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ABSTRACT: Red-emitting fluorescent carbon dots (CDs) have garnered significant attention due to their wide-ranging
applications in biological fields. However, challenges such as complex precursors, labor-intensive preparation processes, and low
quantum yields have hindered their broader utilization. In this study, we developed a simple and efficient solvothermal method to
synthesize fluorescent CDs with tunable emission wavelengths using aniline derivatives as precursors. The emission wavelengths of
the synthesized CDs were influenced by the functional groups at the para-position of the aniline derivatives with stronger electron-
donating effects leading to a red shift in emissions. Notably, bright red-emitting CDs with a quantum yield of 19.42% and excellent
photobleaching resistance were obtained by using p-phenylenediamine as the sole precursor. These CDs exhibited sensitivity to Fe3+
ions, demonstrating a strong linear detection range (R2 = 0.999) from 0 to 50 μM. Additionally, the CDs were uniform in size (2−5
nm), emitted stable red fluorescence in pH conditions ranging from 4 to 10, and were successfully internalized by glioma cells,
enabling precise fluorescence imaging of gliomas both in vitro and in vivo.

1. INTRODUCTION
Glioma is a common malignant tumor of the brain that is
prone to recurrence after surgery due to its highly invasive
nature and poorly defined boundaries.1 Current research shows
that glioma imaging is not only useful for diagnosis but also for
complete tumor removal and reducing recurrence.2 Nanoma-
terials have made remarkable progress in the application of
glioma imaging in recent years due to their excellent optical,
magnetic, and chemical properties.3 However, nanomaterials
also have some shortcomings, such as difficulty controlling
them, complex processing, and insufficient safety. Therefore, it
is very important to find a new nanomaterial. Carbon nanodots
(CDs), as a rising luminescent nanomaterial, have attracted
extensive attention and research in recent years.4,5 Being
different from traditional quantum dots, CDs have unique
optical properties with facile preparations, good biocompati-
bility with inexpensive starting materials, and adjustable surface
functional groups with convenient postprocessing.6−10 In
addition, CDs exhibited better photostability than organic
fluorescent molecules. All of these advantages promised CDs
significant potential in various fields, including biomedicine,
bioimaging, biosensors, optoelectronics, catalysis, and anti-

counterfeiting.11−17 In particular, CDs have shown the greatest
biological applications, such as tumor imaging, due to their
uniform particle sizes and negligible toxicities.7,18

Unfortunately, most emissions of the reported CDs were
strictly dependent on the excitation light19,20 and were thus
limited to blue-green luminescence,21,22 which severely limited
their bioimaging performance due to the low tissue penetration
and the strong autofluorescence of biological tissues. In
comparison, red-light-emitting CDs have deep tissue pene-
tration and negligible background interference, which are
preferred in bioimaging. However, red-light emission require-
ments optimize the electronic band structure of CDs, which
consequently often suffer from complex precursors, labor-
intensive preparation, and low quantum yield.23,24 Typically,
the electronic band structure of fluorescent molecules could be
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regulated by their surface groups, where the electron-donating
effects of the surface groups can cause the emission wavelength
to red shift while the electron-withdrawing effect is
reversed.25,26 However, these specific electron-donating effects
on the fluorescence emission of nanoparticles (e.g., CDs) have
not been determined because of the lack of appropriate
preparation of different emitting CDs with similar core-surface
structures.
Here, a simple solvothermal method was established to

prepare fluorescent CDs with blue to red emission using four
phenyl compounds (aniline, p-toluidine, 4-aminophenol, and
p-phenylenediamine) with different functional groups as
starting precursors. The electron-donating ability of aniline
para-substituents could affect the fluorescence emission of the
synthesized CDs; the stronger the electron-donating ability,
the longer the emission wavelength. This provided an
important theoretical reference for the subsequent design of
red-emitting quantum dots. As a result, red-emitting CDs (d-
CDs) with high quantum yield (∼19.42%), narrow size
distribution (2−5 nm), good dispersibility, and chemical
stability were obtained. These d-CDs could be utilized for iron
detection via Fe3+-induced fluorescence quenching. More
importantly, they could be taken up by the glioma cells and
used for fluorescence imaging of glioma in vitro and in vivo.
These findings provided a simple strategy of red-emitting CDs
for robust biomedical applications.

2. MATERIALS AND METHODS
2.1. Materials. Aniline, p-toluidine, 4-aminophenol, and p-

phenylenediamine were purchased from Shanghai Aladdin Bio-
Chem Technology Co., Ltd. Cell lines were obtained from the
Shanghai Cell Bank, Chinese Academy of Medical Sciences.
The Cell counting kit-8 was purchased from Melun. Hank’s
solution, fetal bovine serum, and phosphate buffer saline were
purchased from Hyclone. Other reagents were purchased from
Gibco.

2.2. Methods. 2.2.1. Synthesis. The CDs were prepared by
the solvothermal method. First of all, p-phenylenediamine
powder (0.9 g) was dissolved in ethanol (90 mL) and then
reacted at 180 °C in an autoclave for 12 h. The solution was
then naturally cooled and concentrated by using a vacuum
rotary evaporator. The concentrate was then separated and
purified by thin-layer chromatography. Finally, the obtained d-
CDs were lyophilized for further use. As described above, the
same reaction conditions and steps were used for aniline, p-
toluidine, and 4-aminophenol.

2.2.2. Characterization. UV−vis absorption spectra, Four-
ier transform infrared spectroscopy (FTIR) spectra, and
fluorescence spectra were obtained using a UV−vis absorption
spectrometer (UV-2401PC), a Nicolet-360 FTIR spectrom-
eter, and an FS5 fluorescence spectrophotometer (Edinburgh
Instruments), respectively. Optical pictures were taken with a
Canon camera. Transmission electron microscopy (TEM)
images were obtained by using JEM-2010 instruments. Particle
size and potential were measured by using a Malvern 3600
particle size potentiometer (U.K.). Fluorescence quantum
yields (QYs) were determined and calculated according to the
standard reference sample; rhodamine 6G was chosen as a
standard.27 For fluorescence stability measurements, d-CDs
were dispersed in PBS at different pH values or exposed to UV
light for different time periods at room temperature.

2.2.3. Cell Culture. U87MG cells (human astroblastoma cell
line) were cultured in a humid incubator at 37 °C, containing
5% CO2. The culture medium consisted of 89 wt % DMEM, 1
wt % FBS, and 1% penicillin-streptomycin. Cells were passaged
when they reached 80% confluence. In general, the subculture
frequency was once every 3 days.

2.2.4. Cellular Uptake. After the adherent U87MG cells or
HA1800 cells were digested with trypsin, the cell pellet was
obtained by centrifugation and diluted with culture medium to
a concentration of 1 × 105/mL, and then the cells were seeded
and allowed to grow adherently on a cell culture plate for 24 h.

Figure 1. Illustration of the preparation of fluorescence red-shifted carbon dots (a-CDs, b-CDs, c-CDs, and d-CDs) by changing electronic effect of
the synthetic precursors (A), chemical structure plane (B), 3D structural front (C) and side (D).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c05770
ACS Omega 2024, 9, 44418−44424

44419

https://pubs.acs.org/doi/10.1021/acsomega.4c05770?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05770?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05770?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05770?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c05770?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The cells were then treated with d-CDs at various
concentrations for 2 h. To evaluate the effect of incubation
time, d-CDs (50 μg/mL) were incubated with U87MG cells
for different periods of time. The cells were then washed and
fixed, and the uptake of d-CDs by the cells was observed using
a confocal microscope.

2.2.5. Cytotoxicity Analysis. The cytotoxicity of d-CDs was
evaluated using the CCK-8 assay. U87MG cells were seeded
on a 96-well plate and allowed to adhere for 24 h. The cells
were then incubated with different concentrations of d-CDs for
12 h. The CCK-8 reagent was diluted with culture medium to
the working concentration (10%) and added to the wells of the
treated cells, incubated at 37 °C for about 1 h, and then the 96-
well plate was placed in the microplate reader, and the UV
absorbance of the sample at 450 nm was recorded.

2.2.6. Fluorescence Imaging. Nude mice were purchased
from Shanghai SLAC Laboratory Animal Co., Ltd. U87 cells
were minimally implanted into the brains of nude mice using a
stereotactic fixation device (5 × 105/mice). After 19 days, 100
μL of d-CDs at a concentration of 10 mg/mL was injected (tail
vein) into the nude mice. Fluorescence images were obtained
with the in vivo imaging system (Caliper). The major organs of
the mice were then harvested and imaged. Finally, the brain
was divided into two halves and imaged again. The animal
experiments were conducted according to the guidelines
approved by the Ethics Committee of the First People’s
Hospital of Chuzhou.

3. RESULTS AND DISCUSSION
3.1. Characterizations of Four CDs. Figure 1 showed the

synthesis and the proposed structures of the various CDs
derived from phenyl compounds, where the electron-donating
effects were reported to be −NH2 > −OH > −CH3.

28 As
shown in Figure 2A, all of the CDs exhibited obvious O−H

stretching vibrational absorption, suggesting the involvement
of ethanol in the generation of CDs besides its service as a
solvent. Moreover, all of these CDs possessed abundant surface
groups. Differently, with the precursors from aniline to p-
phenylenediamine, the obtained CDs had a gradually increased
C�C stretching vibrational absorption, C(SP2)−H bending
vibrational absorption, and a gradually emerged N−H
stretching vibrational absorption, suggesting the elevated
surface amino groups (in agreement with the precursors)
and the large π-conjugation. These implied that the surface
groups of the carbon dots were inherited from the precursors
and that the amides favored the condensation of phenyl
compounds. UV−vis absorption spectra (Figure 2B) showed
that all of these carbon nanodots (a-CDs, b-CDs, c-CDs, and
d-CDs) had strong absorption at 200−300 nm, which
represented the π−π* transition of the aromatic C�C
bond.29 Notably, this adsorption was obviously red-shifted
from 240 nm for a-CDs to 285 nm for d-CDs, indicating the
most conjugated units by using phenylenediamines as
precursors. Correspondingly, the maximum absorption wave-
lengths beyond 300 nm also behaved in this way, confirming
the larger π-conjugated system for d-CDs induced by the
strong electron-donating effects of the amidos in phenylenedi-
amines.30

Because of their surface groups, these CDs could be
dispersed in a variety of common solvents. For example, all
of these CDs could be well dispersed in even ethanol solution
with clear solutions of different colors (Figure 2C). In
particular, these solutions could emit blue to red fluorescence
under 302 nm UV light irradiation, suggesting tunable
fluorescence emission. Furthermore, this distinct fluorescence
could also be visualized by the normalized photoluminescence
(PL) spectra (Figure 2D), which showed maximum emission
wavelengths of 556, 568, 592, and 606 nm for the four carbon

Figure 2. Characterizations of different CDs. FTIR spectra (A), UV/vis absorption spectra (B), optical images (C) under the irradiation of sunlight
and UV light with a wavelength of 302 nm, and normalized PL spectra (D) (Ex = 480 nm).
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quantum dots, respectively. Correspondingly, the remarkable
Stokes shifts of 76, 88, 112, and 126 nm indicated the easy
modulation of the fluorescence emissions by the different
phenyl compounds as precursors. These could be attributed to
the different chemical groups (−CH3, −OH, and −NH2) in
the ortho-position of the benzene rings, which could act as an
electron donor for the red-shifted fluorescence according to
−CH3 < −OH < −NH2.

28 Meanwhile, the −NH2 facilitated
the condensation reaction to form the larger conjugate

structure of CDs with the reduced defects, which would also
be beneficial for the red fluorescence emissions.31 Therefore,
CDs with different fluorescence emissions can be easily
synthesized, and the red fluorescence CDs could be regulated
for further bioapplications.
3.2. Characterizations of d-CDs. As shown in Figure 3A,

the red-emitting d-CDs had a uniform ultrasmall size of about
3 nm and a ζ-potential of about 16 mV. The transmission
electron microscopy (TEM) image also showed a uniform

Figure 3. ζ-potential and particle size (A), TEM image (B), high-resolution TEM image (C), and Fourier transform pattern (inset of C) of d-CDs.
Two-dimensional fluorescence spectrum of d-CDs (D). Fluorescence intensity of d-CDs after exposure to PBS with different pH values (E) and
UV excitations with different time periods (F) (Ex = 480 nm).

Figure 4. Fluorescence spectra (A) of d-CDs after adding different concentrations of Fe3+ (Ex = 480 nm) and the corresponding standard curve
(B).
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particle size (Figure 3B). Meanwhile, a lattice spacing of 0.25
nm (Figure 2C) was observed, similar to that of graphitic
carbon (100) planes, which also revealed the crystallinity of the
CDs.32 Similarly, the Fourier transform patterns (Figure 2C,
inset) also confirmed the monocrystalline cores of d-CDs.33

The optical properties of d-CDs are shown in Figure 3D. First,
the emission wavelength of d-CDs was 635 nm, independent of
the excitation wavelength. The optimum excitation wavelength
was 480 nm. Second, the fluorescence properties of d-CDs
were stable at pH 5−12 (Figure 3E) and even under a 365 nm
UV irradiation time for different periods (Figure 3F). The
corresponding fluorescence spectra are shown in Figure S1.
Furthermore, the relative quantum yield of d-CDs was 19.42%
(Figure S2). This good stability, strong photobleaching
resistance, and strong fluorescence guaranteed the application
of d-CDs under physiological conditions.
3.3. Biomedical Applications of d-CDs. Initially, the

fluorescence of d-CDs was gradually quenched with an
increasing Fe3+ concentration (Figure 4A). Accordingly, there
was a good linear correlation relationship between the
fluorescence intensity of d-CDs and the Fe3+ concentration
(R2 = 0.999) from 0 to 50 μM (Figure 4B). In recent years,
there have been many studies on the detection of Fe3+ by CD,
but most of them emit blue fluorescence or are used to detect
abiotic substances.34,35 Currently, the main mechanisms of
Fe3+ detection by CD are static quenching and dynamic
quenching.36,37 Fe3+ has strong electron attraction and
incomplete d-orbitals, so it can coordinate with functional
groups (such as carboxyl, amino, or hydroxyl) on the surface of
the carbon point, which leads to electron transfer, destroys the
excited state energy transfer of the carbon point, and produces
fluorescence quenching.38,39 In addition, the Fe3+ concen-
tration of human serum was 10−35 μM.40 The d-CDs in this
study can not only emit red light but also have a wide detection

range. Therefore, it has great potential to be exploited as a
chemical sensor for Fe3+ detection in the blood.
Next, d-CDs could be rapidly taken up by U87 glioma cells,

where the maximum uptake was reached even after incubation
for 10 min (Figure 5A,C). Due to the high quantum yield of 25
μg/mL d-CDs, even 10 μg/mL obviously illuminated the
tumor cells via their red fluorescence (Figure 5B,D).
Accordingly, d-CDs could be intravenously injected into
glioma-bearing nude mice for in vivo glioma imaging (Figure
5F), where d-CDs gradually accumulated in the glioma and
showed the highest brightness at 30 min after injection (a−f).
Meanwhile, ex vivo fluorescence imaging of the major organs
verified the targeted accumulation of d-CDs in glioma for its
sensitive imaging ability (g,h in Figure 5F). In addition, d-CDs
had a low cytotoxicity (Figure 5E), which was advantageous
for biological applications. The above results suggested that d-
CDs with good biocompatibility had great potential for glioma
fluorescence imaging in vivo, which would be an advanced
fluorescence contrast.

4. CONCLUSIONS
In brief, a facile solvothermal method was developed for the
preparation of fluorescence CDs from blue to red emission
using four phenyl compounds (aniline, p-toluidine, 4-amino-
phenol, and p-phenylenediamine) with different functional
groups as the initial precursors. It was found that the electron-
donating effects of the surface functional groups in the
precursors contributed to the red shift of the emission
wavelength. Consequently, red-emitting CDs (d-CDs) with
high quantum yield (∼19.42%), narrow size distribution (2−5
nm), good dispersibility, and strong photobleaching resistance
were obtained. These d-CDs could be exploited for iron ion
detection with a good linear relationship (R2 = 0.999) from 0
μM to 50 μM via the sensitive Fe3+-induced fluorescence

Figure 5. Cellular uptake of U87 cells cultured with d-CDs for different time periods (A, C) or different concentrations (B, D). λex = 488 nm; bar =
50 μm. Cytotoxicity evaluated via CCK-8 test (E). Data were expressed as mean ± SD (n = 4). Fluorescence imaging images of glioma-bearing
nude mice at different time points after administration (F, a−f), major organs (F, g), and the coronal plane of the brain (F, h) 30 min post
injection. Data were presented as mean ± SD (n = 3).
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quenching. More importantly, d-CDs could be taken up by
glioma cells and used for the fluorescence imaging of gliomas
in vitro and in vivo. This work provided an alternative strategy
and a novel insight into the preparation of CDs for further
bioapplications.
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