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Background: Ferroptosis, a form of regulatory cell death, has been linked to the

development of various tumors. Peripheral neuroblastoma (NB) is one of the

most common extracranial solid tumors in children, and it has been proposed

that regulating tumor cell ferroptosis may be a future treatment for NB.

However, it is unclear how ferroptosis contributes to NB development.

Methods: Expression data were collected from two independent cohorts (GEO

and Arrayexpress databases). Univariate Cox analysis, multivariate Cox analysis,

and the least absolute shrinkage and selection operator (Lasso) algorithm were

applied to create a prognostic signature, whose performance was quantified

using the area under the receiver operating characteristic curve (AUC) and

Kaplan–Meier curves. A prognosticmeta-analysis was used to test the suitability

and stability of the FRG signature. Drug sensitivity analyses were performed

using the data collected from Cell Miner™.

Results: PROM2, AURKA, STEAP3, CD44, ULK2, MAP1LC3A, ATP6V1G2, and

STAT3 are among the eight genes in the FRG prognostic signature, all of which

were highly expressed in stage 1 NB, except AURKA. Furthermore, the high-risk

group, which was stratified by signature, had a lower overall survival rate than

the low-risk group. GSEA revealed that high-risk groups have more biological

processes related to ferroptosis.

Conclusion: Ferroptosis-related genes are expressed differently between

stages 1 and 4 NB. The FRG signature successfully stratified NB patients into

two risk groups and can accurately predict the overall survival in NB. In addition,

we found that the gene AURKA might have the potential to be a prognostic

marker in NB.
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1 Introduction

Neuroblastoma (NB) is widely regarded as the most common

solid extracranial tumor in childhood, with varying clinical

manifestations and disease courses depending on tumor

biology (Matthay et al., 2016). It has high morbidity in

children, accounting for about 10% of pediatric cancers, and

contributes significantly to pediatric cancer mortality with

survival rates of less than 40% (Maris et al., 2007; Cohn et al.,

2009; Matthay et al., 2016; Padovan-Merhar et al., 2016).

Although scientific progress has improved the effectiveness of

a variety of new treatments, such as allogeneic hematopoietic

stem cell transplantation (Kanold et al., 2008), it remains at a

relatively low level or requires additional research (DuBois et al.,

2021; Furman et al., 2022; Heitzeneder et al., 2022).

Ferroptosis is a distinct mode of cell death caused by iron-

dependent phospholipid peroxidation and governed by a number

of cellular metabolic events. Since the 1950s, Harry Eagle has

observed that a lack of the amino acid cyst(e)ine can cause cell

death, which is similar to ferroptosis (Eagle, 1955). Nonetheless,

in many ways, the field of ferroptosis is still in its infancy. Recent

evidence suggests that ferroptosis may play physiological roles in

tumor suppression and immunity (Jiang et al., 2021). Other

studies have linked ferroptosis to NB, for example, lacking

ferritin heavy chain, Erastin, or RSL3 could induce ferroptosis

cell death in NB N2A cells (Lu et al., 2021), but it is unclear

whether some genes that regulate ferroptosis, such as TP53 (Leu

et al., 2020) and BRD4 (Sui et al., 2019), are associated with NB

patient prognosis.

In this study, we identified the differentially expressed

ferroptosis-related genes (FRGs) by comparing stage 1 and

stage 4 NB to see if they are associated with NB prognosis. In

addition, two microarrays were used in this study, and functional

enrichment was used to identify additional mechanisms.

Our FRG prognostic signatures included eight differentially

expressed FRGs associated with the overall survival. It performed

well in predicting the prognosis of NB patients. We used the

Connectivity Map database (CMAP, https://portals.

broadinstitute.org/cmap/) (Lamb et al., 2006) to obtain drug

target information, and data from the CellMiner database

(https://discover.nci.nih.gov/cellminer/) (Shankavaram et al.,

2009) were filtered to perform drug sensitivity analysis, with

the goal of providing molecular strategies for the clinical

diagnosis and treatment of NB.

2 Materials and methods

2.1 NB dataset processing

Agilent microarray GSE49710 datasets (n = 498) were

downloaded from the Gene Expression Omnibus (GEO)

database, and Agilent microarray E-MTAB-8248 datasets

(n = 223) were downloaded from the ArrayExpress database.

The GSE49710 and E-MTAB-8248 microarray datasets were

used as discovery and validation cohorts, respectively. Patients

with insufficient clinical data or in stages 2, 3, and 4 S were

excluded. Table 1 shows the clinical characteristics of patients in

the two cohorts.

2.2 Extraction of differentially expressed
ferroptosis-related genes

FerrDb is the first manually curated resource for ferroptosis

regulators and markers released in December 2019 (Zhou and

Bao, 2020), from which we obtained 259 gene sets associated with

ferroptosis. Differential expression analyses were performed in

both training and validation cohorts using the “limma” package

(Ritchie et al., 2015) and the R (version 4.1.0) software,

respectively. Genes with false discovery rates (FDRs) <
0.05 and |log2FoldChange| > 0.8 were extracted as

differentially expressed genes.

2.3 Construction of the ferroptosis-
related prognostic signatures

Univariate Cox analysis of overall survival (OS) was

performed to screen FRGs with prognostic values in the

training cohort. p ≤ 0.05 was considered statistically

significant. To avoid overfitting, we used the Cox proportional

hazards model survival analysis with the least absolute shrinkage

and selection operator (LASSO) penalty (Tibshirani, 1997). In

addition, to derive a risk score for each patient, we constructed

the ferroptosis-related prognostic signature by weighting the Cox

regression coefficients for each gene. We classified the patients as

high or low risk according to the median value in both cohorts.

As for the ROC curve, we used the “survivalROC” package to

evaluate the predictive ability of our established prognostic

model. We assigned survival time to S time, survival status to

Status, and took the risk score as a marker, and used the product-

limit method to calculate the predictive ability of 3, 5, and years,

respectively. For the value of AUC, it also reflects the predictive

ability of our model, and the closer it is to 1, the better the ability

is. In the nomogram, we considered the influence of age factors

and used the calculated mortality rate as a marker. Similarly,

AUC reflects the predictive ability of the Nomo model.

2.4 Prognostic meta-analysis of the
ferroptosis-related gene signature and the
gene AURKA

The FRG signature and the geneAURKAwere meta-analyzed

separately using the “meta” R package, including four NB
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datasets from the GEO (GSE62564 and GSE49710),

ArrayExpress (E-MTAB-8248), and UCSC Xena (TARGET-

NBL). Heterogeneity among the datasets was assessed by

using the Chi2 and the I2 statistics. p ≤ 0.05 was considered

statistically significant.

2.5 Function annotation and gene set
enrichment analysis

The functional annotations of genes were performed using

the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes

and Genomes (KEGG) databases. The R package

“clusterProfiler” was used to analyze differentially expressed

FRGs associated with OS (Yu et al., 2012). p values were

adjusted using the BH method. In addition, the infiltrating

score of 28 immune cells and the activity of 13 immune-

related pathways were determined by using single-sample gene

set enrichment analysis (ssGSEA) in the “GSVA” R package

(Bindea et al., 2013; Hänzelmann et al., 2013).

2.6 Statistical analysis

The “limma” R package was used to conduct statistical

analyses on differentially expressed genes. To determine the

independent predictor of OS, univariate and multivariate Cox

survival regression analyses were performed. In this study, all

statistical analyses were conducted with the R software version

4.1.0. If not specified, p < 0.05 was considered statistically

significant.

2.7 Drug sensitivity analysis of
27 differentially expressed and survival-
related ferroptosis-related genes

After sorting according to log FC differential multiples, the

top 500 upregulated genes and the top 500 downregulated

genes were uploaded to perform the query function in the

CMAP database and obtain drug target information. The Cell

MinerTM (Shankavaram et al., 2009; Reinhold et al., 2012)

database was used to download the processed drug sensitivity

data (Version: 2021.1, database: 2.6, https://discover.nci.nih.

gov/cellminer/home.do) and the RNA SEQ file and compound

activity. The R packages “impute,” “limma,” “ggplot2,” and

“ggpubr” were used to process the data and visualize the

results. Only drugs certified and clinically tested by Food

and Drug Administration (FDA) are screened out, and the

k-nearest neighbors in the space of genes were used to impute

the missing expression values. The data of 27 differentially

expressed FRGs related to prognosis were extracted. Among

TABLE 1 Clinical characteristics of the two cohorts.

Training cohort Validation cohort P

No. of patients 498 223

Gender

Male 287 (57.6%) −

Female 211 (42.4%) −

Age

<18 m 300 (60.2%) 103 (46.2%) 0.001

≥18 m 198 (39.8%) 120 (53.8%)

Mycn

Non-amplified 401 (80.5%) 176 (78.9%) 0.608

Amplified 92 (18.5%) 46 (20.6%)

NA 5 (1.0%) 1 (0.4%)

Inss stage

1 121 (24.3%) 29 (13.0%) 0.013

2 78 (15.7%) 39 (17.5%)

3 63 (12.7%) 36 (16.1%)

4 183 (36.7%) 89 (39.9%)

4S 53 (10.6%) 30 (13.5%)

Os status

Alive 393 (78.9%) 181 (81.2%) 0.553

Dead 105 (21.1%) 42 (18.8%)

Survival time (mean) 2185.42 2225.95 0.719
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the gene–drug pairs with p < 0.001, the top 16 gene–drug pairs

with the highest correlation coefficient were selected for

mapping.

3 Results

The flow chart for this study is shown in Supplementary

Figure S1, which includes 498 patients from the GEO datasets

and 223 patients from the ArrayExpress database. Table 1 lists

the clinical characteristics of each cohort.

3.1 Identification of prognostic
ferroptosis-related DEGs in the training
cohort

A total of 40 FRGs were found to be differentially expressed

between stage 1 and stage 4 tumor tissues (Figure 1A), and

27 FRGs were found to be significantly (p < 0.05) associated with

OS across the entire training cohort in univariate Cox

proportional model survival analyses (Supplementary Figure

S2A). The majority of them (26/27) were significantly

increased in stage 1 NB samples, whereas only one was

FIGURE 1
Identification of the candidate ferroptosis-related genes in the training cohort. (A) Volcano plot shows the differentially expressed 40 FRGs in
the training cohort. (B) 26 genes were upregulated in stage 1 NB samples and one gene was upregulated in stage 4 NB samples. (C) The PPI network
downloaded from the STRING database indicated the interactions among the candidate genes. The correlation heatmap of candidate genes and the
correlation coefficients are represented by different colors. (D) The correlation heatmap shows the expression values of the identified 27 ARGs
associated with OS in the training cohort.
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significantly increased in stage 4 NB samples (Figure 1B). The

PPI network indicated that EGFR and STAT3 were the hub genes

(Figure 1C). The correlation values among the 27 genes were

indicated in the correlation heatmap (Figure 1D).

3.2 Construction and validation of FRG
prognostic signatures

To eliminate false positives, the 27 FRGs that were associated

with OS were subjected to LASSO Cox survival analysis

(Supplementary Figure S2B, C). An eight-gene signature was

identified based on the optimal value of λ (Table 2). The

Kaplan–Meier curves showed the survival analyses of every

gene in this signature (Supplementary Figure S3).

The risk scores were calculated for each patient as follows:

risk score = e (– 0.339 * ULK2—0.290 * MAP1LC3A + 0.581 * AURKA—0.107 *

ATP6V1G2—0.168 * STAT3—0.044 * PROM2—0.075 * CD44 + 0.258 * STEAP3). We

used the median value as the cut-off value, and the training

cohort was divided into high-risk group (n = 152) and low-risk

group (n = 152), which represent the increased and decreased

ferroptosis, respectively. Figure 2A depicts the risk distribution,

survival status, and gene expression pattern in the training

cohort. According to the scatter plot, the high-risk group had

a higher probability of death earlier than the low-risk group in

the training cohort because the majority of patients in the low-

risk group survived the 15-year follow-up, whereas the majority

of patients in the high-risk group died (Figure 2A). According to

the heatmap, whether in the training cohort or in the validation

cohort, seven FRGs, including PROM2, STEAP3, CD44, ULK2,

MAP1LC3A, ATP6V1G2, and STAT3, were highly expressed in

stage 1 NB, while only AURKA was highly expressed in stage

4 NB (Figures 2B,F). We discovered that the FRG signature has

good predictive performance in predicting OS in the training

cohort using the time-dependent ROC curves, with the area

under the curve (AUC) reaching 0.885 at 3 years, 0.908 at 5 years,

and 0.883 at 8 years (Figure 2C). The Kaplan–Meier curve

revealed that patients in the high-risk group had a

significantly lower OS than those in the low-risk group

(Figure 2D). To validate the model’s prognostic significance,

the same risk score formula was used to test the FRG signature in

the validation cohort (n = 223). The validation cohort as a whole

was divided into two groups using the same cut-off value as the

training cohort. Figure 2E depicts the risk distribution, survival

status, and gene expression pattern in the validation cohort.

Time-dependent ROC curves were used to assess the predictive

performance of the risk score model for OS, and the AUC values

at 3, 5, and 8 years were 0.814, 0.816, and 0.781, respectively

(Figure 2G). The Kaplan–Meier curve consistently showed

similar results to the training cohort, indicating that the high-

risk group had a clearly worse OS than the low-risk group

(Figure 2H).

3.3 The expression status of AURKA in
different subgroups

An interesting phenomenon was discovered in the heatmap

of the training and validation cohorts: only one gene, AURKA,

had a high expression level in stage 4 tumors or high-risk

groups. In the training cohort, we compared the expression

status of AURKA in seven subgroups, including gender, age,

MYCN amplification status, INSS stage, COG risk status,

progression, and survival status. Figures 3B–G show that

AURKA expression was higher in patients aged 18 months

(p < 0.001), MYCN amplified (p < 0.001), stage 4 NB (p <
0.001), COG high risk (p < 0.001), progression (p < 0.001), and

dead status (p < 0.001) when compared to the corresponding

groups. However, no significant difference was found between

the male and female groups (Figure 3A). Supplementary Figure

S4 shows a comparison of AURKA expression status in the

validation cohort.

TABLE 2 FRGs in the prognostic signature.

Gene symbol Official full name Ensemble id Log2FC FDR

PROM2 prominin 2 ENSG00000155066 −1.11 1.85419E-16

AURKA aurora kinase A ENSG00000087586 1.16 2.57275E-20

STEAP3 STEAP3 metalloreductase ENSG00000115107 −0.88 1.64307E-10

CD44 CD44 molecule (Indian blood group) ENSG00000026508 −1.14 3.42624E-13

ULK2 unc-51 like autophagy ENSG00000083290 −1.25 1.00798E-34

activating kinase 2

MAP1LC3A Microtubule-associated protein 1 ENSG00000101460 −1.19 9.30898E-24

light chain 3 alpha

ATP6V1G2 ATPase H+ transporting ENSG00000213760 −1.12 1.9092E-19

V1 subunit G2

STAT3 signal transducer and activator of transcription 3 ENSG00000168610 −1.07 2.31044E-17

Frontiers in Cell and Developmental Biology frontiersin.org05

Chen et al. 10.3389/fcell.2022.871512

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.871512


FIGURE 2
The ferroptosis-related genes (FRGs) prognostic signature for NB. (A) The distribution and median value of the risk scores and survival status of
patients in the training cohort. (B) Heatmap of the FRG expression pattern in the training cohort. (C) Time-dependent ROC curves verified the
prognostic value of the FRG signature in the training cohort. (D) Kaplan–Meier curves for the OS of patients in the high-and low-risk group in the
training cohort. (E) The distribution andmedian value of the risk scores and survival status of patients in the validation cohort. (F)Heatmap of the
FRG expression pattern in the validation cohort. (G) Time-dependent ROC curves verified the prognostic value of the FRG signature in the validation
cohort. (H) Kaplan–Meier curves for the OS of patients in the high- and low-risk group in the validation cohort.
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3.4 The prognostic value of ferroptosis-
related gene signatures

The risk score and other clinical risk factors in the entire

training cohort were subjected to univariate andmultivariate Cox

regression analyses (Figure 4A). In the univariate survival

analysis, the risk score was significantly associated with OS in

both the training [hazard ratio (HR) = 4.561; 95% CI:

3.624–5.739; p < 0.001] and validation cohorts [hazard ratio

(HR) = 32.012; 95%CI:13.307–77.013; p < 0.001] (Figures 4A,C).

After evaluating gender (female vs male), age status

(<18 vs ≥18 months), MYCN amplification (non-amplified vs

amplified), Children’s Oncology Group (COG) risk status (low

risk vs high risk), and International Neuroblastoma Staging

System (INSS) stage (INSS 1 vs INSS 4), it was determined

that the FRG signature plays an independent prognostic role

(Training cohort: HR = 2.438, 95% CI = 1.753–3.390, p < 0.001;

validation cohort: HR = 16.652, 95% CI = 5.227–53.052, p <
0.001; Figures 4B,D). Given that the COG risk classification

already incorporates age, MYCN amplification status, and

INSS stage factors, we created a nomogram (Figure 4E)

incorporating only age and the FRG signature risk score to

further investigate the role of age in predicting the OS in NB

patients in the validation cohort, as age showed significant

differences in univariate and multivariate Cox regression

analyses. Age ≥18 months was assigned a value of 0, while

FIGURE 3
The expression status of AURKA in different subgroups. (A) Gender. (B) Age. (C) MYCN amplification status. (D) INSS stage. (E) COG risk status.
(F) Progression. (G) Survival status.
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age <18 months was assigned a value of 33.6. Furthermore, a risk

score of 1.2 was defined as 0 points, while a risk score of 0 was

defined as 100 points. Risk scores ranging from 1.2 to

0 correspond to points ranging from 0 to 100, and can be

calculated using the following formula: points = (1.2 - risk

score) * (100/1.2).

FIGURE 4
Univariate andmultivariate survival analyses regardingOS in the training cohort and the validation cohort. (A)Univariate Cox regression analyses
in the training cohort. (B) Univariate Cox regression analyses in the validation cohort. (C)Multivariate Cox regression analyses in the training cohort.
(D) Multivariate Cox regression analyses in the validation cohort. (E) The nomogram for predicting overall survival in the validation cohort. (F) The
calibration curves of 3-, 5-, and 8-years for the nomogram. (G) The 3-, 5,- and 8-year ROC curve analyses for the nomogram.
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FIGURE 5
Survival analysis of the training cohort. (A) Female. (B)Male. (C) Age <18 months. (D) Age ≥18 months. (E)MYCN not amplified. (F) Progression.
(G) International Neuroblastoma Staging System (INSS) stage 1. (H) INSS stage 4. (I) Children’s Oncology Group (COG) low risk. (J) COG high risk.
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The C-index of the nomogram was 0.85 (95% CI: 0.80–0.91),

indicating that our signature is highly accurate. Additionally, the3-,

5-, and 8-year calibration curves demonstrated that the predictedOS

was quite consistent with the observed OS (Figure 4F). The ROC

curve revealed that the nomogram’s AUC at 3, 5, and 8 years was

greater than the risk score’s AUC at 3, 5, and 8 years (Figure 4G).

3.5 The prognostic role of ferroptosis-
related gene signatures

Stratification survival analyses were used to determine the

FRG signature’s predictive performance in clinical subgroups

within the training cohort. The entire training cohort was divided

FIGURE 6
Results of GO and KEGG analyses and comparison of the ssGSEA scores between the high- and low-risk group in the training cohort. (A) Results
of GO enrichment in the training cohort. (B) Results of the KEGG pathway in the training cohort. (C) Scores of 16 immune cells in the training cohort.
(D) Scores of 13 immune-related functions in the training cohort. (E) Scores of 16 immune cells in the validation cohort. (F) Scores of 13 immune-
related functions in the validation cohort.
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into 11 subgroups according to gender, age, MYCN not amplified

status, INSS stage, COG risk status, and progression.

Patients were divided into high- and low-risk subgroups in

each subgroup using the same cut-off value as in the training

cohort. A significant difference was demonstrated in the OS

between the high- and low-risk groups (Figures 5A–J).

3.6 Meta-analysis of ferroptosis-related
gene signatures and the gene AURKA

The prognostic meta-analysis was used to assess the

comprehensive predictive value of the FRG prognostic

signature in multiple cohorts. The results revealed that the

FRG prognostic signature was a significant predictor of cancer

prognosis in NB (HR = 8.75, 95% CI: 1.44–53.19, p = 0.02,

Supplementary Figure S5). In addition, by meta-analysis, we

validated the gene AURKA as a potential prognostic

biomarker for NB (HR = 4.41, 95% CI: 1.19–16.36, p = 0.03,

Supplementary Figure S6).

3.7 Functional analyses for the training and
validation cohorts

To further investigate the relationship between biological

function and pathway and risk score, we included

differentially expressed and survival-related FRGs in our

GO enrichment (Figure 6A) and KEGG pathway analyses

(Figure 6B) in the high- and low-risk groups. As expected,

the differentially expressed FRGs were significantly more

abundant in iron-related signaling pathways, such as the

PI3K-Akt signaling pathway. Surprisingly (Yi et al., 2020),

the FRGs were also significantly enriched in a variety of

immune-related biological processes, including T-cell

activation, positive regulation of leukocyte cell–cell

adhesion, and mononuclear cell differentiation. Following

that, we used the ssGSEA to determine the degree of

enrichment of immune cell subpopulation-related

pathways. Numerous immune-related cells were found to

be significantly different between the low- and high-risk

groups in the training cohort, including activated

CD4 T cells, eosinophils, macrophages, and neutrophils

(Figure 6C). Clearly, numerous antigen-presenting

functions, such as APC costimulation, HLA, cytolytic

activity, and MHC class I expression, appear to be distinct

between the two groups (Figure 6D).It is to be noted that the

KEGG-enriched cytokine–cytokine receptor interaction had a

higher score in the training cohort’s high-risk

group. Additionally, the high-risk group scored higher on

immature dendritic cells, monocyte, cytolytic activity, and

T-cell costimulatory activity (Figures 6C,D), which was

validated in the validation group (Figures 6E,F).

3.8 Exploration of drugs that have a
therapeutic effect onNB based on the FRG
signature

We screened the Cmap datasets for the significant interaction

nodes in order to identify potential drugs that modulate

prognosis-related genes therapeutically. A key node is one that

interacts with at least two genes associated with prognosis and

has a hypergeometric p-value less than 0.05. Table 3 summarizes

the 20 most significant drugs.

3.9 Sensitivity analysis of drugs for NB

The correlation analysis was performed to investigate the

potential relationship between drug sensitivity in different

human cell lines and the 27 differentially expressed and

survival-related FRGs. The results are shown in Figure 7 from

high to low in terms of the absolute value of the correlation

coefficient, indicating that ATP6V1G2 expression was associated

with drug sensitivity to nelarabine, methylprednisolone, and

sapacitabine (Figures 6A,B,D). The expression of one hub

gene, EFGR, correlated positively with the drug sensitivity of

BLU-667, Dasatinib, and Spebrutinib (Figures 6H,I,K). There

was a positive relationship between the expression of another hub

gene, EPAS1, and the drug sensitivity of Telatinib, XAV-939, and

LY-3023414 (Figures 6C,G,M). The relationship between

PROM2 expression and drug sensitivity of Linsitinib, GSK-

1904529A, AZD-9496, Acetalax, and SR16157 was also found

to be positive (Figures 6E,J, L, O, P). Furthermore, the correlation

between GCH1 expression and Ribavirin drug sensitivity and the

correlation between TF expression and Motesanib drug

sensitivity were positive (Figure 6N).

4 Discussion

In light of recent advances in the treatment of NB, the

International NB Risk Group Staging System (INRGSS) has

been adopted prospectively for the treatment assignment and

definition of COG clinical trial eligibility (Irwin et al., 2021).

Furthermore, researchers have identified several prognostic

signatures or markers that may serve as critical reference

points for clinicians during the therapeutic regimen

(Formicola et al., 2016; Suo et al., 2018; Zhang et al., 2018;

Gao et al., 2020; Meng et al., 2020; Zhong et al., 2021), but only a

small proportion of patients benefit from them. According to our

knowledge, this is the first study to attempt to establish a

correlation between ferroptosis and prognostic FRGs in NB

using RNA-seq data.

Some researchers have recently reported that ferroptosis has

an inhibitory effect on NB. One study, for example, found that

high-risk NB could be eradicated by the nano-targeted induction
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of dual ferroptotic mechanisms (Hassannia et al., 2018). They

discovered that by creating a specific type of nanoparticle, they

could mimic the canonical ferroptosis-inducing pathway, which

is a powerful strategy for treating high-risk NB. Furthermore,

another study found that knocking out ferroportin accelerates

ferroptosis induced by erastin in NB cells (Geng et al., 2018).

However, studies have discovered that ferroptosis has tumor-

protective properties. For example, one study found that by

incorporating iron into mitochondria, FtMt could inhibit

erastin-induced LIP elevation and reduce ROS content in SH-

SY5Y cells, thus protecting the NB SH-SY5Y cells from

ferroptosis injury (Wang et al., 2016). In another study,

ferrostatin-1 was found to be capable of inhibiting ferroptosis

in dopaminergic NB SH-SY5Y cells exposed to rotenone-induced

oxidative stress (Kabiraj et al., 2015).

When the gene characteristics of stage 1 and stage 4 tumors

were compared and screened, eight genes were found to have the

best prognostic value and were screened out of gene sets from

FerrDb to put into our FRG signature. We also performed

survival analyses for all the genes in the signature

(Supplementary Figure S5). According to the analyses, we

found that all the genes except STEAP3 (p > 0.05) have strong

predictive ability. Furthermore, prognostic meta-analysis

confirmed that the FRG signature was an independent

prognostic predictor in multiple cohorts, although the survival

difference failed to reach a significant level in the TARGET-NBL

cohort. An interesting phenomenon was discovered in these

genes: only one gene, AURKA, had a high expression level in

stage 4 tumors and high-risk groups, whereas others were highly

expressed in stage 1 or low-risk groups. Ramani et al.(2015)

discovered that AURKA is a potentially valuable diagnostic

indicator of survival in NB using immunohistochemistry. It

has been reported that it is a direct negative regulator of

necrosome activation and that high levels of mRNA

expression of this gene are associated with poor survival (Xie

et al., 2017). Previous microarray analyses showed that MYCN-

amplified NBs had higher levels of AURKA mRNA than

nonamplified NBs (Berwanger et al., 2002) and this was

confirmed in another study (Otto et al., 2009), which showed

that AURKA was not only required for the growth of MYCN-

amplified NB cells but also for cells lacking amplified MYCN,

which is consistent with the study of Roeschert et al. (2021). In

addition, it has been reported that changing the conformation of

the AURKA activation loop with small molecules can effectively

disrupt the AURKA/N-myc interaction in NB cancer cells (Boi

et al., 2021), and using selinexor and the AURKA inhibitor

alisertib to synergistically increase the cytotoxicity of p53-

mediated high-risk NB has potential therapeutic benefits

(Nguyen et al., 2022). As a result, we believe that AURKA

may open up new avenues for biomarkers used in the

prognosis of NB.

PROM2, STEAP3, CD44, ULK2, MAP1LC3A, ATP6V1G2,

and STAT3 are different from AURKA. PROM2 is involved in

iron metabolism and may contribute to ferroptosis resistance

TABLE 3 Drugs in the Cmap datasets.

Rank Cmap name Mean N Enrichment p-value

1 harmol 0.744 4 0.965 <0.00001
2 vorinostat −0.708 12 −0.821 <0.00001
3 trichostatin A −0.641 182 −0.731 <0.00001
4 thioridazine −0.371 20 −0.514 <0.00001
5 LY-294002 −0.419 61 −0.484 <0.00001
6 tanespimycin −0.265 62 −0.371 <0.00001
7 trifluoperazine −0.468 16 −0.541 0.00002

8 wortmannin −0.460 18 −0.522 0.00002

9 Prestwick-675 0.638 4 0.920 0.00004

10 fluphenazine −0.385 18 −0.509 0.00008

11 15-delta prostaglandin J2 −0.387 15 −0.539 0.00014

12 isoxicam 0.398 5 0.848 0.00018

13 niclosamide −0.635 5 −0.832 0.00032

14 alvespimycin −0.250 12 −0.573 0.00032

15 nortriptyline −0.720 4 −0.882 0.00046

16 meteneprost 0.556 4 0.864 0.00046

17 quinostatin −0.790 2 −0.984 0.00054

18 tetracycline 0.372 5 0.812 0.00058

19 sirolimus −0.300 44 −0.290 0.00102

20 loperamide −0.470 6 −0.711 0.00135
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by promoting the formation of multivesicular bodies

containing iron-laden ferriti, resulting in a decrease in the

intracellular iron concentration (Brown et al., 2019).

Furthermore, the overexpression of CD44 suppressed

ferroptosis in cancer cells in an OTUB1-dependent manner

(Liu et al., 2019), and (Monteleone et al. (2021) demonstrated

that inhibiting protein kinase C, which can modulate CD44

expression, is a strategy to sensitize NB stem cells to etoposide

FIGURE 7
Drug sensitivity analysis of differentially expressed and survival-related FRGs. Drug sensitivities of Nelarabine (A), Methylprednisolone (B), and
Sapacitabine (D)were positively related to ATP6V1G2 expression. Drug sensitivities of Telatinib (C), XAV-939 (G), and LY-3023414 (M)were positively
related to EPAS1 expression. Drug sensitivities of Linsitinib(E), GSK-1904529A (J), AZD-9496 (L), Acetalax (O), and SR16157 (P)were positively related
to PROM2 expression. Drug sensitivity of Ribavirin (F)was positively related to GCH1 expression. Drug sensitivities of BLU-667 (H), Dasatinib (I),
and spebrutinib (K) were positively related to EGFR expression. Drug sensitivity of Motesanib (N) was positively related to TF expression.
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by stimulating ferroptosis. A high STEAP3 expression causes

lipid peroxidation of the cellular membrane (Howie et al.,

2019), implying that it may inhibit NB cell growth in this way.

When the activity of ULK2, an autophagy-related protein, was

increased, it was found to be capable of promoting the normal

dissolution of stress granules (Wang et al., 2019). MAP1LC3A

is an autophagy-related gene that encodes microtubule-

associated protein 1 light chain 3 alpha (LC3) (Miao et al.,

2021). ATP6V1G2 encodes the Na+/H+ antiporter, and its

high expression improves ion control in epithelial cells

(Albecker et al., 2021). STAT3 is a signal transducer and

transcription activator, and CTSB (cathepsin B) mediated

by STAT3 is required for ferroptosis (Gao et al., 2018).

Studies have shown that by regulating the STAT pathway,

tumor immunosuppression in the NB can be alleviated

through the targeted elimination of bone marrow-derived

suppressor cells (Xu et al., 2021). These could be the

underlying mechanisms of the genes’ high expression in

stage 1 NB and low expression in stage 4 NB.

According to our drug sensitivity analyses, ATP6V1G2 is

associated with nelarabine, a type of drug targeting T-cell

antigens (Salvaris and Fedele, 2021), methylprednisolone,

which can improve the opsoclonus myoclonus syndrome

associated with NB (Zhu et al., 2021), and sapacitabine, a

nucleoside analogue inducing DNA strand breaks (Liu et al.,

2012), which has been reported to play a role in the treatment

of advanced solid (Denlinger et al., 2021) tumor. EPAS1 is

sensitive to the multi-tyrosine kinase inhibitor telatinib (van

et al., 2018), the Wnt signaling pathway antagonist XAV-939

(Wang et al., 2021), and the dual PI3K/mTOR inhibitor

LY3023414 (Chen et al., 2021). However, there have been

few studies in recent years on the relationship between

telatinib, XAV-939, or LY3023414 and NB. PROM2 is

sensitive to insulin-like growth factor I receptor inhibitor

linsitinib (Fernando et al., 2021), insulin-like growth factor

1 inhibitor GSK1904529A (Zeng et al., 2021), the estrogen

receptors alpha antagonist AZD9496 (Cani et al., 2021), and

the dual-acting estrogen action inhibitor SR16157 (Rausch

et al., 2011). Among them, linsitinib has been reported to

have potent antitumor activity in diffuse midline glioma

when combined with modified chimeric antigen receptor

T-cells (de Billy et al., 2021); GSK1904529A has also been

found to inhibit glioma tumor growth, induce apoptosis, and

inhibit migration (Zhou et al., 2015), and AZD9496; and

SR16157 are potential drugs for treating breast cancer that

are present in the early stages of clinical research (Zhang

et al., 2021) (Rausch et al., 2011). GCH1 is sensitive to

ribavirin, a synthetic nucleoside analogue with broad

antiviral activity (Jurković et al., 2021). EGFR was

sensitive to the small-molecule rearranged inhibitor

BLU667 (Subbiah et al., 2018), the tyrosine kinase

inhibitor dasatinib (Vitali et al., 2009), and the Bruton’s

tyrosine kinase (BTK) inhibitor spebrutinib during

transfection (Kaliamurthi et al., 2021). BLU-667 has been

shown to induce tumor regression in cancer models with

RET mutations and fusions (Subbiah et al., 2018), dasatinib

has been shown to reduce NB growth as early as 2009 (Vitali

et al., 2009), and spebrutinib has antitumor activity in large

B-cell lymphoma (Tanaka et al., 2020). Motesanib, an

antiangiogenic receptor tyrosine kinase inhibitor, is

effective against TF (Torok et al., 2017). Sensitivity

analyses indicate that these drugs may have therapeutic

potential for NB, as they have a strong positive

correlation with the expression of genes that are highly

expressed in stage 1 tumors.

The relationship between tumor susceptibility and

ferroptosis has been a hot topic in recent years, but the

potential mechanism of tumor immunity and ferroptosis

remains unknown. GO analyses were performed on the basis

of differentially expressed FRGs between the high- and low-risk

groups, and we discovered that these genes were enriched in

many immune-related biological processes and pathways,

implying a link between NB immunity and ferroptosis. There

are also significant differences in the process of antigen

presentation between the two groups. One possible

mechanism is that ferroptotic cells communicate with

immune cells via a set of signals that include lipid mediators,

which attract antigen-presenting cells (APCs) and other immune

cells near the ferroptotically dying cells (Friedmann Angeli et al.,

2019).

In general, this study demonstrated the ferroptosis-related

gene signatures in NB associated with the prognosis and

proposed the possibility of the AURKA gene as a prognostic

marker in NB, which is consistent with many preclinical studies

(Berwanger et al., 2002; Otto et al., 2009; Ramani et al., 2015; Xie

et al., 2017; Boi et al., 2021; Roeschert et al., 2021; Nguyen et al.,

2022). We call for more attention to AURKA, expecting to open

up a new way to treat NB.

5 Conclusion

Ferroptosis-related genes are expressed differently between

stages 1 and 4 NB. The FRG signature successfully stratified NB

patients into two risk groups and can accurately predict the

overall survival in NB. In addition, we found that the gene

AURKA might have the potential to be a prognostic marker

in NB.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found in the article/

Supplementary Material.

Frontiers in Cell and Developmental Biology frontiersin.org14

Chen et al. 10.3389/fcell.2022.871512

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.871512


Ethics statement

Written informed consent was obtained from the individual(s),

and minor(s)’ legal guardian/next of kin, for the publication of any

potentially identifiable images or data included in this article.

Author contributions

YC and MZ conceptualized and designed the study. YC, ZL,

QC, MZ, and LM reviewed and revised the manuscript. YC

drafted the initial manuscript. YC and ZL designed the data

collection instruments, collected data, and carried out the initial

data analysis. QC completed the work of the prognostic meta-

analysis. ZL, YC, QC, and HG made the figures and tables. All

authors approved the final manuscript as submitted and agree to

be accountable for all aspects of the work.

Funding

This work was supported by College Student Innovation and

Entrepreneurship Training Program (No. 1165) in 2022.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors, and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcell.2022.

871512/full#supplementary-material

References

Albecker, M. A., Stuckert, A. M. M., Balakrishnan, C. N., and McCoy, M. W.
(2021). Molecular mechanisms of local adaptation for salt-tolerance in a treefrog.
Mol. Ecol. 30 (9), 2065–2086. doi:10.1111/mec.15867

Berwanger, B., Hartmann, O., Bergmann, E., Bernard, S., Nielsen, D., Krause, M.,
et al. (2002). Loss of a FYN-regulated differentiation and growth arrest pathway in
advanced stage neuroblastoma. Cancer Cell 2 (5), 377–386. eng. Epub 2002/11/
27Cited in: Pubmed; PMID 12450793. doi:10.1016/s1535-6108(02)00179-4

Bindea, G., Mlecnik, B., Tosolini, M., Kirilovsky, A., Waldner, M., Obenauf, A. C.,
et al. (2013). Spatiotemporal dynamics of intratumoral immune cells reveal the
immune landscape in human cancer. Immunity 39 (4), 782–795. doi:10.1016/j.
immuni.2013.10.003

Boi, D., Souvalidou, F., Capelli, D., Polverino, F., Marini, G., Montanari, R., et al.
(2021). PHA-680626 is an effective inhibitor of the interaction between aurora-A
and N-myc. Int. J. Mol. Sci. 22 (23), 13122. Epub 2021/12/11. doi:10.3390/
ijms222313122

Brown, C. W., Amante, J. J., Chhoy, P., Elaimy, A. L., Liu, H., Zhu, L. J., et al.
(2019). Prominin2 drives ferroptosis resistance by stimulating iron export.Dev. Cell
51 (5), 575–586.e4. e4. eng. Epub 2019/11/19. doi:10.1016/j.devcel.2019.10.007

Cani, A. K., Dolce, E. M., Darga, E. P., Hu, K., Liu, C. J., Pierce, J., et al. (2021).
Serial monitoring of genomic alterations in circulating tumor cells of ER-positive/
HER2-negative advanced breast cancer: Feasibility of precision oncology biomarker
detection. Mol. Oncol. 16, 1969–1985. eng. Epub 2021/12/07. doi:10.1002/1878-
0261.13150

Chen, X., Chen, W., Aung, Z. M., Han, W., Zhang, Y., and Chai, G. (2021).
LY3023414 inhibits both osteogenesis and osteoclastogenesis through the PI3K/
Akt/GSK3 signalling pathway. Bone Jt. Res. 10 (4), 237–249. R2. Cited in: Pubmed;
PMID 33789427. doi:10.1302/2046-3758.104.bjr-2020-0255.r2

Cohn, S. L., Pearson, A. D., London, W. B., Monclair, T., Ambros, P. F., Brodeur,
G. M., et al. (2009). The international neuroblastoma risk group (INRG)
classification system: An INRG task force report. J. Clin. Oncol. 27 (2), 289–297.
eng. Epub 2008/12/03. doi:10.1200/jco.2008.16.6785

de Billy, E., Pellegrino, M., Orlando, D., Pericoli, G., Ferretti, R., Businaro, P., et al.
(2021). Dual IGF1R/IR inhibitors in combination with GD2-CAR T-cells display a
potent anti-tumor activity in diffuse midline glioma H3K27M-mutant. Neuro.
Oncol. 24, 1150–1163. eng. Epub 2021/12/30. doi:10.1093/neuonc/noab300

Denlinger, C. S., Keedy, V. L., Moyo, V., MacBeath, G., and Shapiro, G. I. (2021).
Phase 1 dose escalation study of seribantumab (MM-121), an anti-HER3
monoclonal antibody, in patients with advanced solid tumors. Invest. New
Drugs 39 (6), 1604–1612. Cited in: Pubmed; PMID 34250553. doi:10.1007/
s10637-021-01145-y

DuBois, S. G., Granger, M. M., Groshen, S., Tsao-Wei, D., Ji, L., Shamirian, A.,
et al. (2021). Randomized phase II trial of mibg versus mibg, vincristine, and
irinotecan versus mibg and vorinostat for patients with relapsed or refractory
neuroblastoma: A report from nant consortium. J. Clin. Oncol. 39 (31), 3506–3514.
eng. Epub 2021/07/17. doi:10.1200/jco.21.00703

Eagle, H. (1955). Nutrition needs of mammalian cells in tissue culture. Science 122
(3168), 501–504. eng. Epub 1955/09/16. doi:10.1126/science.122.3168.501

Fernando, R., Caldera, O., and Smith, T. J. (2021). Therapeutic IGF-I receptor
inhibition alters fibrocyte immune phenotype in thyroid-associated
ophthalmopathy. Proc. Natl. Acad. Sci. U. S. A. 2021 (52). e2114244118. doi:10.
1073/pnas.2114244118

Formicola, D., Petrosino, G., Lasorsa, V. A., Pignataro, P., Cimmino, F., Vetrella,
S., et al. (2016). An 18 gene expression-based score classifier predicts the clinical
outcome in stage 4 neuroblastoma. J. Transl. Med. 14 (1), 142. Cited in: Pubmed;
PMID 27188717. doi:10.1186/s12967-016-0896-7

Friedmann Angeli, J. P., Krysko, D. V., and Conrad, M. (2019). Ferroptosis at the
crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev.
Cancer 19 (7), 405–414. doi:10.1038/s41568-019-0149-1

Furman,W. L., McCarville, B., Shulkin, B. L., Davidoff, A., Krasin, M., Hsu, C.W.,
et al. (2022). Improved outcome in children with newly diagnosed high-risk
neuroblastoma treated with chemoimmunotherapy: Updated results of a phase
II study using hu14.18K322A. J. Clin. Oncol. 40 (4), 335–344. eng. Epub 2021/12/07.
doi:10.1200/jco.21.01375

Gao, H., Bai, Y., Jia, Y., Zhao, Y., Kang, R., Tang, D., et al. (2018). Ferroptosis is a
lysosomal cell death process. Biochem. Biophys. Res. Commun. 503 (3), 1550–1556.
Cited in: Pubmed; PMID 30031610. doi:10.1016/j.bbrc.2018.07.078

Gao, L., Lin, P., Chen, P., Gao, R. Z., Yang, H., He, Y., et al. (2020). A novel risk
signature that combines 10 long noncoding RNAs to predict neuroblastoma
prognosis. J. Cell. Physiol. 235 (4), 3823–3834. eng. Epub 2019/10/16. doi:10.
1002/jcp.29277

Frontiers in Cell and Developmental Biology frontiersin.org15

Chen et al. 10.3389/fcell.2022.871512

https://www.frontiersin.org/articles/10.3389/fcell.2022.871512/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2022.871512/full#supplementary-material
https://doi.org/10.1111/mec.15867
https://doi.org/10.1016/s1535-6108(02)00179-4
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.3390/ijms222313122
https://doi.org/10.3390/ijms222313122
https://doi.org/10.1016/j.devcel.2019.10.007
https://doi.org/10.1002/1878-0261.13150
https://doi.org/10.1002/1878-0261.13150
https://doi.org/10.1302/2046-3758.104.bjr-2020-0255.r2
https://doi.org/10.1200/jco.2008.16.6785
https://doi.org/10.1093/neuonc/noab300
https://doi.org/10.1007/s10637-021-01145-y
https://doi.org/10.1007/s10637-021-01145-y
https://doi.org/10.1200/jco.21.00703
https://doi.org/10.1126/science.122.3168.501
https://doi.org/10.1073/pnas.2114244118
https://doi.org/10.1073/pnas.2114244118
https://doi.org/10.1186/s12967-016-0896-7
https://doi.org/10.1038/s41568-019-0149-1
https://doi.org/10.1200/jco.21.01375
https://doi.org/10.1016/j.bbrc.2018.07.078
https://doi.org/10.1002/jcp.29277
https://doi.org/10.1002/jcp.29277
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.871512


Geng, N., Shi, B. J., Li, S. L., Zhong, Z. Y., Li, Y. C., Xua, W. L., et al. (2018).
Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma
cells. Eur. Rev. Med. Pharmacol. Sci. 22 (12), 3826–3836. eng. Epub 2018/06/28.
doi:10.26355/eurrev_201806_15267

Hänzelmann, S., Castelo, R., and Guinney, J. (2013). Gsva: Gene set variation
analysis for microarray and RNA-seq data. BMC Bioinforma. 14, 7. Epub 2013/01/
18Cited in: Pubmed; PMID 23323831. doi:10.1186/1471-2105-14-7

Hassannia, B., Wiernicki, B., Ingold, I., Qu, F., Van Herck, S., Tyurina, Y. Y., et al.
(2018). Nano-targeted induction of dual ferroptotic mechanisms eradicates high-
risk neuroblastoma. J. Clin. Invest. 128 (8), 3341–3355. eng. Epub 2018/06/26.
doi:10.1172/jci99032

Heitzeneder, S., Bosse, K. R., Zhu, Z., Zhelev, D., Majzner, R. G., Radosevich, M.
T., et al. (2022). GPC2-CAR T cells tuned for low antigen density mediate potent
activity against neuroblastoma without toxicity. Cancer Cell 40 (1), 53–69.e9. e9.
eng. Epub 2022/01/01. doi:10.1016/j.ccell.2021.12.005

Howie, H. L., Hay, A. M., de Wolski, K., Waterman, H., Lebedev, J., Fu, X., et al.
(2019). Differences in Steap3 expression are a mechanism of genetic variation of
RBC storage and oxidative damage in mice. Blood Adv. 3 (15), 2272–2285. eng.
Epub 2019/07/28. doi:10.1182/bloodadvances.2019000605

Irwin, M. S., Naranjo, A., Zhang, F. F., Cohn, S. L., London, W. B., Gastier-Foster,
J. M., et al. (2021). Revised neuroblastoma risk classification system: A report from
the Children’s oncology group. J. Clin. Oncol. 39 (29), 3229–3241. eng. Epub 2021/
07/29. doi:10.1200/jco.21.00278

Jiang, X., Stockwell, B. R., and Conrad, M. (2021). Ferroptosis: Mechanisms,
biology and role in disease. Nat. Rev. Mol. Cell Biol. 22 (4), 266–282. Cited in:
Pubmed; PMID 33495651. doi:10.1038/s41580-020-00324-8

Jurković, M., Slović, A., Forčić, D., Ivančić-Jelečki, J., Košutić-Gulija, T., and
Jagušić, M. (2021). Influence of ribavirin on mumps virus population diversity.
Viruses 13, 2535(12), 535. doi:10.3390/v13122535

Kabiraj, P., Valenzuela, C. A., Marin, J. E., Ramirez, D. A., Mendez, L., Hwang, M.
S., et al. (2015). The neuroprotective role of ferrostatin-1 under rotenone-induced
oxidative stress in dopaminergic neuroblastoma cells. Protein J. 34 (5), 349–358.
Cited in: Pubmed; PMID 26385697. doi:10.1007/s10930-015-9629-7

Kaliamurthi, S., Selvaraj, G., Selvaraj, C., Singh, S. K., Wei, D. Q., and Peslherbe,
G. H. (2021). Structure-based virtual screening reveals ibrutinib and zanubrutinib
as potential repurposed drugs against COVID-19. Int. J. Mol. Sci. 22 (13), 7071.
Epub 2021/07/03. doi:10.3390/ijms22137071

Kanold, J., Paillard, C., Tchirkov, A., Merlin, E., Marabelle, A., Lutz, P., et al.
(2008). Allogeneic or haploidentical HSCT for refractory or relapsed solid tumors in
children: Toward a neuroblastoma model. Bone Marrow Transpl. 42, S25–S30. eng.
Epub 2008/11/26. doi:10.1038/bmt.2008.279

Lamb, J., Crawford, E. D., Peck, D., Modell, J. W., Blat, I. C., Wrobel, M. J., et al.
(2006). The connectivity map: Using gene-expression signatures to connect small
molecules, genes, and disease. Science 313 (5795), 1929–1935. doi:10.1126/science.
1132939

Leu, J. I., Murphy, M. E., and George, D. L. (2020). Functional interplay among
thiol-based redox signaling, metabolism, and ferroptosis unveiled by a genetic
variant of TP53. Proc. Natl. Acad. Sci. U. S. A. 117 (43), 26804–26811. eng. Epub
2020/10/16. doi:10.1073/pnas.2009943117

Liu, T., Jiang, L., Tavana, O., and Gu, W. (2019). The deubiquitylase
OTUB1 mediates ferroptosis via stabilization of SLC7A11. Cancer Res. 79 (8),
1913–1924. eng. Epub 2019/02/03. doi:10.1158/0008-5472.Can-18-3037

Liu, X. J., Nowak, B., Wang, Y. Q., and Plunkett, W. (2012). Sapacitabine, the
prodrug of CNDAC, is a nucleoside analog with a unique action mechanism of
inducing DNA strand breaks. Chin. J. Cancer 31 (8), 373–380. eng. Epub 2012/06/
29. doi:10.5732/cjc.012.10077

Lu, R., Jiang, Y., Lai, X., Liu, S., Sun, L., and Zhou, Z. W. (2021). A shortage of
FTH induces ROS and sensitizes RAS-proficient neuroblastoma N2A cells to
ferroptosis. Int. J. Mol. Sci. 22 (16), 8898. Epub 2021/08/28. doi:10.3390/
ijms22168898

Maris, J. M., Hogarty, M. D., Bagatell, R., and Cohn, S. L. (2007). Neuroblastoma.
Lancet 369 (9579), 2106–2120. Cited in: Pubmed; PMID 17586306. doi:10.1016/
s0140-6736(07)60983-0

Matthay, K. K., Maris, J. M., Schleiermacher, G., Nakagawara, A., Mackall, C. L.,
Diller, L., et al. (2016). Nat. Rev. Dis. Prim. 2, 16078. doi:10.1038/nrdp.2016

Meng, X., Li, H., Fang, E., Feng, J., and Zhao, X. (2020). Comparison of stage 4 and
stage 4s neuroblastoma identifies autophagy-related gene and LncRNA signatures
associated with prognosis. Front. Oncol. 10, 1411. eng. Epub 2020/09/26. doi:10.
3389/fonc.2020.01411

Miao, C. C., Hwang, W., Chu, L. Y., Yang, L. H., Ha, C. T., Chen, P. Y., et al.
(2021). LC3A-mediated autophagy regulates lung cancer cell plasticity. Autophagy.
18, 921–934. doi:10.1080/15548627.2021.1964224

Monteleone, L., Speciale, A., Valenti, G. E., Traverso, N., Ravera, S., Garbarino,
O., et al. (2021). PKCα inhibition as a strategy to sensitize neuroblastoma stem cells
to etoposide by stimulating ferroptosis. Antioxidants (Basel) 10 (5), 691. eng. Epub
2021/. doi:10.3390/antiox10050691

Nguyen, R., Wang, H., Sun, M., Lee, D. G., Peng, J., and Thiele, C. J. (2022).
Combining selinexor with alisertib to target the p53 pathway in neuroblastoma.
Neoplasia 26, 100776. Cited in: Pubmed; PMID 35217309. doi:10.1016/j.neo.2022.
100776

Otto, T., Horn, S., Brockmann, M., Eilers, U., Schüttrumpf, L., Popov, N., et al.
(2009). Stabilization of N-Myc is a critical function of Aurora A in human
neuroblastoma. Cancer Cell 15 (1), 67–78. eng. Epub 2008/12/30. doi:10.1016/j.
ccr.2008.12.005

Padovan-Merhar, O. M., Raman, P., Ostrovnaya, I., Kalletla, K., Rubnitz, K. R.,
Sanford, E. M., et al. (2016). Enrichment of targetable mutations in the relapsed
neuroblastoma genome. PLoS Genet. 12 (12), e1006501. doi:10.1371/journal.pgen.
1006501

Ramani, P., Nash, R., and Rogers, C. A. (2015). Aurora kinase A is superior to
Ki67 as a prognostic indicator of survival in neuroblastoma. Histopathology 66 (3),
370–379. eng. Epub 2014/10/10. doi:10.1111/his.12520

Rausch, L., Green, C., Steinmetz, K., LeValley, S., Catz, P., Zaveri, N., et al. (2011).
Preclinical pharmacokinetic, toxicological and biomarker evaluation of SR16157, a
novel dual-acting steroid sulfatase inhibitor and selective estrogen receptor
modulator. Cancer Chemother. Pharmacol. 67 (6), 1341–1352. Cited in:
Pubmed; PMID 20737149. doi:10.1007/s00280-010-1430-x

Reinhold, W. C., Sunshine, M., Liu, H., Varma, S., Kohn, K. W., Morris, J., et al.
(2012). CellMiner: A web-based suite of genomic and pharmacologic tools to
explore transcript and drug patterns in the NCI-60 cell line set. Cancer Res. 72 (14),
3499–3511. eng. Epub 2012/07/18. doi:10.1158/0008-5472.Can-12-1370

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al.(2015).
Limma powers differential expression analyses for RNA-sequencing and
microarray studies. Nucleic Acids Res. 43(7):e47. doi:10.1093/nar/gkv007

Roeschert, I., Poon, E., Henssen, A. G., Garcia, H. D., Gatti, M., Giansanti, C., et al.
(2021). Combined inhibition of Aurora-A and ATR kinase results in regression of
MYCN-amplified neuroblastoma. Nat. Cancer 2 (3), 312–326. eng. Epub 2021/03/
27Cited in: Pubmed; PMID 33768209. doi:10.1038/s43018-020-00171-8

Salvaris, R., and Fedele, P. L. Targeted therapy in acute lymphoblastic leukaemia.
J. Pers. Med. 2021;11, 715(8). eng. Epub 2021/08/28. doi:10.3390/jpm11080715

Shankavaram, U. T., Varma, S., Kane, D., Sunshine, M., Chary, K. K., Reinhold,
W. C., et al. (2009). CellMiner: A relational database and query tool for the NCI-60
cancer cell lines. BMC Genomics 10, 277. Cited in: Pubmed; PMID 19549304.
doi:10.1186/1471-2164-10-277

Subbiah, V., Gainor, J. F., Rahal, R., Brubaker, J. D., Kim, J. L., Maynard, M., et al.
(2018). Precision targeted therapy with BLU-667 for RET-driven cancers. Cancer
Discov. 8 (7), 836–849. Cited in: Pubmed; PMID 29657135. doi:10.1158/2159-8290.
Cd-18-0338

Sui, S., Zhang, J., Xu, S., Wang, Q., Wang, P., and Pang, D. (2019). Ferritinophagy
is required for the induction of ferroptosis by the bromodomain protein
BRD4 inhibitor (+)-JQ1 in cancer cells. Cell Death Dis. 10 (5), 331. Cited in:
Pubmed; PMID 30988278. doi:10.1038/s41419-019-1564-7

Suo, C., Deng, W., Vu, T. N., Li, M., Shi, L., and Pawitan, Y. (2018). Accumulation
of potential driver genes with genomic alterations predicts survival of high-risk
neuroblastoma patients. Biol. Direct 13 (1), 14. Cited in: Pubmed; PMID 30012197.
doi:10.1186/s13062-018-0218-5

Tanaka, H., Kaneko, N., Sakagami, H., Matsuya, T., Hiramoto, M., Yamanaka, Y.,
et al. (2020). Naquotinib exerts antitumor activity in activated B-cell-like diffuse
large B-cell lymphoma. Leuk. Res. 88, 106286. Cited in: Pubmed; PMID 31865062.
doi:10.1016/j.leukres.2019.106286

Tibshirani, R. (1997). The lasso method for variable selection in the Cox model.
Stat. Med. 16 (4), 385–395. eng. Epub 1997/02/28. doi:10.1002/(sici)1097-
0258(19970228)16:4<385::aid-sim380>3.0.co;2-3
Torok, S., Rezeli, M., Kelemen, O., Vegvari, A., Watanabe, K., Sugihara, Y., et al.

(2017). Limited tumor tissue drug penetration contributes to primary resistance
against angiogenesis inhibitors. Theranostics 7 (2), 400–412. eng. Epub 2017/01/04.
doi:10.7150/thno.16767

van, I. D. G. P., Sleijfer, S., Gelderblom, H., Eskens, F., van Leenders, G., Szuhai,
K., et al. (2018). Telatinib is an effective targeted therapy for pseudomyogenic
hemangioendothelioma. Clin. Cancer Res. 24 (11), 2678–2687. eng. Epub 2018/03/
08. doi:10.1158/1078-0432.Ccr-17-3512

Vitali, R., Mancini, C., Cesi, V., Tanno, B., Piscitelli, M., Mancuso, M., et al.
(2009). Activity of tyrosine kinase inhibitor Dasatinib in neuroblastoma cells
in vitro and in orthotopic mouse model. Int. J. Cancer 125 (11), 2547–2555.
eng. Epub 2009/07/23. doi:10.1002/ijc.24606

Frontiers in Cell and Developmental Biology frontiersin.org16

Chen et al. 10.3389/fcell.2022.871512

https://doi.org/10.26355/eurrev_201806_15267
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1172/jci99032
https://doi.org/10.1016/j.ccell.2021.12.005
https://doi.org/10.1182/bloodadvances.2019000605
https://doi.org/10.1200/jco.21.00278
https://doi.org/10.1038/s41580-020-00324-8
https://doi.org/10.3390/v13122535
https://doi.org/10.1007/s10930-015-9629-7
https://doi.org/10.3390/ijms22137071
https://doi.org/10.1038/bmt.2008.279
https://doi.org/10.1126/science.1132939
https://doi.org/10.1126/science.1132939
https://doi.org/10.1073/pnas.2009943117
https://doi.org/10.1158/0008-5472.Can-18-3037
https://doi.org/10.5732/cjc.012.10077
https://doi.org/10.3390/ijms22168898
https://doi.org/10.3390/ijms22168898
https://doi.org/10.1016/s0140-6736(07)60983-0
https://doi.org/10.1016/s0140-6736(07)60983-0
https://doi.org/10.1038/nrdp.2016
https://doi.org/10.3389/fonc.2020.01411
https://doi.org/10.3389/fonc.2020.01411
https://doi.org/10.1080/15548627.2021.1964224
https://doi.org/10.3390/antiox10050691
https://doi.org/10.1016/j.neo.2022.100776
https://doi.org/10.1016/j.neo.2022.100776
https://doi.org/10.1016/j.ccr.2008.12.005
https://doi.org/10.1016/j.ccr.2008.12.005
https://doi.org/10.1371/journal.pgen.1006501
https://doi.org/10.1371/journal.pgen.1006501
https://doi.org/10.1111/his.12520
https://doi.org/10.1007/s00280-010-1430-x
https://doi.org/10.1158/0008-5472.Can-12-1370
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1038/s43018-020-00171-8
https://doi.org/10.3390/jpm11080715
https://doi.org/10.1186/1471-2164-10-277
https://doi.org/10.1158/2159-8290.Cd-18-0338
https://doi.org/10.1158/2159-8290.Cd-18-0338
https://doi.org/10.1038/s41419-019-1564-7
https://doi.org/10.1186/s13062-018-0218-5
https://doi.org/10.1016/j.leukres.2019.106286
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3
https://doi.org/10.7150/thno.16767
https://doi.org/10.1158/1078-0432.Ccr-17-3512
https://doi.org/10.1002/ijc.24606
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.871512


Wang, B., Maxwell, B. A., Joo, J. H., Gwon, Y., Messing, J., Mishra, A., et al. (2019).
ULK1 and ULK2 regulate stress granule disassembly through phosphorylation and
activation of VCP/p97. Mol. Cell 74 (4), 742–757.e8. e8. eng. Epub 2019/04/14.
doi:10.1016/j.molcel.2019.03.027

Wang, X., He, T., He, L., Yang, B., Liu, Z., Pang, M., et al. (2021). Melatonin
contributes to the hypertrophic differentiation of mesenchymal stem cell-derived
chondrocytes via activation of the Wnt/β-catenin signaling pathway : Melatonin
promotes MSC-derived chondrocytes hypertrophy. Stem Cell Res. Ther. 12 (1), 467.
Cited in: Pubmed; PMID 34419165. doi:10.1186/s13287-021-02536-x

Wang, Y. Q., Chang, S. Y., Wu, Q., Gou, Y. J., Jia, L., Cui, Y. M., et al. (2016). The
protective role of mitochondrial ferritin on erastin-induced ferroptosis. Front.
Aging Neurosci. 8, 308. Epub 2017/01/10. doi:10.3389/fnagi.2016.00308

Xie, Y., Zhu, S., Zhong, M., Yang, M., Sun, X., Liu, J., et al. (2017). Inhibition of
aurora kinase A induces necroptosis in pancreatic carcinoma. Gastroenterology 153
(5), 1429–1443.e5. Cited in: Pubmed; PMID 28764929. doi:10.1053/j.gastro.2017.
07.036

Xu, W., Li, S., Li, M., Yang, X., Xie, S., Lin, L., et al. (2021). Targeted elimination of
myeloid-derived suppressor cells via regulation of the STAT pathway alleviates
tumor immunosuppression in neuroblastoma. Immunol. Lett. 240, 31–40. Cited in:
Pubmed; PMID 34600949. doi:10.1016/j.imlet.2021.09.011

Yi, J., Zhu, J., Wu, J., Thompson, C. B., and Jiang, X. (2020). Oncogenic activation
of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated
lipogenesis. Proc. Natl. Acad. Sci. U. S. A. 117 (49), 31189–31197. eng. Epub
2020/11/25. doi:10.1073/pnas.2017152117

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R package
for comparing biological themes among gene clusters. Omics 16 (5), 284–287. eng.
Epub 2012/03/30. doi:10.1089/omi.2011.0118

Zeng, B., Liu, L., Liao, X., and Zhang, C. (2021). Cardiomyocyte protective effects
of thyroid hormone during hypoxia/reoxygenation injury through activating of
IGF-1-mediated PI3K/Akt signalling. J. Cell. Mol. Med. 25 (7), 3205–3215. eng.
Epub 2021/03/17. doi:10.1111/jcmm.16389

Zhang, L., Lv, C., Jin, Y., Cheng, G., Fu, Y., Yuan, D., et al. (2018). Deep learning-
based multi-omics data integration reveals two prognostic subtypes in high-risk
neuroblastoma. Front. Genet. 9, 477. eng. Epub 2018/11/09. doi:10.3389/fgene.2018.
00477

Zhang, X., Wang, Y., Li, X., Wu, J., Zhao, L., Li, W., et al. (2021). Dynamics-based
discovery of novel, potent benzoic acid derivatives as orally bioavailable selective
estrogen receptor degraders for ERα+ breast cancer. J. Med. Chem. 64 (11),
7575–7595. eng. Epub 2021/06/01. doi:10.1021/acs.jmedchem.1c00280

Zhong, X., Tao, Y., Chang, J., Zhang, Y., Zhang, H., Wang, L., et al. (2021).
Prognostic signature of immune genes and immune-related LncRNAs in
neuroblastoma: A study based on GEO and target datasets. Front. Oncol. 11,
631546. eng. Epub 2021/03/27. doi:10.3389/fonc.2021.631546

Zhou, N., and Bao, J. (2020). FerrDb: A manually curated resource for regulators
and markers of ferroptosis and ferroptosis-disease associations. Database., baaa021.
2020. eng. Epub 2020/03/29. doi:10.1093/database/baaa021

Zhou, Q., Zhang, J., Cui, Q., Li, X., Gao, G.,Wang, Y., et al. (2015). GSK1904529A,
an insulin-like growth factor-1 receptor inhibitor, inhibits glioma tumor growth,
induces apoptosis and inhibits migration. Mol. Med. Rep. 12 (3), 3381–3385. eng.
Epub 2015/06/03. doi:10.3892/mmr.2015.3869

Zhu, H., Wu, W., Chen, L., Hou, C., Zeng, Y., Tian, Y., et al. (2021). Clinical
analysis of pediatric opsoclonus-myoclonus syndrome in one of the national
Children’s medical center in China. Front. Neurol. 12, 744041. doi:10.3389/
fneur.2021.744041

Frontiers in Cell and Developmental Biology frontiersin.org17

Chen et al. 10.3389/fcell.2022.871512

https://doi.org/10.1016/j.molcel.2019.03.027
https://doi.org/10.1186/s13287-021-02536-x
https://doi.org/10.3389/fnagi.2016.00308
https://doi.org/10.1053/j.gastro.2017.07.036
https://doi.org/10.1053/j.gastro.2017.07.036
https://doi.org/10.1016/j.imlet.2021.09.011
https://doi.org/10.1073/pnas.2017152117
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1111/jcmm.16389
https://doi.org/10.3389/fgene.2018.00477
https://doi.org/10.3389/fgene.2018.00477
https://doi.org/10.1021/acs.jmedchem.1c00280
https://doi.org/10.3389/fonc.2021.631546
https://doi.org/10.1093/database/baaa021
https://doi.org/10.3892/mmr.2015.3869
https://doi.org/10.3389/fneur.2021.744041
https://doi.org/10.3389/fneur.2021.744041
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.871512

	Ferroptosis-related gene signatures in neuroblastoma associated with prognosis
	1 Introduction
	2 Materials and methods
	2.1 NB dataset processing
	2.2 Extraction of differentially expressed ferroptosis-related genes
	2.3 Construction of the ferroptosis-related prognostic signatures
	2.4 Prognostic meta-analysis of the ferroptosis-related gene signature and the gene AURKA
	2.5 Function annotation and gene set enrichment analysis
	2.6 Statistical analysis
	2.7 Drug sensitivity analysis of 27 differentially expressed and survival-related ferroptosis-related genes

	3 Results
	3.1 Identification of prognostic ferroptosis-related DEGs in the training cohort
	3.2 Construction and validation of FRG prognostic signatures
	3.3 The expression status of AURKA in different subgroups
	3.4 The prognostic value of ferroptosis-related gene signatures
	3.5 The prognostic role of ferroptosis-related gene signatures
	3.6 Meta-analysis of ferroptosis-related gene signatures and the gene AURKA
	3.7 Functional analyses for the training and validation cohorts
	3.8 Exploration of drugs that have a therapeutic effect on NB based on the FRG signature
	3.9 Sensitivity analysis of drugs for NB

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


