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Abstract: Epidemiologists and health geographers routinely use small-area survey estimates as
covariates to model areal and even individual health outcomes. American Community Survey (ACS)
estimates are accompanied by standard errors (SEs), but it is not yet standard practice to use them for
evaluating or modeling data reliability. ACS SEs vary systematically across regions, neighborhoods,
socioeconomic characteristics, and variables. Failure to consider probable observational error may
have substantial impact on the large bodies of literature relying on small-area estimates, including
inferential biases and over-confidence in results. The issue is particularly salient for predictive models
employed to prioritize communities for service provision or funding allocation. Leveraging the
tenets of plausible reasoning and Bayes’ theorem, we propose a conceptual framework and workflow
for spatial data analysis with areal survey data, including visual diagnostics and model specifications.
To illustrate, we follow Krieger et al.’s (2018) call to routinely use the Index of Concentration at the
Extremes (ICE) to monitor spatial inequalities in health and mortality. We construct and examine SEs
for the ICE, use visual diagnostics to evaluate our observational error model for the ICE, and then
estimate an ICE–mortality gradient by incorporating the latter model into our model of sex-specific,
midlife (ages 55–64), all-cause United States county mortality rates. We urge researchers to consider
data quality as a criterion for variable selection prior to modeling, and to incorporate data reliability
information into their models whenever possible.

Keywords: spatial epidemiology; health disparities; Bayesian inference; mortality rates; measure-
ment error; spatial autocorrelation

1. Introduction

Community survey data has long served as an important source of evidence in
epidemiology. Du Bois’s, The Philadelphia Negro [1,2], among the first modern social epi-
demiological studies [3], combined original household survey data with United States
(U.S.) Census data and municipal health reports to evaluate the role of social conditions,
rather than purported biological traits, as determinant of differences in mortality rates
among Black and White Philadelphians. Similarly, census tract-level indicators of social
class have long substituted for individual-level data in analyses of health inequality [4,5].
Today, epidemiologists and health geographers routinely employ community-level survey
data in models of health outcomes because they have access to a variety of geographic data
products, including neighborhood-level information. Unfortunately, excitement over access
to ‘fine-grained’ geospatial data has generally not been tempered by a realistic assessment
of the tradeoffs between data granularity and data quality. For commonly used survey
data products such as the American Community Survey (ACS), one should expect data
quality to deteriorate as one moves toward smaller spatial scales and toward more detailed
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concepts and demographic breakdowns. Likewise, one would expect data reliability to vary
across demographics and places as a function of social integration/marginalization because
standard errors (SEs) are largely a result of sample size and survey response rates. In other
words, data quality may often be correlated with the very community characteristics that
are of primary interest to investigators. Similar concerns hold for (non-survey based) raster
data products, such as Earth Institute’s high-spatial-resolution Gridded Population of the
World products, notably their sex-specific five-year age group population estimates [6].
This challenge is distinct from, and compounds with, the challenge of inferring underlying
patterns of risk from limited observation, such as occurs when big data is disaggregated
into small geographic areas and/or multiple demographic groups (see [7]).

This paper proposes a conceptual framework and workflow to support population
health research with areal survey data, including visual diagnostics and model specifica-
tions. Section 2 provides background information on ACS methodology, including the
Census Bureau’s systematic spatial sampling design. We examine a purposeful sample of
variables to illustrate how SEs accompanying estimates vary systematically across regions
and neighborhoods, by demographic characteristics, and by survey topic (cf. [8,9]). We
then review the impacts that sampling error from ACS products may have on descriptive
statistics and on inferences when survey estimates are used as covariates [10]. We extend
established results on measurement error to a spatial context, arguing that observational
error with spatial data has the additional impact of tending to conceal spatial autocorre-
lation (SA), and, by implication, inflating effective sample size [11,12]. Modeling spatial
data with observational error may be a more perilous endeavor than existing research on
measurement error alone would imply. Section 3 draws on the findings of the previous
sections, as well as previous research on hierarchical Bayesian models (HBMs) for spatial
data [13–20], to develop a methodology suitable for modeling community survey data
(cf. [19,21]). Appendix A serves as an introduction to plausible reasoning with HBMs,
detailing a framework for conceptualizing and building inferential models that incorporate
observational uncertainty.

We demonstrate the proposed workflow while building on Krieger, Kim, Feldman,
and Waterman’s [22] call to routinely use the Index of Concentration at the Extremes
(ICE) [23] to monitor spatial inequalities in health and mortality. We evaluate the re-
liability of ICE and population at risk data, summarize prior findings on county-level
social class–mortality gradients, and then model U.S. county-level, all-cause, sex- and
age-specific (55–64 years) mortality rates, comparing results from a “naive” model with our
proposed HBM methodology. We urge researchers to routinely incorporate SA and data
reliability information into their research workflow, from study design to model criticism
and reporting.

2. The American Community Survey

The ACS, including the Census Bureau’s subsidiary Puerto Rico Community Survey,
is the largest and surely the most widely used source of small-area survey data in the U.S.
In accordance with sound scientific practice, the Census Bureau reports estimates together
with their SEs whenever possible. These SEs remain woefully underappreciated by the
scientific community, in part because of their recent appearance. This section reviews
the ACS methodology, examines systematic patterns in the SEs of select ACS variables
(extending [8,9]), and discusses some of the implications for models that include ACS
estimates as covariates.

2.1. A Systematic Spatial Sampling Design

ACS is a continually operating survey of U.S. households that began operations in
2005, and in 2011 increased its target annual sample size from 2.9 to 3.54 million households
and increased in-person follow-up rates for non-responding households to 100% in select
low-population and primarily Indigenous communities [24] (Ch. 4). The sampling design
is systematic by block group (see [25], pp. 23–43, on spatial sampling), and blocks with
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lower estimated population and lower expected response rates are sampled at higher rates
to protect the quality of estimates [24] (Ch. 4). Published estimates are the product of a
multi-stage weighting and (for missing, highly implausible, and inconsistent responses)
imputation process, and are harmonized with the Census Bureau’s population estimates by
sex, age, race, Hispanic origin, and total household units. The three- and five-year estimates
are the sum of all weighted responses from the preceding n years of surveying [24] (Ch. 11).
ACS estimates are accompanied by margins of error (90% confidence intervals) that “reflect
the variation in the estimates over all possible samples that could have been selected
from the population using the same sampling methodology” not inclusive of possible
recording errors and explicitly excluding possible biases in the sampling design [24]
(Ch. 12). The Census Bureau calculates margins of error for ACS estimates using the
Successive Differences Replication (SDR) method [26–28]. This methodology involves
repeated sampling from sub-sets of the weighted observations, and then calculating the
mean squared error of the replicate estimates from the observed estimate. These procedures
can be applied to any function of the estimates such as the ratio, sum, or difference of
any two variables. The Census Bureau provides variance replicate tables for a limited
number of variables, so that users can calculate SEs for composite variables of their own
construction (e.g., deprivation indices) [29].

2.2. ACS Standard Errors

This section identifies prominent patterns in SEs for select ACS variables—percent
over age 24 with a bachelors degree or higher, median household (HH) income, and percent
with health insurance—at the U.S. county level (n = 3142) and at the census-tract level for
a single county, Milwaukee, Wisconsin (n = 296). These are ACS 2018 5-year estimates.
The first two of these variables were selected because they are commonly used as indicators
of social class, and the third variable was chosen for its particular relevance to public health
research. Sampling variability is a function of both sample size (and thus, by extension,
survey response rates) and population heterogeneity [8]. Neither response rates nor area
heterogeneity are independent of sociopolitical factors, such as social marginalization
and patterns of spatial segregation. The findings presented here establish the following
characteristics within our sample of variables:

1. SEs contain systematic spatial patterns;
2. Data reliability is not constant across variables;
3. Data describing affluent areas is often of higher reliability than that of impoverished

areas; and,
4. Data describing areas estimated to be majority Black, Hispanic, or American Indian

tends to be lower quality than that of majority White areas.

Points 1 and 3 are strikingly clear from the maps of ACS data quality in Figures 1 and 2.
For example, counties in the northeastern region are estimated to have high median HH
incomes and low coefficients of variation (CV = SE

Estimate ), whereas Appalachia and the
Deep South have low estimated incomes and relatively high CVs. Analogous spatial
patterns appear across impoverished and affluent areas of Milwaukee County. These
observations are consistent with previous findings [8,9], including, for example, that ACS
estimates of median Black HH income “are especially bad for the poorest 15 percent of
census tracts” [8] (p. 152). Table 1 quantifies the degree of SA in each variable and in their
respective measures of reliability (SE or CV) using the SA parameter from an intercept-only
simultaneous autoregressive (SAR) model. The auto-normal SAR specification models n
observations of an outcome, y, using the multivariate normal distribution as the likelihood
function, instead of specifying the likelihood as the product of n independent, univariate
normal distributions. The covariance matrix, Σ, incorporates a row-standardized spatial
connectivity matrix, W , with parameter ρ accounting for the nature and degree of SA,
and σ for the usual scale parameter: Σ = σ2[(I − ρW ′)(I − ρW)]−1 [20] (pp. 198–200).
The SEs of all three variables at both scales show moderately high levels of SA (from
0.46 to 0.69), similar to many other socioeconomic and demographic variables. Table 2
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reports relative data quality (as measured by their median value) by majority racial-ethnic
group, with majority White areas serving as the reference category; Figure 3 plots data
quality against estimates themselves. We see that all three variables tend to be of higher
quality in majority White areas and affluent areas, with the exception of educational
attainment in Milwaukee, for which the inverse holds. This is almost certainly related
to the degree of homogeneity of the population—standard errors are smallest in census
tracts where the proportion of college graduates is nearest to zero. Similarly, the SEs for
health insurance coverage shrink as the estimates approach one. This is consistent with
the formula for the sampling variance of a proportion, p, from the binomial distribution,
VAR(p) = p ∗ (1− p)/n, where n is the sample size. Figure 4 shows that data quality can
be highly variable across survey topics—estimates of tract-level insurance coverage are of
substantially inferior quality than those of educational attainment. Notice, many of the SEs
are greater than the median absolute deviation (MAD) of the variable itself. These findings
indicate that data quality is itself a social variable.

(a) Median HH Income: Estimate
(b) Median HH Income: CV

(c) Insured (%): Estimate (d) Insured (%): SE

(e) College Educated (%): Estimate (f) College Educated (%): SE

Figure 1. County-level five-year 206 ACS estimates and their data quality measures (CV for income, SEs for the others) for
select variables. Median HH income is reported in thousands of dollars.
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(a) Median HH Income: Estimate (b) Median HH Income: CV

(c) Insured (%): Estimate (d) Insured (%): SE

(e) College Educated (%): Estimate (f) College Educated (%): SE

Figure 2. Milwaukee County, Wisconsin census tract-level five-year 2018 ACS estimates and their data quality measure (CV
for income, SEs for the others) for select variables. Median HH income is reported in thousands of dollars.
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Table 1. Degree of SA in select ACS estimates and their respective measures of data reliability (CV for income, SEs for
the others).

U.S. Counties Milwaukee County Census Tracts

Income Insurance (%) College Ed. (%) Income Insurance (%) College Ed. (%)

Estimates 0.80 0.76 0.69 0.84 0.82 0.93
Data reliability 0.56 0.69 0.57 0.46 0.59 0.52

Note: The values reported are estimates of the SA parameter ρ from an intercept-only SAR model, which range from 1
λmin

to 1, where λmin

is the most negative eigenvalue of matrix W (and, λmax = 1).

Table 2. Relative magnitude of the median data quality measure (CVs for income, SEs for the others)
by ACS variable, geography, and majority racial-ethnic group.

Income Insurance (%) College Ed. (%)

U.S. Counties

White 1 1 1
Black 2 1.36 1.17

Hispanic 1.67 1.72 1.11
Native American 1.67 1.85 1.22

Milwaukee County Census Tracts

White 1 1 1
Black 1.625 1.5 0.85

Hispanic 1.38 2.39 0.59
Native American - - -

Note: Black, White, and Native American all indicate non-Hispanic identifying populations.

Figure 3. ACS estimates and their data quality measure (CV for income, SEs for the others). Median
HH income is reported in thousands of dollars. A single outlying observation of college education at
the county level is excluded from the plot (Loving County, Texas, estimated 0% college educated, SE
= 23.1).
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(a) U.S. Counties (b) Milwaukee County Census Tracts

Figure 4. Histograms of scaled ACS SEs for percent insured and percent college educated. The values on the horizontal
represent the ratio of each respective SE to the MAD of the variable of interest across its respective geographic domain
(U.S. counties or Milwaukee County census tracts).

2.3. Implications

The inter-related, systematic patterns present in ACS data quality may impact in-
ferences in complex ways. Past findings regarding measurement error provide a useful
starting point, if only to indicate the minimal severity of the problem. Sampling error is
most appropriately modeled following the framework of “classical” measurement error,
which represents observations, X, as the sum of the actual values, X , and errors, ∆,

X = X + ∆ (1)

where each is an n× k matrix, where n is the number of areas observed and k is the number
of variables. Three important and well-known results follow from this representation [10]
(pp. 1–64):

1. Additive error tends to increase sample variance, leading to exaggerated confidence
in regression estimates;

2. the additional variability tends to attenuate bivariate correlations and mask non-linear
relations; and,

3. in multivariate models, observational error may result in a change of sign, attenuation,
or exaggeration of coefficient estimates at any sample size.

Figure 5 illustrates what is meant by a tendency toward attenuation in bivariate regression—
observed relations may still be attenuated or exaggerated, but with large numbers of
observations, attenuation becomes a near certainty and confidence intervals become wildly
misleading (cf. [30,31]). With spatial data, such as small-area ACS estimates, two additional
insights follow directly from Equation (1):

4. Observational error tends to decrease the degree of observed SA; and,
5. Spatial variation in data quality tends to produce spatial variation in the analytical

consequences of observational error.
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The latter observation has implications for models that attempt to infer spatially vary-
ing relations among variables, such as geographically weighted regression [32]. Geographic
variation in the corruption of observations may produce spurious geographic variation in
relations between variables (geographically varying bias). The former observation indicates
that our measures of SA may often be underestimated, which implies an over-estimation
of effective sample size or, to rephrase, an improper weighting of evidence.

(a) Estimates (b) 95% Confidence Interval Coverage
Figure 5. Bivariate regression coefficient estimates from simulated data with additive measurement error. For each of
M = 5000 iterations, n = {30, 100, 500, 1000, 3000, 6000} values of x were drawn, x ∼ N(0, 1); yi was calculated as
α + xi ∗ β + ei where ei ∼ N(0, 1) and β = 0.5; then y was regressed on z, where zi = xi + ui, ui ∼ N(0, 0.3).

3. Spatial HBMs for Survey Data

This section presents our proposed methodology for modeling small-area survey
data. We illustrate and validate the analytical argument by comparing rival models for
a single variable, health insurance coverage, and we provide a set of visual diagnostic
plots to evaluate our model. We then use our methodology to compare raw ACS estimates
for select variables, X, with the probability distributions for their respective true values,
X , noting inferential problems that may be introduced by the confluence of SA and
observational error.

3.1. Prior Information and Model Specification

HBMs are built by successive application of the product rule for expressing the joint
probability of multiple propositions (see Appendix A for additional details). Bayes’ theorem
provides a method for calculating the probability of a proposition given data, X, and any
relevant (prior) information, I. The probability of the proposition, after seeing the data, is
known as the ‘posterior probability’, leading to the summary expression of Bayes’ theorem,

Posterior ∝ Likelihood× Prior. (2)

When considering observational error, or complex spatial or spatio-temporal information,
the joint probability expands into numerous terms, leaving Equation (2) wanting for clarity.
Thus Clayton [13–16] proposed to factor epidemiological HBMs into,

Posterior ∝ [Measurement model]× [Disease model]× [Exposure model], (3)

whereas Berliner [17,18,20] introduced the generic terms,

Posterior ∝ [Data model]× [Process model]× [Parameter model]. (4)
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In both cases, the concept is identical: the first term incorporates information about
the measurement or observational process that may have introduced a difference between
the state of reality, X , and our record of it, X. The process model encodes substantive
knowledge of the process under study, and the parameter model encodes contextual
knowledge about the possible states of that process.

Building HBMs for ACS data requires specification of three probability models: the
data/measurement model, p(X|X , I), the process model, p(X |ζ, I) where ζ are process
parameters, and the parameter/exposure model, p(ζ|I). For the first, we assign to the
errors, ∆, a Gaussian probability density with variance, σ2, equal to the square of the SEs
of the estimates, S2, such that X ∼ Gauss(X , S). This specification may be justified for
continuous variables by the maximum entropy principle insofar as our information for
each observation consists of only location (estimate) and scale (SE) parameters [33,34].
The Census Bureau’s practice of calculating 90% margins of error by multiplying the SEs
by 1.645 also implies a Gaussian probability distribution for the sampling errors. For
the process model, p(X |ζ, I), we require a probability model that incorporates the most
pertinent and generalizable information we have about socioeconomic and health variables.
Foremost are the following social and economic characteristics of contemporary society:

1. Polarization, such that relatively extreme values are not unexpected; and,
2. Segregation, such that most social and economic variables display moderate to

strong SA.

The first postulate conflicts with the Gaussian model, which places very low probability on
outliers and extreme values. The second observation eliminates the uniform distribution
from consideration, because it would prevent us from incorporating SA. The uniform
distribution would also result in models that place high probability on values that are
implausibly far from the range of observed estimates, given that ACS SEs can be quite
large (polarization does not imply unrestricted variation).

An auto-Gaussian model that incorporates SA in the covariance matrix automatically
increases the probability of tail-area (extreme) values relative to an independent Gaussian
model, while also placing low probability on outliers relative to the local area mean. This
model incorporates both postulates simultaneously because outliers (relative to the global
mean) tend to cluster together at commonly employed units of aggregation (census tracts,
counties, and states). Similar to Kang, Liu, and Cressie [19], we suggest the following
model specification for small-area survey data:

[Data model]: X ∼ Gauss(X , S)

[Process model]: X ∼ MVGauss(1µ, (I − ρW)−1M)

[Parameter model]: µ ∼ Gauss(∗, ∗)
τ ∼ Student+(∗, ∗, ∗)

ρ ∼ Uni f orm(
1

λmin
,

1
λmax

).

(5)

The process model for X is an auto-Gaussian model with a conditional autoregressive
(CAR) specification of the covariance matrix [20] (pp. 167–203) where µ is a constant mean
multiplied by an n × 1 vector of ones, M = τ2D−1 is a diagonal matrix of conditional
variances consisting of the inverse of the number of neighbors of each respective areal unit
D−1

i,i times a scale parameter, τ2, ρ is a parameter accounting for the nature and degree of SA,
and W is a row-standardized connectivity matrix with zeroes on the diagonal (also given as
data). W is specified such that any element Wi,j equals D−1

i,i if the ith and jth observations
are neighbors, and zero otherwise (This is just one valid specification of the CAR model.
For others, see [20,35]). We define neighbors using the queen contiguity condition [35]
(p. 89), [36]. The range of permissible values for the SA parameter ρ is determined by
the smallest and largest eigenvalues (λ−1

min, λ−1
max) of the matrix M−1/2W M1/2 [20]. The ∗

symbol indicates prior parameters to be specified relative to the problem at hand. Finally,
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the models must reflect any natural boundaries in the data (e.g., percentages range only
from zero to one hundred). Such truncated distributions are easily programmed into
MCMC algorithms by placing boundaries on the parameter space. We experimented
with one alternative specification: a Student’s t model with spatially varying mean, using
eigenvector spatial filtering [37,38]. We conclude that the auto-Gaussian model performs
similarly to the spatial t model, but with substantial computational advantages—it is fairly
efficient with moderately large n (n ≈ 3000) using Stan [39].

3.2. Model Evaluation

Here we model percent of residents in Milwaukee County census tracts who have
health insurance (ACS variable DP03_0096P, see Figure 2c,d). As noted, this variable has
large SEs, which renders results particularly sensitive to model specification error. We
leverage this fact to highlight the differences between models. We compare results from the
auto-Gaussian specification of Equation (5) with a non-spatial Gaussian model. For each
model, we examine the differences, ∆̂, between the mean of their respective posterior
distributions, p(X |X, S, I), and their raw ACS estimates. In other words, ∆̂i is the mean
of the posterior distribution of the error, ∆i = Xi − Xi. Diagnostic plots reveal that the
non-spatial model produces systematically biased inferential patterns, but results from the
auto-Gaussian model appear reasonable.

Each panel in Figure 6 contains three diagnostic plots. The top figure is a point-
interval plot of the raw ACS estimates against a summary of their respective posterior
distributions (mean and 95% credible intervals (CI)), highlighting that the non-spatial
model imposes unidirectional shrinkage toward the global mean value on the estimates.
Below the point-interval plot is a Moran scatter plot (see [25,35,40]), which reveals that the
non-spatial model has moderately strong SA in its ∆̂ values. The map of ∆̂ reveals that
a distinct sociospatial pattern underlies the SA—the majority Black and Hispanic inner
city tracts all have ∆̂i > 0. The auto-Gaussian model, by contrast, pulls estimates with
large SEs toward the local mean, and, as a result, ∆̂ reveals no conspicuous or concerning
spatial pattern. Because the spatial model incorporates additional information relative
to the non-spatial model (and the degree of SA in these particular variables is strong),
the posterior distributions tend to be narrower, reflecting a greater degree of confidence
in results.
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(a) Gaussian (b) Auto Gaussian
Figure 6. Diagnostics for observational error models of percent insured by Milwaukee County census tract. ∆ is the
difference between posterior means and their respective raw ACS estimates.

3.3. Examining Implications

Here we report differences in the mean, dispersion, and SA between the raw ACS
point estimates and their posterior distributions obtained employing the proposed CAR
model. Our concern is that using raw ACS variables as covariates is leading researchers to
become overly confident in their model results, due to a combination of inflated sample
variance and deflated SA.

We utilize ACS data on three variables for Milwaukee County census tracts to fit
the model, and we report summary statistics in Table 3. Median HH income was log-
transformed to better suit our model, and its SEs were appropriately transformed as well.
(SEs for log(xi) may be approximated by the transformation sxi → 1

xi
sxi . We applied a

simple Monte Carlo method to construct SEs for the transformed variate.) For each variable,
the mean, standard deviation, and degree of SA ρ (obtained from a SAR model) were
calculated for each sample from the joint posterior distribution of parameters. For example,
the posterior distribution for the standard deviation of tract-level, log-transformed median
HH income has a mean of 0.46, with a 95% CI of [0.45, 0.48], compared to a raw value of
0.49. Only small differences appear between the raw and modeled values of percent college
educated. Yet the posterior distribution for insurance coverage has markedly greater SA
(ρ̂ = 0.89, 95% CI: [0.86, 0.92]) than the raw ACS estimate (ρ̂ = 0.82), and its standard
deviation decreased by 20%—from 5.67 to 4.59 (CI: [4.22, 4.96]); hence, a variance decline of
≈34%, from 32 to 21.
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The amount of meaningful information present in the raw estimates of percent insured
was twice inflated—once by sampling error directly, and again by the obfuscation of SA.
Consider the concept of effective sample size n∗, the number of equivalent independent
observations required to obtain the same information content as an autocorrelated sam-
ple [11] (p. 15). For data well-modeled by the Gaussian distribution, ρ = 0.82 converts
a nominal sample of n = 296 to n∗ ≈ 23, whereas a value of ρ = 0.9 has n∗ ≈ 12 [12]
(Equation (3)). Hence, strong SA in covariates causes measures of uncertainty to deteriorate
in quality, whether they be p-values or Bayesian CIs, with or without a spatial model
describing the outcome variable [37,38,41,42]. Thus, the results presented in this section
provide additional motivation to carefully evaluate data quality as a criterion for variable
selection, and to properly model both SA and observational error.

Table 3. Summary statistics for select ACS variables, Milwaukee County census tracts, comparing raw ACS data to the
posterior distribution of the CAR data model for the same variables.

Mean Standard Deviation SA (ρ)

Log-income ACS 10.69 0.49 0.88
Model 10.7 [10.68, 10.71] 0.46 [0.45, 0.48] 0.90 [0.88, 0.91]

Insurance (%) ACS 91.96 5.67 0.82
Model 92.81 [92.52, 93.09] 4.59 [4.22, 4.96] 0.89 [0.86, 0.92]

College (%) ACS 28.31 20.87 0.93
Model 28.1 [27.69, 28.51] 20.63 [20.23, 21.02] 0.94 [0.93, 0.95]

Note: The model results are summarized here by their posterior means and 95% CIs. The SA parameter ρ is from an intercept-only SAR
model; we obtained a posterior distribution for this value by employing the same method used for the mean and standard deviation,
i.e., the summary statistic was calculated for each of M = 7500 samples drawn from the joint posterior distribution p(X |X, S, I), resulting
in a vector of M values proportional to the posterior distribution of the summary statistic. Each vector is summarized here by its mean
and quantiles.

4. Modeling U.S. County Mid-Life Mortality

In this section, we model all-cause sex-specific U.S. county mortality rates for ages 55–64,
and estimate the ICE–mortality gradient following Krieger et al. [22]. We exclude Alaska
due to substantial differences in the state’s county equivalents. Approximately half of
Alaska’s area is a single county equivalent, larger in area that any other state, which in-
troduces the modifiable areal unit problem, in its worst possible materialization. If our
primary purpose in this paper were to model U.S. mortality rates, then we would incorpo-
rate Alaska’s county equivalents through, perhaps, its own independent model [43]. Using
ACS SEs and our data model, we find that the quality of county-level ICE estimates is
neither particularly poor nor negligible. We compare results from our proposed spatial
HBM of mortality rates to a naive model that does not consider observational uncertainty
but is otherwise identical. We find that the naive model underestimates the ICE–mortality
gradient and generally produces more narrow CIs for the county mortality rates. Some
counties have sizable differences in predicted mortality rates while in dozens of counties
the increase in posterior uncertainty is substantial.

4.1. Data and Prior Information

We gathered county-level all-cause mortality and population-at-risk data from CDC
Wonder by sex for ages 55–64, aggregating over years 2014 through 2018 (Figure 7a,b) [44].
We dropped counties for which the mortality data is censored, and we also dropped one
area that is missing an ICE value. Thus, our analysis includes n = 2984 counties with
male mortality data, and n = 2875 counties with female mortality data. We manually
updated the connectivity structure to link together some rural, low-population counties
with missing observations between them (see online supplementary material for additional
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information). We used the Census Bureau’s variance replicate tables [29] to calculate the
ICE by county with appropriate SEs (Figure 7c,d). The ICE is calculated as

ICE =
No. highest income households−No. lowest income households

Total no. households
, (6)

with threshold incomes for lowest and highest income groups set to $20, 000 and $125, 000,
respectively (following Krieger et al. [22]). The ICE ranges from −1 to 1, with 1 corre-
sponding to a population where all HH incomes are ≥ $125, 000 and −1 corresponding
to a population where all HH incomes are <$20,000. Figure 8a plots the SEs of each ICE
estimate divided by the MAD of the ICE itself (excluding counties with censored mortality
data). The median SE is 0.17 times the MAD, and 50% of the SEs are between 0.11 and
0.24 times the MAD; the largest SE is 0.78 times the MAD. Figure 9 provides diagnostics
for our auto-Gaussian data model for the ICE. The ∆̂i values are not particularly large and
have no SA, which is reassuring. Examination of CVs for the estimated population-years at
risk shows that the vast majority of CVs are <0.05 (Figure 8b,c).

To gather prior information on the ICE–mortality gradient, we searched PubMed for
published research containing “all cause mortality” or “premature mortality” as well as
“county” in its title or abstract ((((“all cause mortality” [Title/Abstract])) OR (“premature
mortality” [Title/Abstract])) AND (“county” [Title/Abstract])). Of 310 results, 24 appeared
potentially relevant and were selected for closer inspection. Eight of these studies reported
findings on the degree of inequality in county mortality rates, although no two studies
employed the same measurement of inequality (see Table A1). We measure inequality by
the relative index of inequality (RII): the mortality rate ratio of the most disadvantaged
over the most advantaged group. RII maintains conceptual consistency across rate ratios
by keeping the most disadvantaged group in the numerator. Thus the quintile-based RII
(RII5) with counties ordered by mortality rates is p80

p20 , whereas the comparable quantity for

counties ordered by the ICE is p20
p80 . Two studies comparing the bottom to the top quartile

of counties (RII4) ordered by socioeconomic variables [45,46] found RII4 values of 1.22 and
1.41, respectively; those comparing the first to fifth quintiles of counties (RII5) ordered by
socioeconomic variables [47–49] found RII5 between 1.5 and 1.8; and, those reporting RIIs
by decile [50] or other tail-area grouping [51,52] found RIIs between 1.6 and 2.7.

Based on this semi-formal review, we expect RII5—comparing the 20th percentile
(p20) to the 80th percentile (p80) of counties ordered by the ICE—to be greater than
unity, and we would be surprised if it were larger than 2.2 (for further discussion, see
Appendix B). Our exploratory analysis of the data, including the scatter plots of the ICE
against log-mortality rates by Census region in Figure 7e,f, indicate that log-mortality
rates show an approximately linear relationship with the ICE. This result means that any
value of RII5 can be converted into its corresponding coefficient β from a log-linear model:

β =
dlog(y)

dx =
log(RII−1

5 )
p80−p20 (see Figure 10a). The value dx = p80− p20 can be calculated

from our ICE data model, and equals 0.179 [0.176, 0.182]. To encode our substantive prior
information about RII5 into a probability distribution for β, we use the following model:

RII5 ∼ Gauss(1.6, 0.3)

β =
log(RII−1

5 )

0.179
.

(7)

Figure 10b is a density plot of the Gaussian prior on RII5, whereas Figure 10c shows how
that density transfers to values of β. Most of the probability density is assigned to values
of β between −4.5 and −1. We do not convert our continuous measure of the ICE into
discrete quintiles or other bins before modeling because that modification would arbitrarily
delete data in our possession, and, as Figure 11 illustrates, our observational uncertainty
regarding ICE values implies considerable uncertainty regarding to which quintile many
observations belong. The number of observations with ambiguous membership in either
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the first or the fifth quintile, say those having a probability between 0.2 and 0.8 of belonging
to either one, is 443 or 15% of our observations on male mortality.

4.2. Process and Parameter Models

Because the mortality data, Y , for each respective sex consists of a vector of counts
of a rare outcome (relative to the size of the population at risk), we assign a Poisson
probability distribution to the likelihood, with mean and variance equal to the parameter
µ = λ · P, the elementwise product of rates, λ, and population-years at risk, P. We
model male and female mortality independently, applying the same model specification
to each. The logs of the male and female mortality rates show moderately strong SA,
both with Moran coefficients (MC) of MC = 0.56. The ICE (X ) also has strong SA,
with MC = 0.643 [0.638, 0.648]. We model SA in the outcome using the Besag-York-Mollié
(BYM) specification [53,54]. Whereas the CAR model from Equation (5) combines spatial
trends (ρW) and independent variation (M) into a single covariance matrix, the BYM
model achieves computational efficiency by splitting these components of the model into
two separate parameter models. This separation requires two parameter vectors: an SA
term, φ, plus the non-spatial term, θ. The intrinsic CAR (ICAR) prior is placed on φ,
where the SA parameter ρ is implicitly fixed to 1; hence it places high prior probability
on smooth variation. Setting ρ = 1 also renders the joint probability distribution of φ
improper, in the sense that it does not integrate to one. This is addressed by constraining
the values of φ to sum to zero (see [35], pp. 246–247). We implement this constraint
following Morris et al.’s [54,55] method.

The BYM model captures additional variation around the spatial trend by assigning
a Gaussian prior with unknown scale to θ. The relative influence of the two terms is
controlled by their respective scale parameters, τφ and τθ . We include a separate intercept
for each fully connected component of the graph structure embedded in W [56], meaning
that the continental U.S. and Hawaii (represented by dummy variables A), respectively,
have their own intercepts (α = [α1, α2]

′). We also follow Freni-Sterrantino, Ventrucci,
and Rue [56] in adjusting the scale of each connected component to render the prior distri-
butions for scale parameters approximately equivalent across any valid spatial connectivity
structure [57]. The ICAR model assigned to φ is, effectively, two separate models, one
for the counties of the continental U.S., and another for Hawaii, each with its own scale
parameter (τφ = [τφ1 , τφ2]). To model SA in our covariate [37] (pp. 10–18), [42,58,59], we
add its mean spatially-lagged value, WX , as an additional covariate with coefficient γ
(recall that W is row-standardized) [38]. Our data and process models for county mortality
rates are as follows:

[Data model]: X ∼ Gauss(X , S)

[Process model]: Y ∼ Poiss(λ · P)
log(λ) = Aα + φ + θ+ γWX + βX

X ∼ MVGauss(1µ, (I − ρW)−1M)

(8)

We mean-center the ICE so that the intercepts α represent the mean log-mortality rates
for their respective geographic areas. The remainder of the parameter model is diffuse
or weakly informative [60] (p. 19), [61] (p. 55) relative to natural constraints on the data
values (e.g., the ICE, and hence its mean µ, is between −1 and 1) or substantive limitations
(e.g., the mean log-mortality rate α1 must be negative):
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α1 ∼ Gauss(−5, 5)

α2 ∼ Gauss(0, 5)

γ ∼ Gauss(0, 5)

φ ∼ ICAR(τφ)

θ ∼ Gauss(0, τθ)

µ ∼ Gauss(0, 0.5)

[τφ1 , τφ2 , τθ , τX ]
′ ∼ Gauss+(0, 1)

(9)

Note that the prior for α1 is essentially uniform over the full range of possible values for the
mean log-county mortality rate. We also compare results from the full HBM as specified
above to a naive model that has the same specification except for the replacement of raw
ACS estimates X for the CAR data model of X .

Other valid model specifications are available. The BYM component of the model,
in particular, is widely used in the literature, mainly because it tends to be more efficient
than using a proper CAR model. Our spatial connectivity matrix was built using an adja-
cency structure, and was supplemented by manual adjustments for certain low-population
areas with missing neighboring observations. A downside of the adjacency method is
that it may induce ‘information sharing’ and, potentially, ‘smoothing’ over neighboring
observations that are highly dissimilar in terms of demographics [35] (pp. 245–249). For
example, it may be undesirable to specify the same degree of connectedness between a
majority Native American county and its neighboring, majority White counties, as one
might specify between any number of majority White counties, because it conflicts with
our knowledge that such populations are not subject to similar sociopolitical conditions.
If the purpose of a model is to determine health service provision, for example, then such
a choice could have detrimental (and unwarranted) impacts. Our model is primarily for
demonstration purposes, and we emphasize that many other modeling purposes require
closer attention be paid to such questions.

4.3. Results

For each model, we drew 1500 samples from the posterior distributions of parameters
for each of 5 independent chains, that after discarding the first 1500 samples of each chain
(the burn-in periods). To evaluate MCMC convergence, we use the split R̂ diagnostic, which
approaches 1 when chains converge on a single distribution; all of our R̂ = 1± 0.03 [61].
We require high bulk and tail-area effective sample size (ESS) for mortality rates λ in order
to conduct reliable inference on RIIs; both bulk and tail area ESS were >1900 for all λ,
which is more than sufficient. We also verified that the residuals from the model contain
neither SA nor any indication of non-linearity in the relationship between the ICE and
log-mortality rates. The computations were completed using parallel processing and the
cmdstanr R package [62] on a Dell XPS 13 laptop computer with Intel Core i7-8565U CPU
1.8 GHz, requiring ≈5.25 h per model.

Table 4 reports a summary of the posterior distributions of select model parameters.
The mean county female mortality rate for ages 55–64 is found to be e−4.863 = 773 per
100,000 [770, 776] for the U.S. mainland. Female mortality in Hawaii is estimated to be
e−0.162 = 0.85 [0.79, 0.91] times female mortality in the (48) continental states. For males,
the corresponding mean county mortality rate is 1259 per 100,000 [1254, 1264], with no dif-
ference in Hawaii. For both male and female mortality, the scale of the spatial components
of the BYM model, τφ1 and τφ2 , are substantially larger than the spatially unstructured
component τθ . Thus, net of the ICE, large-scale regional trends account for more variation
in county mortality rates than do heterogeneous local characteristics.
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(a) Female mortality (b) Male mortality

(c) ICE (d) ICE SE

(e) Female: ICE v. log mortality (f) Male: ICE v. log mortality
Figure 7. Raw U.S. county all-cause mortality rates by sex for ages 55–64, ICE estimates and their SEs,
and scatter plots relating the ICE to the natural logarithm of the mortality rates by Census region.

(a) ICE (b) Female population-years (c) Male population-years

Figure 8. Data quality for county ACS variables. Scaled SEs
(

SE(xi)
MAD(x)

)
are shown for the ICE

estimates, and CVs are shown for population at risk data.
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Figure 9. Diagnostics from the auto-Gaussian data model for county-level ICE.

(a) RII5 → β (b) Prior on RII5 (c) Induced prior on β

Figure 10. The prior probability model for β, the ICE-mortality gradient. RII5 is the p20/p80 mortality
rate ratio, with counties ordered by their ICE.

Figure 11. Uncertainty of quintile membership for county ICE observations. Results are derived
from the joint probability distribution of the auto-Gaussian ICE data model.
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Table 5 reports select quantiles of mortality rates for all counties with corresponding
RIIs. When ordered by their estimated mortality rates, both male and female mortality
have equivalent relative rates: RII5 = 1.66 and RII10 = 2.11. At the extreme, however,
the RII100 = p99

p1 = 3.60 [3.48, 3.72] for females and 3.68 [3.57, 3.81] for males. Table 6
reports the ICE-Mortality gradient β in terms of the implied RIIs for select quantiles; for
female mortality, RII5 = 1.35 [1.33, 1.36], whereas for males RII5 = 1.38 [1.37, 1.40]. These
estimates are near the low end of our prior probability distribution for β.

Figure 12 compares the posterior distribution for β under the preferred HBM and un-
der the naive model. For male and female mortality, the distribution is shifted towards zero
(attenuated) by the naive model. For the male mortality models, the bulk of the posterior
distributions do not overlap each other. Figure 13 shows how uncertainty of the ICE values
impacts the probability distributions for the county mortality rates, both in terms of their
mean values (estimates) and the width of their 95% CIs (posterior uncertainty). Most of
the estimates do not substantively differ, but do have wider CIs. For 41 counties, the abso-
lute difference in male mortality estimates between models is greater than 50 per 100,000,
with the maximum absolute difference being 168 per 100,000. The maximum difference
in uncertainty for male mortality rates between models is 153 per 100,000, although 69
counties have a difference in uncertainty greater than 50 per 100,000. The largest differences
in estimated mortality appear, not surprisingly, in the same counties that have the largest
∆̂i from the ICE data model. Note that many of the same counties that have large ICE
SEs also have suppressed female mortality data; therefore, differences between models of
female mortality are slightly less than are the differences between male mortality models.

Table 4. Summary of posterior distributions of scalar parameters in the male and female county
mortality models.

Female Male

Mean 2.5% 97.5% Mean 2.5% 97.5%

α1 −4.863 −4.867 −4.859 −4.375 −4.379 −4.371
α2 −0.163 −0.236 −0.090 0.005 −0.068 0.077
γ 0.333 0.218 0.449 0.443 0.341 0.549
β −1.661 −1.720 −1.601 −1.823 −1.879 −1.766

τφ1 0.167 0.153 0.180 0.149 0.137 0.163
τφ2 0.223 0.058 0.553 0.200 0.028 0.537
τθ 0.059 0.047 0.070 0.067 0.056 0.076
µ −0.001 −0.042 0.038 −0.001 −0.043 0.039
ρ 0.996 0.992 0.999 0.996 0.993 0.999

τX 0.173 0.169 0.177 0.173 0.169 0.177

Table 5. County mortality rates, ages 55–64, by sex and select quantiles and the corresponding relative indices of inequality
(posterior means with 95% CIs).

a. Mortality Per 100,000

1% 10% 20% 80% 90% 99%

F 391 [382, 400] 529 [523, 536] 602 [596, 607] 1001 [993, 1010] 1116 [1105, 1128] 1408 [1,375, 1,444]
M 627 [612, 641] 865 [855, 874] 980 [972, 989] 1631 [1619, 1644] 1823 [1807, 1840] 2,309 [2261, 2361]

b. Relative Index of Inequality
p80
p20

p90
p10

p99
p1

F 1.66 [1.64, 1.68] 2.11 [2.08, 2.14] 3.60 [3.48,3.72]
M 1.66 [1.64, 1.68] 2.11 [2.08, 2.14] 3.68 [3.57, 3.81]
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Table 6. ICE-Mortality gradient summarized as equivalent relative index of inequality for se-
lect quantiles.

p20
p80

p10
p90

p1
p99

F 1.35 [1.33, 1.36] 1.62 [1.59, 1.65] 2.84 [2.72, 2.97]
M 1.38 [1.37, 1.40] 1.70 [1.66, 1.73] 3.14 [3.01, 3.28]

Note: Samples from the posterior distribution of β were transformed using g(β) = RII = exp(dx × β)−1.
The values reported here are the mean and 95% CI for g(β).

(a) Female (b) Male
Figure 12. A comparison of the posterior probability density for β, the ICE-mortality gradient, given the full HBM with its
density given only a ‘naive‘ spatial model that ignores observational uncertainty.

(a) Female (b) Male
Figure 13. Differences in posterior distributions of mortality rates

(
λ·P

100,000
)

for the full HBM and the
naive model (difference = full-naive). The mean refers to the mean of the posterior distribution of
each rate; uncertainty is measured by the width of the corresponding 95% CIs.

5. Conclusions

As access to spatial data products increases, researchers need to be aware of the
tradeoffs between data granularity and data quality. This paper offers a methodology for
both evaluating data quality and modeling observational uncertainty with spatial survey
data, following previously published research on HBMs for spatial data [19,20]. The main
contributions of this paper are identifying basic inferential challenges that arise from
measurement error with spatial data, and integrating spatial HBMs for survey data into
a practical workflow for population health research. Our online supplementary material
provides the computer code required to implement the proposed model using the Stan
programming language [39].

As researchers aim to take full advantage of new geospatial data products for “preci-
sion public health” [63], we caution that data for vulnerable and marginalized populations
tends to be the least reliable. Similarly, data quality may impose limitations on our abil-
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ity to undertake ‘complex’ multivariate analyses. The impacts of observational error on
multivariate models are unpredictable; with SA, ignoring such errors may be more treach-
erous. When a conventional geospatial analysis produces anomalous or implausible results,
e.g., that a higher rate of health insurance coverage increases mortality rates in southern
Florida [64], researchers and reviewers ought to ask if observational error could be the
cause of the findings. Our demonstration analysis shows that ignoring observational
uncertainty in a single covariate measured with a fair degree of precision can impact
coefficient estimates, model predictions, and posterior uncertainty of estimates. The honest
and complete reporting of uncertainty is a critical component of the scientific process and
research integrity. Currently accepted practices for analyzing small-area data fall short of
this standard, and the widespread adoption of workflows and modeling strategies that
incorporate observational uncertainty is called for.

Our analysis of mortality rates benefits from important computational advances of
recent years, namely in the application of dynamic Hamiltonian Monte Carlo algorithms to
MCMC sampling and Bayesian inference [39,65–67]. Nonetheless, computational limita-
tions remain. ACS estimates of population at risk are also subject to sampling error, and it
is concerning that researchers employ small-area estimates for highly specific demographic
subgroups without considering data quality. Unfortunately, incorporating data models for
population at risk estimates into models for count outcomes appears to be a computational
bottleneck. The computational limitations of the CAR model also influenced our decision
to employ the BYM model specification. Future research may address these challenges.
Furthermore, our methodology does not consider the possibility of non-sampling errors
in survey estimates. It is possible that errors themselves are correlated due to bias in the
sampling design or survey implementation. Modeling potential biases in survey estimates
would require additional information.

We recommend that researchers consider data quality to be a core criterion for variable
selection, and integral to study design. Analyses of data quality should appear in research
protocols, and should be included in the peer review process. The workflow we introduce
here is intended to provide a basis for more intensive evaluation and criticism of model-
based inferences with small-area data, and to produce models that maintain greater fidelity
to researchers’ state of knowledge. When policy and funding decisions are at stake, closer
evaluation of priority areas and areas with questionable data quality should be undertaken.
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ACS American Community Survey
CAR Conditional autoregressive
CI Credible interval
CV Coefficient of variation
ICAR Intrinsic conditional autoregressive
ICE Index of Concentration at the Extremes
HBM Hierarchical Bayesian model
HH Household
MAD Median absolute deviation
Markov chain Monte Carlo MCMC
RII Relative index of inequality
SA Spatial autocorrelation
SE Standard error

Appendix A. Inference from Uncertain Observation

This appendix summarizes the fundamental logical challenges introduced by ob-
servational uncertainty, building upon Polya’s [68] patterns of plausible reasoning. We
link this content to the Bayesian theory of ‘probability as extended logic’ [33,68–74]. We
then delineate the frameworks that previous authors have proposed to build Bayesian
probability models that incorporate observational uncertainty.

Appendix A.1. Plausibility

Recall the demonstrative logic of the “modus tollens”:

A implies B
B is false

A is false,
(A1)

where the statements represent, respectively, a premise, an observation or fact, and their
logical implication. It states that the falsification of a prediction implied (entailed) by a
theory leads to its rejection. More often, we face variants of Polya’s [68] “fundamental
inductive pattern,” where the verification of a consequence lends a theory credibility:

A implies B
B is true

A is more credible.
(A2)

Because conditions of observation can never be completely controlled (nor, by extension,
can they be exactly reproduced) [74], a scientific theory may be compatible with a range
of outcomes. Yet, if true, the theory would render certain outcomes more plausible or
logically more ‘likely’ than others. Reasoning with such ‘shaded consequences’, to adapt
Polya’s [68] terminology, takes elementary forms, such as (cf. [68], pp. 28–37):

A implies B is more likely
B is true

A is somewhat more credible.
(A3)

The three statements involved in this syllogism correspond to what we commonly refer to
as, respectively, the likelihood, the data, and the inference. (This interpretation of likelihood
may be found at least as early as Laplace [69]. He described it as our manner of considering,
“the variable and unknown causes . . . which render uncertain and irregular the march of
events” [69] (p. 60). The predominant interpretation of likelihood adopted by the discipline
of statistics, and the terminology itself, was introduced by Fisher [75,76]. The term was
adopted by Jeffreys [71] (pp. 28–29), but with a Laplacian interpretation. Lipton [77]
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(pp. 103–120) also explores likelihood as a category of logic, relating Bayesian inference to
abductive reasoning.)

The logic of Equation (A3) implies that the observations B correspond directly to the
state of reality; that is, our observational process was not obstructed, incomplete, approxi-
mate, or displaced (in time or space) from the actual process of interest. With observational
uncertainty, our data does not yield ‘B is true,’ but, instead, our data merely renders the
proposition B more or less credible. Combining such ‘shaded observations’ with shaded
consequences produces ‘twice-shaded’ inductive patterns that take elementary forms, such
as:

A implies B is more likely
B is more credible

A is somewhat more credible.
(A4)

This formulation elucidates the inferential challenge of observational uncertainty, and dis-
tinguishes it from other sources of uncertainty. In particular, we have differentiated
observational uncertainty (’shaded observations’) from likelihood (’shaded consequences’),
describing the independent contribution each makes to the uncertainty of our inference.
Addressing this challenge requires a valid method for evaluating the weight of evidence
given multiple, independent sources of uncertainty.

Appendix A.2. Probability

As Polya [68] (pp. 109–142) found, patterns of plausible inference may be expressed
by algebraic manipulation of the sum and product rules of probability (cf. [33,73,74]).
Here, probability is defined to be a logical relationship between two or more consid-
ered propositions [70], specifically the rational degree of belief that is afforded to one
proposition given the information contained in other true or hypothetical propositions (Fol-
lowing Laplace [69], Jeffreys advanced Bayesian inference as “an extension of logic” [71]
(p. 40), [33,68–70,72–74]. Introductions to this school of thought include [34,78–80]. See
Greenland [81] for a rival Bayesian paradigm.) A good model, then, is one that faithfully
expresses a particular state of knowledge. To enable extensive mathematical expression,
we represent impossibility as zero, and certainty as one.

With hypothesis H, observation D, and background information I, we denote the
probability of H given both D and I as p(H|D, I). I denotes the contextual information
without which the problem remains undefined, including that required to specify the
probabilities of various outcomes conditional on the truth of H, p(D|H, I), as well as
any information impinging upon the initial plausibility of H, p(H|I) [33,71]. Following
Cox’s [73] (pp. 1–4) second axiom of probability, the joint probability of more than one
proposition is uniquely defined by the product rule,

p(H, D|I) = p(D|H, I)p(H|I) = p(H|D, I)p(D|I). (A5)

This allows us to evaluate a chain of inferences, as required. We can derive Bayes’ theo-
rem [82] by simple algebraic manipulation of Equation (A5):

p(H|D, I) =
p(D|H, I)p(H|I)

p(D|I) . (A6)

Bayes’ theorem may be reduced to

p(H|D, I) ∝ p(D|H, I)p(H|I), (A7)

or, more simply [71]:
Posterior ∝ Likelihood× Prior. (A8)
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Bayes’ theorem states that, after observing data D with information I, the probability of H
is proportional to the probability that D would arise if H were true (the likelihood) times
the initial probability of H being true (the prior).

Appendix A.3. HBMs

By successive application of the product rule, one can incorporate ever more informa-
tion into an inference, to better represent, and update, one’s state of knowledge. As noted
in Section 3.1, this causes the joint probability to expand into numerous terms, leaving
Equation (A8) wanting for clarity. In its place, we prefer [17,18,20]:

Posterior ∝ [Data model]× [Process model]× [Parameter model]. (A9)

Using information on the reliability of observations D (the measurement/data model),
knowledge of the process of interest D (process model), and the initial plausibility of
various states of that process ζ (the exposure/parameter model), one may obtain the relative
plausibility of various states of reality, {D, ζ}, given information, {D, I}, by calculating

p(D, ζ|D, I) ∝ p(D|D, ζ, I)p(D|ζ, I)p(ζ|I). (A10)

Often, we have no direct interest in ζ. Our state of knowledge of D alone is:

p(D|D, I) ∝
∫

p(D, ζ|D, I)dζ. (A11)

For instance, if D consists of survey estimates of the poverty rate in all n census tracts of a
city, then the posterior probability of D is the joint probability distribution of tract-level
poverty rates at the time of the survey. Equation (A9) is analogous to Shannon’s [83]
concept of the joint entropy of a communication system with noise. Weaver’s introductory
comments, in particular, anticipate the fundamental implications of inference with observa-
tional error, including variance inflation as well as the value of redundancy in recovering a
corrupted message [83] (pp. 18–22). Whereas the rules of grammar and spelling introduce
redundancy into written language, SA introduces redundancy into social, health, and envi-
ronmental variables. The HBM presented in Section 3 exploits this redundancy to improve
the quality of, and reduce uncertainty in, the analysis of survey data.

We can expand the model using the product rule again to reason about epidemiological
theories. Say a theory H posits an ecosocial process linking an exposure, X , to a health
outcome, Y . To ease notation,D = {Y ,X}. The process model must specify the plausibility
of various process values, D, conditional on both ζ and the correctness of the theory:
p(D|H, ζ, I). With observations D = {Y, X}, we would calculate the probability of the
theory being true by Bayes’ theorem, Equation (A9), and the rule of total probability,
as follows:

p(H,D, ζ|D, I) ∝ p(D|D, ζ, I)p(D|H, ζ, I)p(H, ζ|I) (A12)

p(H|D, I) ∝
∫∫

p(H,D, ζ|D, I)dDdζ (A13)

Equation (A12) specifies the joint probability of our theory H and (descriptive) state of
reality {D, ζ}, whereas Equation (A13) integrates over all values of D and ζ to find the
marginal probability of H. Practically speaking, H will consist of one or more parameters
in the process model such as a regression coefficient or a risk surface.

To generalize, note that all inference implies a data model of sorts and we can denote
the certainty of perfect observation as:

p(D|I) =
{

1 for D = D
0 for D 6= D.

(A14)



Int. J. Environ. Res. Public Health 2021, 18, 6856 24 of 27

Bayesian inference allows us to drop that assertion and jointly consider our uncertainty
due to imperfect observation and the logical implications of our observations for our
research question, given relevant contextual and background knowledge. Non-Bayesian
methods have also been proposed to incorporate observational uncertainty with spatial
data, including simulation extrapolation (SIMEX) [10,84] and empirical Bayesian meth-
ods [20] (pp. 23–24). However, neither can fully and consistently propagate uncertainty
of all parameters into the final results. The automatic propagation of uncertainty from
intermediate inferences is a critical advantage of HBMs.

Appendix B. Between-County Inequality: Prior Knowledge

Table A1 presents the findings from each of the eight studies that were found to
provide estimates of the magnitude of relative cross-county inequality of county mortality
rates. As indicated by the ‘Comparison’ column of Table A1, the authors have grouped
counties into bins, such that the bottom quintile contains all counties below the 20th
percentile. Note that this contrasts with the method we employ, which is to compare the
fitted values of specific percentiles. One advantage of this approach is that we can evaluate
p10
p90 separately from other cut-points, e.g., p1

p99 , instead of averaging over them. Despite
heterogeneity of methods and time period, the published findings on relative inequality fall
within a fairly narrow range of RRs (as noted in Section 4.1). The most extreme finding [51]
was a RR of 2.7; however, the methodology differs considerably from ours. The authors
grouped counties using a clustering algorithm that considered county mortality rates, their
trajectories over time, and other terms.

In addition to published findings on county mortality rates, our prior model for β
also reflects the large body of historical and contemporary literature that finds mortality
to be inversely associated with social class and wealth [1,4,5,85–88], which precludes us
from assigning any substantive amount of prior probability to positive values of β. We
do not assign appreciable prior probability density to arbitrarily large negative values of β
either. We aim to assign appreciable prior probability to all plausible values of β, given the
peer-reviewed literature on the topic and allowing for some additional uncertainty due to
the small number of directly comparable studies. Note that the bulk of our prior probabilty
model for β covers the entirety of the posterior probability density. Thus, the prior for β
did not pull the estimates of β in one direction or another relative to the process models
(i.e., the likelihood). With over 2800 observations, the prior for β is “dominated” by the
likelihood (see [60], pp. 18–19). Nonetheless, encoding substantive prior information into
probablity distributions is good practice because it may yield additional insight into final
results, it may help us become better acquainted with the formal and substantive meanings
of our model parameters, and it is the only way to ensure that a parameter model is not
unreasonable.

Table A1. Summary of select published findings on inequality in all-cause county mortality.

Source Outcome Period Comparison Findings

[47] Age-adjusted mortality, 0–19 yo. 1968–1992 Bottom v. top quintile by deprivation index y. 1992 RR = 1.52;
RR range: 1.45–1.65

[48] Age-standardized mortality,
0–65 yo.

1960–2002 Bottom v. top quintile of median HH income RR = 1.6 [1.6, 1.7]

[45] Age- and sex-adjusted mortality 1988–1992 Lowest inequality, highest income v. highest
inequality, lowest income; by quartile of each
measure

RR = 1.22

[50] Mortality, 15–24 yo. 1999–2007 Bottom v. top decile by deprivation index Male RR = 1.90 [1.87, 1.94];
Female RR = 1.62 [1.56, 1.67]

[51] Age-adjusted mortality 1999–2013 Highest v. lowest of 8 county classes,
grouped by mortality

RR increased each year
from 2.1 (1999) to 2.7 (2013)

[49] Age-standardized mortality,
25–64 yo.

2000–2003 Quintiles of education (% bachelors
degree+) and median HH income

Education RR = 1.64;
Income RR = 1.78
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Table A1. Cont.

Source Outcome Period Comparison Findings

[46] Age-adjusted mortality, 0–75 yo. 2002–2006 Bottom v. top quartile of median HH income RR = 1.41

[52] Mortality, 45–64 yo. 2005–2009 Metropolitan areas with <5% poverty vs.
non-metro. areas with >20% poverty

RR = 2.22 [2.20, 2.24]

Note: All reported uncertainty intervals are 95% confidence intervals. Findings based on the same mortality data as the present study are
excluded from this summary to avoid allowing our data to inform our prior probability model.
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