position. In the offset condition, the visual stimulus was presented at the median point between
the actual hand position and the closest point on the trajectory to the hand position (Fig. 3). These two factors
in a 2 x 2 design resulted in four conditions: no-delay and aligned, no-delay and offset, delayed and aligned, and
delayed and offset. We predicted that delay would produce more motion errors and reduce the sense of agency,
while modified visual feedback would improve the sense of agency, especially in the delayed condition.

Devices and procedure. Figure 4 shows the configuration of the system. The experimental system con-
tained an HMD (Oculus Rift, Facebook Technologies, LLC), a motion capture (OptiTrack V120: Trio, Natural-
Point, Inc.), and a desktop computer. A marker for motion capture was attached to the back of the participants’
right hand during the experiment. Unity (2017.2.0f3., Unity Technologies) was used to program the task and
present the stimuli.

The experiment was conducted individually in a quiet room. Participants were first introduced to the devices.
After wearing the HMD and getting the marker attached to their hands, the participants had two practice trials
without any delay in visual feedback. They were told to move the visual stimulus by moving their hand to trace
the trajectory as precisely as possible (i.e., maintaining the color of the visual stimulus red as much as possible).
They were also told to listen to the metronome, and to try to move their hand at a speed of 4 s per circle. Each
condition was repeated three times, resulting in 12 trials in total for each participant. The trial order was rand-
omized. The experiment took 60 min on average for each participant.

Results. Agency rating. Figure 5A shows the agency rating for each condition. The normality of agency
rating in all four conditions was confirmed using Kolmogorov-Smirnov test. A 2x2 (delay x visual modifica-
tion) repeated measures ANOVA on agency rating revealed a significant main effect of delay (F(1, 14) =46.003,
p<0.001, partial n*=0.767), and a significant main effect of visual modification (F(1, 14)=36.631, p<0.001,
partial n*=0.723). The interaction between delay and visual modification did not reach significance (F(1,
14)=3.574, p=0.080, partial n*=0.203). The results showed that delay greatly reduced the sense of agency, as
predicted. More importantly, visual modification significantly improved the sense of agency. The results sup-
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Figure 4. Configuration of the system in Experiment 1.
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Figure 5. Agency rating (A) and motion error (B) in each condition in Experiment 1. Error bars represent
standard errors. Delay in visual feedback decreased agency rating and increased motion error. On the other
hand, modification of visual feedback increased agency rating as well as motion error.
ported our main hypothesis that visual modification, which reduced visual prediction errors (see the section on
visual prediction errors), enhances the sense of agency, even when the visual feedback does not reflect the actual
body movements.
Motion error.  Visual modification was designed to reduce the visual prediction error. However, because the vis-
ual stimulus did not actually show the exact position of the hand in the offset condition, the participants’ motion
could be less precise than in the aligned condition. Figure 5B shows the motion error in each condition, and
Fig. 6 shows the actual trajectory of the hand movement in each condition. The motion error was the average dis-
tance between the actual hand position and the trajectory. The smaller the motion error, the more precisely the
participants’ hand traced the trajectory. The normality of motor error in all four conditions was confirmed using
Kolmogorov-Smirnov test. A 2x2 (delay x visual modification) repeated measures ANOVA on motion error
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Figure 6. The participants’ moving trajectories plotted on the horizontal surface. The motion was more precise
when there was no delay and when the visual feedback was not modified.

revealed a significant main effect of delay (F(1, 14) =22.009, p <0.001, partial *=0.611) and a significant main
effect of visual modification (F(1, 14)=8.190, p=0.013, partial n*=0.369). The interaction between delay and
visual modification was not significant (F(1, 14)=2.991, p=0.106, partial n?=0.176). The results showed that
the error was indeed larger when the visual feedback was modified and when the delay in response was longer.

Visual prediction error.  We assumed that the participants followed the instructions and tried their best to trace
the trajectory. Therefore, the predicted/expected position of their hand should be on the trajectory. The visual
prediction error was the average distance between the visual stimulus (i.e., the ball in HMD) and the trajectory.
In the aligned condition, it equals the motion errors shown in Fig. 5B. In the offset condition, it equals half of
the motion errors shown in Fig. 5B. A 22 (delay x visual modification) repeated measures ANOVA on visual
prediction error revealed a significant main effect of delay (F(1, 14) =25.546, p <0.001, partial n?=0.646) and a
significant main effect of visual modification (F(1, 14)=116.399, p<0.001, partial n?=0.893). The interaction
between delay and visual modification was not significant (F(1, 14) =2.509, p=0.136, partial n?=0.152). The
results confirmed that although the motion error was larger in the offset condition, the visual prediction error
was indeed smaller than in the aligned condition, which was associated with higher agency ratings.

Discussion. Experiment 1 examined the hypothesis that modification to visual feedback can improve the
sense of agency during continuous body movements. In the experiment, participants rated their sense of agency
while moving a visual target with their hand, which represented the position of their right hand. The offset
condition reduced the discrepancy between the hand position and the trajectory by half. The results supported
the hypothesis by showing improved agency ratings in the offset condition, even when the actual motion error
was larger in the offset condition compared to the aligned condition. In addition, the interaction between delay
and visual modification on the agency rating was nonsignificant. This was different from our prediction. We
predicted that the effect of modification should be larger when motor control was more disturbed. This was
probably because the motion errors in the no-delay condition was not minimal, and the visual modification also
reduced perceived prediction errors and enhanced the sense of agency in the no-delay condition to a certain
extent. Taken together, the results indicated the possibility of artificially improving the sense of agency dur-
ing continuous body movements by slightly modifying visual feedback. Improvement in sense of agency may
potentially lead to stronger motor intention and better recovery of voluntary motor control. However, in the real
world, difficulty in motor control is unlikely to be caused by a delay in visual response, and is more often caused
by physical disability. To further examine the hypothesis, in Experiment 2, a 1-kg weight was attached to the
participants’ wrist to disturb motor control. Experiment 2 examined whether the hypothesis still holds when the
motor impairment is physical rather than caused by delayed visual feedback.

Experiment 2

Participants. Fourteen participants took part in Experiment 2 (3 females, mean age=21.8 years, SD=2.4).
All the participants had previously taken part in Experiment 1. Experiment 2 was conducted about 5 months
after Experiment 1. The experiment was conducted with the approval of the ethics committee of the Faculty of
Engineering at the University of Tokyo, and was performed in accordance with relevant guidelines and regula-
tions. Written informed consent was obtained from all participants.

Experimental task and design.  Figure 7 shows the system configuration and the weight used in Experi-
ment 2. The task in Experiment 2 was similar to that in Experiment 1, except for the following points. First, there
was no delay in the motion of the visual stimulus. Instead, a 1-kg weight (Nike, Inc.) was attached to the wrist of
the participants’ right wrist to disturb motor control (Fig. 7). This weight was selected according to the results
of our pilot experiments, confirming that it was sufficient to disturb participants’ motor control and participants
would not be too fatigued to complete the experiment. Second, a vertical-eight-shaped trajectory was presented
on a vertical surface in front of the participants, instead of the horizontal circular trajectory used in Experiment
1. The trajectory was parallel to the participants’ body surface. Moving on a vertical surface requires more effort
while wearing the wrist weight, compared to moving on a horizontal surface. Moreover, vertical motor training
is common in rehabilitation of motor impaired patients. The height of the trajectory was 40 cm, and the width
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Figure 7. Configurations, stimuli, and the weight used in Experiment 2.
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was 20 cm. Third, a target stimulus was presented, which was an orange ball moving along the eight-shaped
trajectory. The target stimulus moved at a constant speed along the trajectory. Participants were instructed to
track the target stimulus along the trajectory by moving their hand. They were told to follow the target ball as
closely as they can. The position of their own hand was represented by a blue ball (i.e., the visual stimulus). This
was designed to better control the speed of movement. The target stimulus moved at a speed of 8 s per full circle.

There were three experimental conditions in Experiment 2. In the baseline condition, participants did not
wear the wrist weight, and there was no modification to the visual feedback. The visual stimulus (i.e., the ball
representing the participants’ hand position) corresponded to the actual position of the participants’ hand. In the
weighted & aligned condition, the participants wore the 1-kg weight, and there was no visual modification. The
visual stimulus represented the actual position of participants’ hands. Finally, in the weighted & offset condition,
the participants wore the 1-kg weight, and the visual stimulus was presented at the median point between the
actual hand position and the target stimulus.

Procedure. The devices were the same as those used in Experiment 1, except for the additional weight. After
receiving the instructions, the participants had two practice trials without the wrist weight. In the actual task, the
participants first performed three trials of the baseline condition (without the wrist weight). Thereafter, the par-
ticipants performed three trials of each of the weighted & aligned and weighted & offset conditions, in an alter-
nating sequence. The order of the alternating sequence (i.e., starting from the weighted & aligned or weighted
& offset conditions) was counter-balanced between participants. In summary, each participant performed nine
trials in total, with each trial lasting 32 s (i.e., 4 full circles). After each trial, participants rated the question “How
much did you feel that the ball in VR was controlled by your hand movements?” on a 7-point scale from 1 (not
at all) to 7 (very much). The experiment took 60 min on average for each participant.

Results. Agency rating.  Figure 8A shows the rating of sense of agency for each condition. We focused on
two questions: whether the 1-kg weight impaired the sense of agency (baseline vs. weighted & aligned), and
whether the visual modification improved the sense of agency (weighted & aligned vs. weighted & offset). We
used the Kolmogorov-Smirnov test for each condition to check the normality of the data. The agency rating in
the weighted & offset condition significantly differed from normal distribution (d=0.278, p=0.004). Therefore,
related-samples Wilcoxon Signed Rank test was used for each comparison. The significance level was set to
0.025 (two comparisons were conducted: baseline vs. weighted & aligned, to examine the effect of weight; and
weighted & aligned vs. weighted & offset, to examine the effect of visual modification) according to the Bonfer-
roni correction. First, the comparison between the baseline and weighted & aligned conditions showed that the
effect of weight on the sense of agency was significant (Z=2.85, p=0.004). The participants reported lower sense
of agency over the visual stimulus due to the 1-kg wrist weight. Second, the comparison between the weighted &
aligned and weighted & offset conditions showed that the effect of modification in the visual stimulus was also
significant (Z=2.36, p=0.018). The visual modification significantly improved the sense of agency, even when
the visual stimulus did not correspond to the exact position of the participants’ hand. In summary, the results
from Experiment 2 again supported our hypothesis that modification of visual feedback that reduces visual pre-
diction error can improve body agency.

Motion error.  Figure 8B shows the distance between the actual position of the participant’s hand and the target
stimulus, and Fig. 9 shows the actual trajectory of the hand movement in each condition. Since the motion trajec-
tory used in this experiment was parallel to the participants’ body surface, the motion errors in the depth direc-
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Figure 9. Plot of the participants’ hand movement trajectories in each condition in Experiment 2.

tion were difficult for the participant to perceive. Therefore, we excluded the error in the depth direction from
the calculation, and only calculated the errors on the vertical surface of the trajectory. Kolmogorov-Smirnov
test showed that the results in the weighted & aligned condition significantly differed from normal distribution
(d=0.343, p=0.040). Therefore, related-samples Wilcoxon Signed Rank test was used for each comparison. The
significance level was set to 0.025 according to the Bonferroni correction. Neither the difference between the
baseline, and weighted & aligned condition, nor the difference between the weighted & aligned, and weighted &
offset condition was significant (Z=0.66, p=0.510; Z=1.79, p=0.074, respectively).

Visual prediction error.  The visual prediction error was calculated from the distance between the visual stimu-
lus and the target stimulus. In the baseline and weighted & aligned conditions, visual prediction errors were
equal to the motion errors. In the weighted & offset condition, visual prediction errors were equal to half of the
motion errors. Related-samples Wilcoxon Signed Rank test was used for each comparison. The significance level
was set to 0.025 according to the Bonferroni correction. The visual prediction errors were significantly smaller
in the weighted & offset condition than in the weighted & aligned condition (Z=3.30, p=0.001). The differ-
ence between the baseline and the weighted & aligned conditions in visual prediction error was not significant
(Z=0.66, p=0.510). The results showed that visual modification indeed reduced visual prediction errors. How-
ever, the results also showed that the decrease in agency rating in the weighted & aligned condition compared
to the baseline was not purely due to the motion error or the visual prediction error, as these errors did not dif-
fer significantly between the two conditions. This might be due to more effort to exercise motor control in the
condition in which people wore the weight compared to the condition in which they did not. Nevertheless, the
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effect of visual modification (non-modification vs. modification) on agency ratings showed that visually reduc-
ing prediction error indeed had a positive significant effect on the sense of agency.

Discussion. In Experiment 2, a 1-kg weight was attached to the participants’ right wrist to disturb their
motor control and the sense of agency. The results showed that although the precision of motion did not differ
significantly among the three experimental conditions, the weight indeed weakened the participants’ sense of
agency. More importantly, visual modification that artificially reduced the visual prediction errors significantly
enhanced the sense of agency over the moving stimulus. People felt that they could better control the visual
stimulus through their body movements, even though the visual stimulus did not correspond to their body
movements. Taken together, the results from the two experiments indicate that externally reducing the error
between one’s motor intention (i.e., the goal) and the visual feedback can significantly promote the sense of
agency during continuous body movements, even when the greater discrepancy between the body movements
and the visual feedback may actually be induced by such modification. These results highlight the possibility of
external intervention of body agency for people whose motor control is impaired. The next section provides a
detailed discussion of the findings and their implications.

General discussion

The present study focused on the sense of agency, which is one of the critical components of voluntary motor
control. We examined whether simple modification of visual feedback can enhance the sense of agency during
continuous body movements when motor control is impaired. In the two experiments, the motor control of
healthy participants was disturbed by either a delay in visual feedback (Experiment 1) or a 1-kg weight attached
to their wrist (Experiment 2). Both methods significantly reduced the sense of agency during continuous body
movements. In the offset conditions, the hand position was presented at the median point between the actual
hand position and the desired hand position (depending on the goal of the motor task). Such modification in
the visual feedback provided less accurate feedback of hand position, but significantly promoted the sense of
agency. The results showed that the sense of agency during continuous body movements could be enhanced by
simple modifications of visual feedback that reduce the perceived prediction errors.

In the present study, the use of VR blocked the direct visual input of one’s own body, and provided the pos-
sibility of replacing the visual feedback of one’s body movement with modified information. Many recent studies
have used VR to study the embodiment and sense of agency of virtual bodies**-*. For example, studies using VR
showed that the illusion of ownership of a virtual limb can be induced by synchronized visual-tactical stimuli,
synchronous movement, and even brain-machine interface®”**-3, Furthermore, the illusion of ownership over
a virtual limb can even influence the control of the real limb***. For instance, In Burin et al’s study, participants
watched a virtual hand drawing lines or ellipses?”. When there was a mismatch between the intended and seen
movements, participants’ movement was greatly “attracted” to the seen movements when they felt ownership
over the virtual body®. By contrast, this study’s results showed that when the deviation did not conflict with
their motor intention, people did not adjust their body movements to reduce such deviation. The motor errors
were even bigger when the visual feedback deviated from the actual movements. Previous studies have shown
that people tend to underestimate the deviation between their actions and visual feedback***!, and the perceived
position of the body can be influenced by modified visual body feedback**~*. Therefore, visual feedback prob-
ably dominated the perception of prediction errors. In addition, the high agency rating in the offset conditions
revealed that the participants probably did not perceive much deviation between the position of their own hand
and the visual feedback.

This study attempted to intervene in the sense of agency over continuous body movements using external
visual modifications. Such intervention can be useful for patients with motor disabilities to improve their sense
of agency during body movements, and can potentially benefit the updating of the internal model of motor
control after sudden motor disabilities. When patients who have difficulties in body movement watch slightly
more positive feedback of their body movements, which match their motor intention to a larger extent, it may
enhance their sense of agency, and may benefit their planning and selection for the next move’. Smoother action
selection may then benefit the sense of agency*~*%, leading to a positive bootstrap between action selection and
the sense of agency. Furthermore, previous research showed that motor disabilities in stroke patients are linked
with body-specific attention decline, indicating dis-embodiment of the paretic limbs*. The intervening of the
sense of agency among stroke patients may aid the re-embodiment of the limbs with motor disabilities and
widen the peripersonal space®.

However, there are also issues in the measures of body agency in this study. Participants rated how much they
felt that they were controlling the movement of the ball by moving their own hand. Such judgment may also be
influenced by higher level factors such as intentions, beliefs, and inferences, besides lower levels of feeling of
control®. Visually improved task-performance feedback can boost the rating of agency>>-*. The positive task-
performance feedback probably also contributed to the enhanced sense of agency. Furthermore, this study used
a 600-ms delay in feedback and a 1-kg weight to disturb participants’ motor control. These motor disturbances
and constrictions are probably much weaker than the motor disabilities that many patients have. The 1-kg weight
did not significantly affect the precision of movement, although it reduced the sense of agency. This indicated
that the effect of motor restriction in Experiment 2 was probably due to mental factors such as effort. It remains
unknown if the proposed visual modification may improve the sense of agency in patients with more serious
motor disabilities. Specifically, excessive visual modification might in turn reduce the sense of agency if the
visual feedback differs from one’s own body movements too much. Finally, it is also unknown if the proposed
visual modification does indeed have a positive effect on motor learning and motor intention, which is worthy
of further examination in future research.
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In conclusion, this study showed that the sense of agency during continuous body movements can be greatly

affected when motor control is disturbed. More importantly, in such a condition, a simple modification of the
visual feedback for body movements reduces perceived (visual) prediction errors and greatly enhances the sense
of agency. These results uncover the possibility of enhancing body agency by external intervention to sensory
feedback, indicating the prospect of a useful rehabilitation approach to improve the recovery of voluntary motor
control in patients with acute motor disabilities.
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