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We present efficient algorithms for computing the N -point correlation functions
(NPCFs) of random fields in arbitrary D-dimensional homogeneous and isotropic
spaces. Such statistics appear throughout the physical sciences and provide a natural
tool to describe stochastic processes. Typically, algorithms for computing the NPCF
components have O(nN ) complexity (for a dataset containing n particles); their
application is thus computationally infeasible unless N is small. By projecting the
statistic onto a suitably defined angular basis, we show that the estimators can be
written in a separable form, with complexity O(n2) or O(ng log ng) if evaluated using
a Fast Fourier Transform on a grid of size ng. Our decomposition is built upon the
D-dimensional hyperspherical harmonics; these form a complete basis on the (D − 1)
sphere and are intrinsically related to angular momentum operators. Concatenation
of (N − 1) such harmonics gives states of definite combined angular momentum,
forming a natural separable basis for the NPCF. As N and D grow, the number of
basis components quickly becomes large, providing a practical limitation to this (and
all other) approaches: However, the dimensionality is greatly reduced in the presence
of symmetries; for example, isotropic correlation functions require only states of zero
combined angular momentum. We provide a Julia package implementing our estimators
and show how they can be applied to a variety of scenarios within cosmology and fluid
dynamics. The efficiency of such estimators will allow higher-order correlators to become
a standard tool in the analysis of random fields.
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Random fields are ubiquitous in the physical sciences. Perhaps the most powerful tool
for their analysis is the set of N-point correlation functions (hereafter NPCFs), defined as
statistical averages over N copies of the field at different spatial or temporal locations.
If the field is Gaussian-random, only the first two correlators (the mean and two-point
function) contain useful information, though this assumption is rarely true in practice.
Examples of higher-order NPCFs populate many fields of study; a brief search will reveal
their use in molecular physics (1), materials science (2), field theory (3), diffusive systems
(4, 5), and cosmology (6), among other topics.

Correlation functions have found extensive use in the analysis of spectroscopic galaxy
surveys (e.g., ref. 7). While the majority of information is contained within the two-
point correlation function (2PCF), inclusion of the higher-order functions is expected to
significantly tighten constraints on cosmological parameters, particularly those pertaining
to phenomena such as extensions to General Relativity (8). Despite this, statistics beyond
the 2PCF have been scarcely used in practice; in fact, almost no modern analyses have
included correlators with N > 3. The reason is simple: Higher-order NPCFs are expensive
to compute and analyze.

Consider a D-dimensional space MD (e.g., a Euclidean space) with an associated
complex-valued random field X :MD → C. The NPCF, ζ :

(
MD

)⊗(N−1) → C (for
tensor product ⊗), is formally defined as

ζ(r1, . . . , rN−1; s) = EX

[
X (s)X (s+ r1) · · ·X (s+ rN−1)

]
, [1]

where EX represents the statistical average overrealizations of X , s and ri are absolute
and relative positions on the manifold, and we have assumed N ≥ 2. If the random field
is statistically homogeneous, all correlators must be independent of the absolute position s;
this leads to the well-known NPCF estimator

ζ̂(r1, . . . , rN−1) =
1

VD

∫
MD

dN s
[
X (s)X (s+ r1) · · ·X (s+ rN−1)

]
, [2]
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averaging s over a volume VD , and noting that the NPCF
depends on only (N − 1) positions. In praxis, we cannot estimate
the continuous NPCF of Eq. 1; rather, we consider only the
quantity projected onto some basis functions, B(r1, . . . , rN−1),
for example, a set of radial and angular bins. In this case,
the problem reduces to estimating the coefficients ζB ≡∫
dr1 · · · drN−1ζ(r1, . . . , rN−1)B(r1, . . . , rN−1). Strictly, an

infinite set of basis functions is required to fully specify the NPCF:
Conventionally, one restricts to a finite number and applies the
same basis projection to both data and theory, eliminating bias.

The computational difficulties become clear if one considers
measuring the NPCF components from a discrete field contain-
ing n particles. In this instance, the random field X can be
represented as a sum over n Dirac delta functions, i.e., X (r) =∑n

j=1 w
j δD(r− yj ), where {yj} are the particle positions and

{w j} are weights. Projecting onto a basis function B , the discrete
version of Eq. 2 becomes

ζ̂B =
1

VD

n∑
j0=1

w j0

n∑
j1=1

w j1 · · ·

n∑
jN−1=1

w jN−1B(yj1 − yj0 , . . . ,yjN−1 − yj0). [3]

This is a sum over N -tuplets of particles and, since the total
number of N -tuplets scales as nN , has complexity O(nN ) (cf
Section 3B). Unless n is very small, direct application of Eq. 3
is infeasible for all but the smallest N .*

Ref. 11 presented a new technique to measure the three-
dimensional (3D) Euclidean three-point correlation function
(3PCF) more efficiently, building on ref. 12. By representing
ζ(r1, r2) in a factorizable angular basis of Legendre polynomials,
the former work obtained an algorithm for estimating 3PCF
coefficients with O(n2) complexity. This algorithm facilitated a
number of analyses, both in cosmology (e.g., refs. 13 and 14)
and magnetohydrodynamics (15). Our companion paper (16)
showed that the approach can be generalized to the computation
of rotationally invariant NPCF coefficients in 3D Euclidean space,
which is of particular relevance for galaxy surveys. Here, we show
that similar estimators may be constructed in any homogeneous
and isotropic space; in particular, if the basis is carefully chosen, an
O(n2) estimator for each basis component is possible, regardless
of N , D , and the spatial curvature. Furthermore, if the data can
be mapped to a grid of dimension ng , Fast Fourier Transforms
(FFTs) can be used to reduce this to O(ng log ng).

Our pathway to obtaining an efficient NPCF estimator is the
following:

1. Construct a set of basis functions for the angular part of a
homogeneous and isotropic space MD (Section 1). A natural
choice is the set of hyperspherical harmonics, which generalize
the spherical harmonics and arise in the D-dimensional theory
of angular momentum.

2. Combine (N − 1) hyperspherical harmonics to create
an (N − 1)-particle angular basis on the manifold MD

(Section 2). In particular, we form states of definite combined
angular momentum, denoted PL

Λ. Since the (statistically

*See ref. 9 for an efficient, but inexact, tree-based approach in 3D, as well as ref. 10 for a
solution involving graph databases.

homogeneous) NPCF depends only on (N − 1) coordinates,
its angular part can be decomposed into this basis. Explicitly:

ζ(r1, . . . , rN−1) =
∑
L

∑
Λ

ζLΛ(r
1, . . . , rN−1)

PL
Λ(r̂

1, . . . , r̂N−1), [4]

where ζLΛ are the basis components, the sets of indices Λ
and L represent internal and external angles of the NPCF, r̂
represents the unit vector parallel to r, and r ≡ |r|. In the
language of Eq. 3, our basis functions are B(r1, . . . , rN−1) =
Θb(r1, . . . , rN−1)PL

Λ(r̂
1, . . . , r̂N−1), whereΘb is some sep-

arable set of radial bins indexed by the vector b (Eq. 38).
3. Using Eq. 2, construct an estimator for the NPCF basis com-

ponents ζLΛ (Section 3). Since the basis functions are separable
in r1, r2, . . ., the estimator can be factorized and takes the
schematic form (cf Eq. 37)

ζ̂LΛ(r
1, . . . , rN−1) =

1

VD

n∑
j=1

w j ×
∑

�1···�N−1

[coupling]

× a�1(y
j ; r1) · · · a�N−1(yj ; rN−1),

[5]

where � specify angular momentum indices, and each a�(y; r)
function involves a further sum over n particles, weighted by
a hyperspherical harmonic (see Eq. 37). Since each a�(s; r)
component can be estimated independently, the algorithm has
complexity O(n2), or O(ng log ng) using an FFT with ng
grid points. Eq. 5 can be applied to each basis component
separately; we caution that the total number of components
(for a fixed angular and radial resolution) becomes large as N
and D increase, providing a practical limitation to any NPCF
algorithm.

In Section 4, we discuss a numerical implementation of the
NPCF estimator,† alongside a variety of applications.

1. Single-Particle Basis

We begin by discussing the angular basis for functions of one
position in MD , hereafter referred to as the “single-particle” basis.
In Section 2, the basis will allow construction of a joint basis of
(N − 1) positions onto which the NPCF can be projected.

A. Constant-Curvature Metric. To form an efficient angular basis,
we require the underlying manifold to be 1) homogeneous and 2)
isotropic. This leads to the well-known line-element

dΣ2
MD = dr2 + χ2

k (r)
{
dθ2D−1 + sin2 θD−1

[
dθ2D−2

+ sin2 θD−2

(
dθ2D−3 + · · ·

)]}
, [6]

(e.g., ref. 17), adopting hyperspherical coordinates r≡ {r , θ1, . . . ,
θD−1}.‡ In this parametrization, r is a radial coordinate, while
the θi are angular variables, with θ1 ∈ [0, 2π) (often denoted by φ
in D = 3) and θj ∈ [0,π) for j > 1. A sketch of the coordinates
is shown in Fig. 1 for a Euclidean geometry. Eq. 6 is a constant-
curvature metric, specified by χk (r) = sin

(
r
√
k
)
/
√
k if |k |> 0

and χk (r) = r else. Here, k > 0 gives the D-sphere, SD , k < 0
leads to the hyperbolic geometry HD , and k = 0 results in a

†Available at https://github.com/oliverphilcox/NPCFs.jl.
‡Note that some conventions label the θ coordinates in the opposite order.
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Fig. 1. Cartoon illustrating the coordinate system used in this work, assum-
ing a Euclidean geometry. The outer dashed box indicates R

D, while the gray
plane represents R

D−1, containing the Cartesian coordinates {x1, . . . , xD−1}.
The position vector r ∈ R

D can be expressed in hyperspherical coordinates
{r, θ1, . . . , θD−1}, where r is a radial coordinate. θK−1 is defined as angle
between the x̂K axis and the projection of r into the subspace R

K , as shown
for θD−1 and θD−2. The angles obey the restrictions θK ∈ [0, π) for K > 1,
and θ1 ∈ [0, 2π). Each angle can be associated with an angular momentum
index �K−1, encoding the orbital angular momentum in the subspace R

K in
which only the first K Cartesian coordinates are varied (Section 1). �1 gives
the azimuthal angular momentum in the subspace containing {x1, x2, x3}, and
�D−1 gives the total angular momentum.

Euclidean geometry RD . Such manifolds are ubiquitous in the
physical sciences; for instance, this describes the spatial part
of the Friedmann–Lemaı̂tre–Robertson–Walker metric for an
expanding Universe (18).

B. Hyperspherical Harmonics. A convenient basis for the
constant-curvature space MD is formed from the set of harmonic
functions H :MD → C. These satisfy the Laplace–Beltrami
equation

ΔH (r)≡ 1√
|g |

∂i

(√
|g | g ij∂jH (r)

)
= 0, [7]

where H is twice continuously differentiable, g is the metric
(with |g |= det [gij ]), i ∈ {1, 2, . . . ,D}, and we have assumed
the Einstein summation convention. Assuming the metric of
Eqs. 6 and 7 permits a separable solution of the form H (r) =
R(r)Y (r̂), where r̂= {θ1, . . . , θD−1}. The angular part of this
must satisfy the following eigenfunction equation for constant
λD−1:

ΔSD−1Y (r̂) =−λD−1Y (r̂), [8]

where ΔSD−1 is the Laplace–Beltrami operator on the (D − 1)-
sphere, given explicitly in SI Appendix, Eq. S1. The correspond-
ing solutions are the hyperspherical harmonics on SD−1 (e.g.,
refs. 19–21). Since the harmonic functions are separable, the
hyperspherical harmonics form an angular basis for any function
on MD , regardless of the spatial curvature k .§ Physically, this
decomposition is guaranteed since we have assumed the metric
to be homogeneous and isotropic, enforcing invariance under the
rotation group SO(D) about any origin.

For a given dimension D , the hyperspherical harmonics, de-
noted Y�1...�D−1

(r̂), may be obtained by solving Eq. 8 recursively,

§This is additionally seen by noting that Eq. 6 can be written dΣ2
D = dr2 + χ2

k (r)dΩ2
D−1,

where dΩ2
D−1 is the line element on the (D − 1)-sphere.

as detailed in SI Appendix. These depend on a set of (D − 1)
integers, {
k}, which are related to angular momentum
(cf Section 1C), and satisfy the selection rules

− 
2 ≤ 
1 ≤ 
2, 
K−1 ≤ 
K ≤ 
K+1 (2≤K ≤D − 1).
[9]

In two and three dimensions, the hyperspherical harmonics take
a simple form:

Y�1(θ1) =
1√
2π

ei�1θ1 ,

Y�1�2(θ1, θ2) =

√
2
2 + 1

4π

(
2 + 
1)!

(
2 − 
1)!
ei�1θ1P−�1

�2
(cos θ2),

[10]

for associated Legendre polynomials Pm
� . The D = 3 functions

are the usual spherical harmonics (in the Condon–Shortley
convention), made clear by the identification (
1, 
2)→ (m, 
),
(θ1, θ2)→ (φ, θ), where φ is the azimuthal angle. The explicit
form of the hyperspherical harmonics for general D is given in
SI Appendix, Eq. S3.

C. Connection to Angular Momentum Eigenstates. In 3D, the
theory of angular momentum is centered around two operators,
L̂2 and L̂3, which, respectively, give the total angular momentum
and that projected onto the x̂3 axis. Both may be constructed
from the vector operator L̂= r× p, where pj =−i(∂/∂x j ) is
the linear momentum in R3. For D 	= 3, we cannot define a
cross-product; thus, we instead start from the tensorial angular
momentum operator, following (22):

L̂ij = xipj − xjpi , i 	= j ∈ {1, 2, . . . ,D}, [11]

where {x1, . . . , xD} is a Cartesian coordinate chart.¶ These op-
erators are antisymmetric (L̂ij =−L̂ji ) and form the Lie algebra
so(D), i.e., that of the rotation group in D dimensions. Of
particular interest is L̂12; when applied to some state, this gives
the azimuthal angular momentum in the subspace containing
{x1, x2, x3}, just as for L̂3 in D = 3.

To fully define the rotational properties of a single-particle
function in D-dimensional space, we must specify not only its
total angular momentum, but also that projected into lower-
dimensional subspaces. These can be obtained from the operators

L̂2
K ≡

K∑
i=1

K∑
j=i+1

(L̂ij )
2, [12]

for K ≥ 3. Here, L̂2
3 ≡ (L̂12)

2 + (L̂13)
2 + (L̂23)

2 gives the an-
gular momentum in the subspace {x1, x2, x3, 0, . . . , 0} of RD ,
L̂2
4 gives that in the subspace {x1, x2, x3, x4, 0, . . . , 0}, etc. L̂2

D

is the total angular momentum operator, analogous to L̂2 in the
3D theory.

As shown in ref. 22 (Ch. 3), a complete set of commuting
angular momentum operators is given by {L̂12, L̂2

3, . . . , L̂2
D}.

¶This occurs since the K-dimensional Laplace–Beltrami operator of SI Appendix, Eq. S1
(which the hyperspherical harmonics are eigenfunctions of) is related to the K-dimensional
total angular momentum operator by Δ

SK−1 = −L̂2
K .
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Moreover, the hyperspherical harmonics of Section 1B are simul-
taneous eigenfunctions of these, satisfying#

L̂12Y�1...�D−1
(r̂) = 
1 Y�1...�D−1

(r̂),

L̂2
KY�1...�D−1

(r̂) = 
K−1(
K−1 +K − 2)Y�1...�D−1
(r̂)

(3≤K ≤D). [13]

We may thus associate 
K−1 with the orbital angular momentum
in the subspace comprising the first K Cartesian coordinates (for
K ≥ 3) and 
1 with that projected onto the x̂3 axis. Such an
interpretation also justifies the conditions in Eq. 9; projections of
the angular momentum into lower-dimensional spaces must have
equal or lesser magnitudes than the total angular momentum in
D dimensions.

For later use, we introduce abstract notation for the
angular momentum basis functions, writing Y�1...�D−1

(r̂)→
|
1 . . . 
D−1〉 in Dirac (or bra-ket) notation.|| In total, there
are

(
�D−1+D−3

D−3

)
(2
D−1 +D − 2)/(D − 2) eigenstates corre-

sponding to a given total angular momentum 
D−1 if D ≥ 3,
and one if D = 2 (ref. 22, equation 3.37). For a suitably defined
inner product, the basis functions are orthonormal (20, 21, 23):∫

SD−1

dΩD−1Y
∗
�1...�D−1

(r̂)Y�′1...�
′
D−1

(r̂)

≡
〈

1 . . . 
D−1

∣∣ 
′1 . . . 
′D−1

〉
= δK

�1�
′
1
. . . δK

�D−1�
′
D−1

, [14]

where the Kronecker delta, δK
ij , is unity if i = j and zero other-

wise. Furthermore, they form a complete basis on SD−1, such
that, for any h : SD−1 → C

|h〉 =
∑

�1...�D−1

〈
1 . . . 
D−1| h〉 |
1 . . . 
D−1〉 ↔,

h(r̂) =
∑

�1...�D−1

h�1...�D−1
Y�1...�D−1

(r̂), [15]

where the summation runs over all angular momentum indices
allowed by the selection rules of Eq. 9. The basis coefficients
h�1...�D−1

= 〈
1 . . . 
D−1| h〉 may be obtained via orthonormal-
ity. Since the angular part of MD is just the (D − 1)-sphere
SD−1 (Section 1A), any one-particle function on MD can be
decomposed into this basis; in general, the coefficients retain
dependence on the radial coordinate r .

2. (N − 1)-Particle Basis

We now utilize the mathematics of angular momentum addition
to generalize the angular basis of Section 1 to functions of (N − 1)

positions, i.e., f :
(
MD

)⊗(N−1) → C.

A. Angular Momentum Addition. To begin, we consider the
combination of two angular basis functions on the (D − 1)-
sphere. For convenience, we will work in the Dirac representa-
tion and denote the set of angular momentum indices by � ≡
{
1, . . . , 
D−1}, with superscripts used to distinguish between

#Since M
D and R

D share the same angular parametrization, and angular momentum is
independent of radial coordinates, we may work in a Euclidean space for the purposes of
this section.
||The Hilbert space formed from these states is an infinite-dimensional representation
of the rotation group SO(D). Practically, the eigenvalue �D−1 represents the behavior
in SO(D), while the values of �K−1 with K < D specify the rotation’s action in a lower-
dimensional subgroup SO(K).

particles. Given single-particle states
∣∣�1〉 and

∣∣�2〉, the simplest
two-particle state is

∣∣�1, �2〉 ≡ ∣∣�1〉 ∣∣�2〉, which exists in the
product space SD−1 ⊗ SD−1. This is a simultaneous eigenstate
of angular momentum operators for the first and second particles,
L̂
(1)
ij and L̂(2)ij (cf Section 1C). While the product states

∣∣�1, �2〉 do
form a basis on SD−1 ⊗ SD−1 [sometimes called the “uncoupled
basis” (24)], it is not an efficient one, since 1) we require 2(D − 1)
angular momentum indices to specify the state, which, as shown
below, is considerably more than necessary; and 2) the indices are
not straightforwardly connected to the joint rotation properties of
the two-particle state.

A more appropriate basis is wrought by considering the com-
bined angular momentum operator L̂

(12)
ij ≡ L̂

(1)
ij + L̂

(2)
ij , which

specifies the properties of some two-particle function, f (r1, r2),
under joint rotations of r1 and r2 about a common origin. As in
Section 1C, L̂(12)ij may be used to construct a set of commuting
angular momentum operators, whose eigenstates can be written
|L〉 ≡ |L1 . . .LD−1〉. Here, LK−1 specifies the combined angu-
lar momentum projected into the K -dimensional subspace, in
which the first K Cartesian coordinates are varied (for K ≥ 3),
and L1 gives that projected onto the x̂1

3, x̂
2
3 axes. Similarly to the

single-particle state, the L indices must obey the selection rules of
Eq. 9.

Two-particle states of definite combined angular momentum
are formed by summing over products of one-particle states, just
as in the 3D case (e.g., refs. 25 and 26; see also refs. 24, 27, and
28) for a discussion with more general D). Explicitly, they are
given by

∣∣
1D−1 

2
D−1;L

〉
=

∑
�11...�

1
D−2

∑
�22...�

2
D−2

〈
�1, �2

∣∣L〉 ∣∣�1〉 ∣∣�2〉,
[16]

where
〈
�1, �2

∣∣L〉
is a Clebsch–Gordan (hereafter CG) coefficient

(e.g., ref. 29). This is often referred to as the “coupled basis”
(24). To uniquely define the state, we must specify 1) the com-
bined angular momentum eigenvalues L, and 2) the total angular
momentum of the first and second particle, 
1D−1 and 
2D−1.
Importantly, Eq. 16 involves a sum over {
i1, . . . , 
iD−2}, i.e.,
the projection of the particles’ angular momentum into lower-
dimensional subspaces. Due to this, the combined state is specified
by only (D + 1) indices, which, for D > 3, is significantly fewer
than the 2(D − 1) required for

∣∣�1, �2〉.
Practically, one must know the CG coefficients

〈
�1, �2

∣∣L〉
in order to form the coupled basis of Eq. 16.** These have
been studied in depth (e.g., refs. 25, 26, and 29–32) and
may be simplified by techniques such as Racah’s factorization
lemma (33). One route to their computation is via Eq. 16;
starting from a state of maximal combined angular momentum,∣∣
1D−1


2
D−1; �

1 + �2
〉
≡

∣∣�1〉 ∣∣�2〉 (wherein the two angular
momentum vectors in RD are aligned), ladder operators may be
applied iteratively to obtain states of lower angular momentum,
whose weightings give the CG coefficients. As in refs. 25 and 26,
the explicit forms for the CG coefficients in D = 2 and D = 3
are given by

**The CG coefficients used in this work are those of the SO(D) ⊃ SO(D − 1) ⊃ · · · ⊃
SO(2) reduction.
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〈

1, 
2

∣∣L〉
= δK

(�1+�2)L,〈

11


1
2, 


2
1


2
2

∣∣L1L2

〉
= (−1)−�12+�22−L1

√
2L2 + 1

(

12 
22 L2


11 
21 −L1

)
, [17]

where the 2× 3 matrix is a Wigner 3-j symbol (e.g., ref. 34,
section 34). The D = 4 case is similar (see refs. 29, 30, and 35),
but includes a Wigner 9-j symbol.

CG coefficients satisfy certain orthogonality conditions, in-
cluding ∑

�11...�
1
D−2

∑
�21...�

2
D−2

〈
�1, �2

∣∣L〉 〈
�1, �2

∣∣L′〉
= δK

L1L
′
1
× · · · × δK

LD−1L
′
D−1

. [18]

Coupled with the orthonormality of the one-particle states |�〉
(Eq. 24), this ensures that the combined-angular-momentum
basis is orthonormal, i.e.,〈

l1D−1l
2
D−1;L

′∣∣ 
1D−1

2
D−1;L

〉
=

(
δK
L1L

′
1
· · · δK

LD−1L
′
D−1

)
×

(
δK
�1D−1l

1
D−1

δK
�2D−1l

2
D−1

)
. [19]

Furthermore,
〈
�1, �2

∣∣L〉
is nonzero only if the following condi-

tions are satisfied:

L1 = 
11 + 
21, |
1K − 
2K | ≤ LK ≤ 
1K + 
2K ,

(2≤K ≤D − 1). [20]

The first constraint occurs since L1 is the eigenvalue correspond-
ing to L̂

(12)
12 , which is linear in L̂

(1)
12 and L̂

(2)
12 (cf addition of m

indices in 3D), and the second is due to the triangle inequality,
recalling that LK corresponds to the magnitude of the angular
momentum in the subspace RK . In particular, the constraints fix
the total combined angular momentum, LD−1, to be no greater
than 
1D−1 + 
2D−1.

B. Combined Angular Momentum Basis. By repeated application
of the angular momentum addition rule (Eq. 16), we may build up
an (N − 1)-particle state of definite combined angular momen-
tum. First, we combine

∣∣�1〉 and
∣∣�2〉 to form the two-particle

state
∣∣
1D−1


2
D−1; �

12
〉
, which is then combined with �3 to form

the three-particle state
∣∣
1D−1


2
D−1


12
D−1


3
D−1; �

123
〉
, etc. In full,

we obtain the (N − 1)-particle basis function

|Λ;L〉=
∑

[�1][�2]...[�N−1]

CΛ;L
�1�2...�N−1

∣∣�1〉 ∣∣�2〉 · · · ∣∣∣�N−1
〉
,

[21]

summing over all intermediate angular momenta 
ik with
k < (D − 1), as denoted by [�i ].†† The combined state in Eq. 21
is specified by the set of total angular momentum indices Λ≡
{
1D−1, 


2
D−1, 


12
D−1, 


3
D−1, 


123
D−1, 


4
D−1, . . . , 


12...(N−2)
D−1 , 
N−1

D−1}
and involves the coupling coefficients

††For D = 3, our basis functions match the coupled representation of SU(2) discussed in
ref. 24 in the context of quantum chemistry.

CΛ;L
�1�2...�N−1 =

∑
[�12]...[�12...(N−2)]

〈
�1, �2

∣∣ �12
〉 〈

�12, �3
∣∣ �123

〉
· · ·

〈
�12...(N−2), �N−1

∣∣∣L〉
, [22]

which is a product of CG symbols. We have additionally set
�12...(N−1) ≡ L, representing the combined angular momentum
eigenvalues. Note that Eq. 21 contains a sum over both the
primary indices 
i (which define the single-particle states) and
intermediates, e.g., 
12... (within the coupling definitions), but
not those corresponding to total angular momenta, i.e., 
D−1.

The meaning of Eq. 21 is straightforward; an (N − 1)-particle
state with combined angular momentum L can be obtained as
a sum of product states, weighted by (N − 2) CG coefficients.
To define the state uniquely, we must specify not only the total
angular momentum 
D−1 of each single-particle state, but also
the total angular momentum of the intermediate states, e.g.,

12D−1 arising from the coupling of

∣∣�1〉 and
∣∣�2〉. In total, the

state is specified by (2N +D − 5) indices; again significantly
fewer than the (N − 1)(D − 1) required for the product state∣∣�1〉 · · · ∣∣∣�N−1

〉
.

A particularly interesting state is that of zero combined angular
momentum, i.e., L= 0.‡‡ From Eq. 21, this is simply

|Λ; 0〉=
∑

[�1]...[�N−1]

CΛ;0
�1...�N−1

∣∣�1〉 ∣∣�2〉 · · · ∣∣∣�N−1
〉
. [23]

Unlike the general state (Eq. 21), this involves only (N − 4)

intermediate couplings �12..., since the final CG coefficient in
Eq. 22 fixes 
12...(N−2)

1 =−
N−1
1 and 


12...(N−2)
K = 
N−1

K for
K > 1. In total, this requires (2N − 5) indices to fully specify,
regardless of dimension.

C. (N − 1)-Particle Basis Properties. The (N − 1)-particle basis
functions of Eqs. 21 and 23 have analogous properties to those
of the single-particle basis (cf Section 1C). Using Eq. 18, we can
show orthonormality:〈

Λ′;L′∣∣Λ;L
〉
= δK

ΛΛ′δK
LL′ , [24]

requiring equality of both the combined angular momentum
vectors (L and L′) and all components of Λ and Λ′. Since the
angular momentum states form a complete basis, any (N − 1)-
particle function h :

(
SD−1

)⊗(N−1) can be decomposed into a
sum of basis states:

|h〉=
∑
L

∑
Λ

〈Λ;L| h〉 |Λ;L〉 ↔ h(r̂1, . . . , r̂N−1)

=
∑
L

∑
Λ

hL
ΛPL

Λ(r̂
1, . . . , r̂N−1), [25]

summing over both combined angular momentum indices L
and the indices contained within Λ (analogously to Eq. 15).
The basis components are denoted by 〈Λ;L| h〉 ≡ hL

Λ. For the
second equality, we switch to wavefunction notation, with the
basis functions defined as (cf Eq. 21)

‡‡For MD = R
3, our treatment of the L = 0 states exactly follows that of ref. 36.
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PL
Λ(r̂

1, . . . , r̂N−1) =
∑

[�1][�2]...[�N−1]

CΛ;L
�1�2...�N−1

Y�1(r̂
1)Y�2(r̂

2) · · ·Y�N−1(r̂N−1),

[26]

where Y�(r̂) are the hyperspherical harmonics of Section 1B.
Since SD−1 is the angular part ofMD , the directional dependence
of any (N − 1)-particle function in MD can be expanded in the
separable form of Eq. 25.

If the function h appearing in Eq. 25 has rotational sym-
metry, a simpler decomposition is possible. In particular, we
assume it to be invariant under rotations drawn from the subspace
{x1, . . . , xK , 0, . . . , 0} of SO(D). An example of this would be
azimuthal symmetry in D = 3; here, the system is invariant under
rotations about one axis only. To obey rotational symmetry in K
dimensions, the basis functions must satisfy

L̂2
K |Λ;L〉= 0 ⇒ Li = 0, ∀ i <K , [27]

where L̂2
K is the combined angular momentum operator

(Eq. 12).§§ In this instance, only basis functions of the form
|Λ; 0 . . . 0 LK . . .LD−1〉 enter into Eq. 25, reducing the number
of basis coefficients from approximately

(

max
D−1

)2N+D−5 to(

max
D−1

)2N+D−K−5, for maximum multipole 
max
D−1. If h is

invariant under spatial rotations about any axis (i.e., it is isotropic),
only the L= 0 state is required. In this case,

|h〉=
∑
Λ

〈Λ; 0| h〉 |Λ; 0〉 ↔ h(r̂1, . . . , r̂N−1)

=
∑
Λ

h0
ΛP0

Λ(r̂
1, . . . , r̂N−1), [28]

for components h0
Λ ≡ 〈Λ; 0| h〉, which may be determined via

orthonormality. The directional dependence of any isotropic
(N − 1)-particle function in MD can be expanded in the
separable form of Eq. 28.

For N = 3 and N = 4, the isotropic basis functions take the
explicit forms:

P0
�D−1

(r̂1, r̂2) =
∑

�1...�D−2

Y�1�2...�D−1
(r̂1)Y(−�1)�2...�D−1

(r̂2),

P0
�1D−1�

2
D−1�

3
D−1

(r̂1, r̂2, r̂3)

=
∑

�11...�
1
D−2

∑
�21...�

2
D−2

∑
�31...�

3
D−2

〈
�1, �2

∣∣ (−
31)

3
2 . . . 


3
D−1

〉
Y�11...�

1
D−1

(r̂1)Y�21...�
2
D−1

(r̂2)Y�31...�
3
D−1

(r̂3), [29]

noting that the final CG coefficient is of the form 〈�12...(N−2),

�N−1|0〉, which enforces 
12...(N−2)
1 + 
N−1

1 = 0 and 
12...(N−2)
K

= 
N−1
K for K > 1. This is a natural extension of the

Legendre polynomials to D dimensions; indeed, the D = 3
case recovers the Legendre polynomial L�2(r̂

1 · r̂2) rescaled by
(−1)�2(4π)/

√
2
2 + 1 (cf ref. 36).

§§This occurs since any basis function with LK �= 0 has nonzero combined angular momen-
tum in the K-dimensional subspace, violating rotational invariance.

Finally, we note the properties of the basis functions under
complex conjugation and parity inversion:

[
PL
Λ(r̂

1, . . . , r̂N−1)
]∗

=(−1)LD−1−L1(−1)�
1
D−1+···+�N−1

D−1

P0
Λ(r̂

1, . . . , r̂N−1)

P
[
PL
Λ(r̂

1, . . . , r̂N−1)
]
=(−1)�

1
D−1+···+�N−1

D−1

P0
Λ(r̂

1, . . . , r̂N−1), [30]

using SI Appendix, Eq. S4, noting that the CG coefficients enforce

11 + 
21 + · · ·+ 
N−1

1 + L1 = 0. For L= 0, this implies that
even-(odd-)parity basis functions are purely real (imaginary).

3. An Efficient Correlation Function Estimator

Armed with the (N − 1)-particle angular basis of Section 2, we
now proceed to construct an efficient estimator for the NPCF
components. For full generality, we do not assume the NPCF to
have any rotational symmetry; such symmetries set various basis
components to zero, as discussed in Section 2C.

A. Derivation. Assuming statistical homogeneity, the NPCF de-
fined in Eq. 1 is a function of (N − 1) points on MD and may
thus be expanded in the combined angular momentum basis of
Section 2 (cf Eq. 4):

ζ(r1, . . . , rN−1) =
∑
L

∑
Λ

ζLΛ(r
1, . . . , rN−1)

PL
Λ(r̂

1, . . . , r̂N−1),

[31]

where the basis states, PL
Λ, are defined in Eq. 26. As before,

we sum both over L, which specifies the properties of the
NPCF under joint rotations of all (N − 1) direction vectors
(with only L= 0 required if the NPCF is isotropic), and Λ≡
{
1D−1, 


2
D−1, 


12
D−1, 


3
D−1, 


123
D−1, 


4
D−1, . . . , 


N−1
D−1}, which

defines the relative orientations of the direction vectors. In this
form, the NPCF is fully specified by the basis coefficients ζLΛ,
which are functions only of the radial parameters r i .

Due to the parity properties of the basis functions (Eq. 30),
basis coefficients with even (odd)

∑N−1
i=1 
iD−1 represent even-

parity (odd-parity) NPCF contributions; furthermore, they are
purely real (imaginary) if the random field X is real-valued and
L= 0. Parity-odd isotropic basis functions occur only forN >D ;
at lower orders, a parity transformation is equivalent to a rotation,
under which the basis functions are invariant.

The basis coefficients can be extracted from Eq. 31 via an inner
product:

ζLΛ(r
1, . . . , rN−1)≡ 〈Λ;L| ζ〉

=

∫
(SD−1)⊗(N−1)

dΩ1
D−1 · · · dΩN−1

D−1[
ζ(r1, . . . , rN−1)PL,∗

Λ (r̂1, . . . , r̂N−1)
]
, [32]

where the integral is over (N − 1) copies of the angular space.
As in Eq. 2, the NPCF may be estimated as a product of N
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random fields, integrated over space; inserted into Eq. 32, this
yields

ζ̂LΛ(r
1, . . . , rN−1) =

1

VD

∫
MD

dDs∫
(SD−1)⊗(N−1)

dΩ1
D−1 · · · dΩN−1

D−1[
X (s)X (s+ r1) · · ·X (s+ rN−1)

PL,∗
Λ (r̂1, . . . , r̂N−1)

]
. [33]

Finally, we insert the explicit forms of the (N − 1)-particle basis
functions (Eq. 26), which yields

ζ̂LΛ(r
1, . . . , rN−1) =

1

VD

∑
[�1]...[�N−1]

CΛ;L
�1...�N−1∫

MD

dDs
[
X (s)a�1(s; r

1) · · ·

a�N−1(s; rN−1)
]
,

[34]

defining the functions

a�(s; r)≡
∫
SD−1

dΩD−1 X (s+ r)Y ∗
� (r̂). [35]

Importantly, the angular integrals are now fully decoupled.
Usually, the NPCF statistic is binned in radius via a set of (N −

1) top-hat filters, ΘbK

(rK ), which are equal to one if rK is in bin
bK and zero else. In this case, ζ̂LΛ(r

1, . . . , rN−1) is replaced by
its binned form ζ̂L,bΛ , where b ≡ {b1, . . . , bN−1}. This is again
estimated using Eq. 34, defining the bin-integrated functions

ab
� (s) =

1

vb

∫
MD

dDrX (s+ r)Y ∗
� (r̂)Θ

b(r), [36]

where vb ≡
∫
MD dDr is the bin volume. Assuming a fixed maxi-

mum multipole 
max
D−1 and some number of bins Nb , this ensures

that only a finite number of ab
� (s) coefficients (asymptotically,

Nb ×
(

max
D−1

)N−1) need to be estimated at each position s. If one
wished to reconstruct the full correlator ζ(r1, . . . , rN−1) from
the set of measured basis coefficients, this truncation would lead
to an approximation error. In practice, this can be avoided by
projecting the theory model in the same manner as the data; then,
using a low 
max

D−1 will lead only to a slight loss of information,
depending on the model in question.

Estimation of the NPCF basis components reduces to two
operations: 1) computing ab

� (s) for each radial bin b and angular
momentum eigenvalue set � of interest, and 2) performing a
spatial integral over s, alongside a sum over the lower-dimensional
angular momentum eigenvalues [�i ]≡ {
i1, . . . , 
iD−2}, subject
to the coupling rules of Eqs. 9 and 20. Computationally, this is
much more efficient than a direct implementation of Eq. 33. A
cartoon indicating this procedure for N = 4 is shown in Fig. 2.

B. Application to Discrete Data. For discrete data, the random
field X can be represented as a (weighted) sum of Dirac deltas, as

Fig. 2. Sketch of the decomposition underlying our NPCF algorithm, visual-
ized for N = 4 in a two-dimensional spherical geometry. On the left, we show
the (rotation-averaged) 4PCF defined by three distances, r1, r2, r3, and two
angles r̂1 · r̂2, r̂2 · r̂3, relative to a primary position s; näıve 4PCF estimation
from n particles proceeds by summing over each of the possible n4 sets
of points. On the right, we show our decomposition, factorizing the 4PCF
into three functions of two positions, a�(s; r), which may be independently
estimated from the dataset, requiring consideration of only n2 pairs of
particles. Each function depends on a side length ri and a set of angular
momentum indices �i; the latter specifies r̂i in the hyperspherical harmonic
basis. This permits the NPCF components to be estimated by an algorithm
with O(n2) complexity.

in Eq. 3. Inserting this definition into Eq. 34 leads to the following
estimator for the NPCF basis coefficients in bins b :

ζ̂L,bΛ =
1

VD

n∑
j=1

w j
∑

[�1]...[�N−1]

CΛ;L
�1...�N−1

[
ab1

�1 (y
j ) · · · abN−1

�N−1 (yj )
]
,

ab
� (y

j ) =
1

vb

n∑
k=1

wkY ∗
� (

̂yk − yj )Θb
(∣∣yk − yj

∣∣). [37]

Practically, the ab
� (y

j ) functions may be computed by summing
over n points, {yk}, weighted by a hyperspherical harmonic
and a binning function in the separation vector yk − yj . Since
the functions must be estimated at the location of each primary
particle, yj , the algorithm has complexity O(n2) (with respect to
n) for any choice of D or N . This is significantly faster than the
naı̈ve NPCF estimator of Eq. 3, inserting the basis functions

B(r1, . . . , rN−1)≡PL
Λ(r̂

1, . . . , r̂N−1)Θb1

(r1) · · ·
ΘbN−1

(rN−1), [38]

showing the utility of our hyperspherical harmonic decomposi-
tion.

Although the scaling with n is independent of D and N ,
we do expect the computational cost of a full NPCF measure-
ment to increase in higher-dimensional scenarios. In part, this
occurs since the number of intermediate [�i ] summations in
Eq. 37 is a strong function of D and N . In total, we must sum
over approximately (D − 1)(N − 1) indices, each of which is
bounded by 
max

D−1; thus, the computation time is asymptotically

∝
(

max
D−1

)(D−1)(N−1). Since this summation must be done once
per primary particle yj , we expect the algorithm to scale linearly
with n if this process dominates over ab

� computation. Secondly,
the number of basis vectors at fixed 
max

D−1 is exponential in D
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and N . Asymptotically, this scales as NN−1
b ×

(

max
D−1

)2N−4 ×(

max
D−1

)D−1 (counting elements of b,Λ and L, respectively,
using Nb radial bins per dimension). Although this is a strong
scaling, it is generic to any higher-point basis (and usually referred
to as the “curse of dimensionality”). In the presence of certain
symmetries, the number of basis functions is significantly reduced:
For example, isotropy demands that L= 0, reducing the scaling
to NN−1

b ×
(

max
D−1

)2N−5, independent of D . In the below, we
will always compare naı̈ve and efficient estimators projected onto
the same basis; thus, this factor appears in the ratio of computation
times.

C. Application to Gridded Data. Our estimators may also be
applied to continuous data discretized on some regular grid,
which is of use for the analysis of hydrodynamic simulations, for
example. For this, we first rewrite ab

� (s; r) (Eq. 36) as

ab
� (s) =

∫
MD

dDrX (s+ r)Y ∗
� (r̂)Θ

b(r)

≡ (−1)�D−1

∫
MD

dDrX (s− r)
[
Y�(r̂)Θ

b(r)
]
,

[39]

relabeling variables and utilizing the conjugate properties of hy-
perspherical harmonics (SI Appendix, Eq. S4). For gridded data
in Euclidean space, i.e., with MD = RD , this may be straight-
forwardly computed using the D-dimensional FFT. Explicitly:

ab
� (s) = (−1)�D−1FFT−1

[
FFT(X )FFT(Y� Θ

b)
]
, [40]

where FFT−1 is the inverse FFT. These operations have complex-
ity O(ng log ng) for ng grid points. Following computation of the
various ab

� (s) terms, the estimator for the NPCF components can
be constructed from Eq. 34 as a simple sum in D dimensions. The
full estimator has complexity O(ng log ng), which is again much
faster than the naı̈ve O(nN

g ) result. The above procedure may also
be applied to the discrete data-sets discussed in Section B, via a
nonuniform FFT (37).

4. Applications

We now consider a number of physical scenarios in which the
above methods can be employed and give numerical examples.
For this purpose, we provide a Julia implementation of the two
main algorithms discussed above (3,37).¶¶ This can compute the
NPCF of discrete particles with N ∈ {2, 3, 4, 5}, using Cartesian
geometries with D ∈ {2, 3, 4} or spherical geometries with D =
2, and is fully parallelized.

A. Cosmic Microwave Background. Cosmic Microwave Back-
ground (CMB) radiation encodes a snapshot of the Universe at
the epoch of recombination, around 380,000 y after the Big Bang.
This may be probed using microwave satellites such as WMAP
and Planck, which map the CMB temperature fluctuations as a
function of direction; such observations have been used to place
strong constraints on cosmological parameters such as the matter
density and Universe’s expansion rate (e.g., refs. 38 and 39).

In this setting, the random field in question is the fractional
temperature fluctuation on the 2-sphere, Θ : S2 → R, i.e., MD =
S2. Conventionally, Θ is expanded in D = 3 spherical harmonics

¶¶https://github.com/oliverphilcox/NPCFs.jl.

as Θ(φ, θ; n̂) =
∑∞

λ=0

∑λ
μ=−λ ΘλμYλμ(φ, θ), using spherical

polar coordinates φ ∈ [0, 2π), θ ∈ [0,π) relative to some pole on
the sphere at position vector n̂. The statistical properties of Θ are
then characterized in terms of the spherical harmonic coefficients
Θλμ (often denoted aT

λμ). To apply the techniques of this work,
we instead expand the temperature fluctuations using the D = 2
hyperspherical harmonics (Section 1B), i.e.,

Θ(r; n̂) =

∞∑
�=0

Θ�(θ)Y�(φ)≡
1√
2π

∞∑
�=0

Θ�(θ)e
i�φ, [41]

identifying 
 as the total angular momentum and θ as the ra-
dial coordinate relative to n̂, which acts as an origin on S2.##

This is a convenient basis for computing higher-order clustering
statistics on the 2-sphere, since 1) it avoids the need for an
embedding space, and 2) it provides a natural split into isotropic
and anisotropic correlators.

As in Eq. 1, the temperature NPCF is defined as a statistical
average over Θ:

ζ(r1, . . . , rN−1) = EΘ

[
Θ(0; n̂)Θ(r1; n̂) · · ·Θ(rN−1; n̂)

]
;

[42]

by statistical homogeneity, this is independent of the choice of
origin n̂. Eq. 42 may be expanded in the basis of Eq. 25, where
the D = 2 basis functions take the form

PL
�1...�N−1(φ1, . . . ,φN−1) = (2π)−(N−1)/2exp[

i(
1φ1 + · · ·+ 
N−1φN−1)
]
,

[43]

with 
1 + · · ·+ 
N−1 = L, where L= 0 for isotropic correlators.
Note that no intermediate angular momenta need to be specified
due to the coupling rules of Eq. 20. As in Eq. 34, we may form
an O(n2) estimator for the NPCF coefficients:

ζL�1...�N−1(θ1, . . . , θN−1) =
1

4π

∫
S2

dΩ2

[
Θ(n̂)a�1(n̂; θ

1)

· · · a�N−1(n̂; θN−1)
]
,

a�(n̂; θ)≡
1√
2π

∫ 2π

0

dφΘ(φ, θ; n̂)ei�φ.

[44]

The first integral is over all possible choices of origin n̂, while the
second is over a circle centered at n̂with radial parameter θ (which
may be discretized into bins, as before).

Such estimators are straightforward to implement and allow
efficient computation of the higher-order CMB NPCFs, albeit in
a basis somewhat different to that usually adopted. We caution
that the 
 indices play a different role to those of the λ indices
appearing in the standard spherical harmonic expansion of Θ. In
our basis, 
 represents angular momentum around an origin on the
2-sphere, while λ is with reference to the origin of the 2-sphere
in the embedding space R3. In practice, this allows us to restrict

##Here, θ measures the arc-lengths of great-circles through two points on the 2-sphere, as
viewed in R

3.
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Fig. 3. Timing comparison of the näıve NPCF estimator with that introduced
in this work. In the first case, the NPCF is estimated by counting sets of N
particles, via Eq. 3, weighting by the relevant basis functions (Section 2). The
new estimators exploit hyperspherical harmonic decompositions to reduce
the estimator to a sum over pairs. Here, we show results for a variety of
choices of n, for both 4PCF estimation on the 2-sphere (Upper) and 5PCF
estimation in 3D Cartesian space (Lower). As expected, the runtime of näıve
estimator scales as nN (as indicated by the red dotted lines), but the new
estimators scale as n2 for the 4PCF, or n for the 5PCF. The latter scaling
arises since we are dominated by the sum over intermediate momenta
[�i], rather than the sum over pairs; at larger n, we expect a quadratic
scaling with n. All computations were performed in Julia using 16 CPUs, and
we have verified that the measured NPCF components agree to machine
precision.

to much smaller 
 than used conventionally.|||| We further note
that the CMB contains also polarization fluctuations. These may
be analyzed using an extension of the above formalism, replacing
the hyperspherical harmonics with spin-weighted hyperspherical
harmonics (e.g., refs. 40 and 41).

To give a sense of how the above algorithms work in CMB
contexts, we consider a simple problem: estimating the isotropic
four-point correlation function (4PCF) of randomly placed points
on the 2-sphere. This corresponds to the above scenarios with
N = 4,D = 2, and a spherical geometry. For this test, we generate
a set of n evenly distributed points and compute the coeffi-
cients ζ0,b

1b2b3

�1�2�3 , using 10 radial bins per dimension with cos θ ∈
[−0.5, 0.5) and 
max = 4. This leads to a total of 35 (120) angular
(radial) components. Timing results for the computation using

||||CMB fluctuations have characteristic angular scale rs(z∗)/dA(z∗), where rs is the
sound horizon in comoving coordinates, dA is the angular diameter distance, and z∗ is
the redshift at the end of the baryon drag epoch. This imprints a characteristic angular
momentum scale L ∼ πdA(z∗)/rs(z∗) � 1. In our basis, � corresponds to the ratio of two
polygon sides on S

2 and is thus O(1).

both the naı̈ve and quadratic estimators (projecting the 4PCF
onto the same basis functions in both cases) are shown in Fig. 3,
Upper for a variety of choices of n , using our public Julia code.
As expected, the runtime scales as n4 for the naı̈ve estimator,
which leads to unwieldy computation times, even for a few
thousand particles. For the estimators introduced in this work, the
runtime scales as n2 for large n , as expected from the algorithm’s
complexity.

B. Hydrodynamic Turbulence. NPCFs have found significant use
in the study of hydrodynamical turbulence. Being a chaotic pro-
cess, the evolution of the velocity and density fields in a turbulent
flow cannot be treated deterministically; rather, they must be
analyzed statistically. Furthermore, the density fields of turbulent
media are known to be close to log-normal (42), implying that the
higher-order NPCF functions contain a wealth of information,
particularly concerning the sonic and Alfvénic Mach numbers
(e.g., refs. 15 and 43–45).

One of the simplest observables is the turbulent density field,
ρ : R3 → R, whose N -point function is defined in Eq. 1. In
the absence of any external forcing, we expect the NPCF to be
statistically isotropic; thus, it can be expanded via Eq. 28 in terms
of the D = 3 basis functions with L= 0. As shown in Section 1B,
the corresponding one-particle basis functions are just the usual
spherical harmonics, Ym�(r̂), and their coupling can be expressed
in terms of Wigner 3-j symbols.

As before, we may form O(n2) estimators for the NPCF
coefficients via Eq. 34. As an example, the isotropic five-point
correlation function (5PCF) estimator becomes (ignoring radial
binning for clarity)

ζ0�1�2�12�3�4(r
1, r2, r3)

=
1

V3
(−1)�

1+�2+�3+�4
∑

m1m2m3m4

(−1)�
12−m12

√
2
12 − 1(


1 
2 
12

m1 m2 −m12

)(

12 
3 
4

m12 m3 m4

)
×

∫
R3

ds
[
ρ(s)am1�1(s; r

1)

am2�2(s; r
2)am3�3(s; r

3)am4�4(s; r
4)

]
, [45]

where V3 is the volume of the space, m12 ≡m1 +m2,
and am�(s; r) =

∫
S2
dΩ2 ρ(s+ r)Y ∗

m�(r̂). Introducing spin-
weighted (or vector) spherical harmonics, the approach may be
extended to tensorial correlators, such as those of the velocity
field.

Fig. 3, Lower presents a practical demonstration of the isotropic
5PCF estimator, applied to n discrete points in 3D. We consider
10 radial bins in [0.1, 0.4] for uniformly distributed data in a peri-
odic cube of length one and fix 
max = 4. In this case, the 5PCF is
specified by four radial bin indices and five angular multiplets,
as in Eq. 45. This gives a total of 210 radial and 585 angular
components. As before, we find that the runtime of the naı̈ve
estimator scales as nN , which quickly becomes computationally
prohibitive. For the NPCF estimator of this work, the runtime
appears to be linear in n , rather than quadratic: This occurs since
the work is dominated by the mi summations (cf Section 1B),
though we expect the n2 scaling to dominate for denser samples.
In all cases, however, our approach is significantly faster than
that of the naı̈ve estimator. We note that our algorithm can be
further accelerated by gridding the data and making use of Fourier
transforms.
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C. Large-Scale Structure. The large-scale distribution of matter
in the late Universe follows a weakly non-Gaussian distribution
and is commonly analyzed using N -point statistics (e.g., ref. 46).
The underlying space is expected to be flat, homogeneous, and
isotropic and is thus described by the metric of Eq. 6 with k = 0
and D = 3.*** A common task in cosmology is the estimation of
isotropic NPCFs for the galaxy overdensity field, δg : R3 → R;
this proceeds identically to Section 4B, except that the data are
discrete. Full discussion of this (including implementation in the
encore code†††) is presented in our companion work (16) and
allows information to be extracted from the high-order NPCFs,
which are otherwise computationally prohibitive to measure.

Due to the effects of redshift-space distortions (e.g., ref. 47),
observed galaxy distributions are not isotropic, implying that the
decomposition of Eq. 28 does not capture all possible NPCF
information. However, the statistics are invariant under rotations
about an (assumed fixed) line-of-sight, here set to x̂3. For a full
treatment, we must instead expand the NPCF using Eq. 25,
keeping only terms with L1 = 0 (cf Section 2C):

ζ(r1, . . . , rN−1)

=

∞∑
L=0

∑
Λ

ζ0LΛ (r1, . . . , rN−1)P0L
Λ (r̂1, . . . , r̂N−1), [46]

writing L≡ L2. As an example, the 3PCF becomes

ζ(r1, r2) =

∞∑
L=0

∑
�1�2

ζ0L�1�2(r
1, r2)P0L

�1�2(r̂
1, r̂2),

P0L
�1�2(r̂

1, r̂2) = (−1)�
2−�1

√
2L+ 1∑

m

(

1 
2 L
m −m 0

)
Y�1m(r̂1)Y�2−m(r̂2),

[47]

(cf refs. 48 and 49). Such statistics may be estimated via Eq. 34, as
before. The above decomposition provides a complete basis for the
redshift-space 3PCF (analogous to ref. 49) and extends naturally
to higher orders, which have not previously been discussed.

5. Summary

Many areas of research require computation of clustering statistics
from continuous or discrete random fields. Perhaps the most
prevalent statistic is the NPCF, defined as the statistical average

***Our methodology applies similarly to k �= 0, though there is significant evidence im-
plying that the Universe is flat (39). Additionally, our methods can be used to compute
projected correlation functions in R

2, requiring the D = 2 basis functions, as demonstrated
in ref. 11 for the 3PCF.
†††https://github.com/oliverphilcox/encore.

over N fields in different spatial locations. If the random field is
Gaussian-distributed, only the 2PCF is of interest; in the general
case, all correlators have nontrivial forms. Given a set of n parti-
cles, a naı̈ve estimator for the NPCF components in some basis
has O(nN ) complexity with respect to n . As N increases, this
rapidly becomes computationally infeasible to apply: Alternative
methods must be sought if one wishes to unlock the information
contained within higher-order NPCFs.

This work considers NPCF estimation on isotropic and homo-
geneous manifolds in D dimensions. Under these assumptions
(which encompass spherical, flat, and hyperbolic geometries),
we show that any function of one position can be expanded in
hyperspherical harmonics; aD-dimensional analog of the conven-
tional spherical harmonics. These are also eigenstates of the an-
gular momentum operators; utilizing the mathematics of angular
momentum addition, we can construct basis functions involving
(N − 1) points on SD−1 as a sum over products of (N − 1)
hyperspherical harmonics. This forms a natural angular basis for
the NPCF, particularly if the random field is statistically isotropic.
The decomposition allows construction of an NPCF estimator
that separates into a product of (N − 1) spatial integrals; this
has O(n2) complexity (with respect to n), or O(ng log ng) using
FFTs with ng grid points. The algorithms have been validated
numerically using a Julia implementation; in all scenarios tested,
we find our approach to yield significantly faster measurements of
the NPCF coefficients in our angular momentum basis.

Such techniques will allow high-order correlation functions
to be computed from data, allowing more complete analysis of
phenomena ranging from fluid turbulence to galaxy clustering.
Furthermore, since the algorithm can be applied to scenarios with
D 	= 3, we may consider also the computation of NPCFs on the
surface of spheres (relevant, e.g., for atmospheric physics) or in
higher-dimensional atomic treatments with D = 6 (e.g., ref. 19).
These ideas may be extended further; a case of particular interest
is in the correlation functions of random fields with nonzero spin;
these are required to describe the statistics of tensor fields, such as
turbulent velocities and CMB polarization.

Data Availability. Code Package NPCFs.jl data have been deposited in GitHub
(https://GitHub.com/oliverphilcox/NPCFs.jl) (50).
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