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Abstract: The cathode, a crucial constituent part of Li-ion batteries, determines the output voltage
and integral energy density of batteries to a great extent. Among them, Ni-rich LiNixCoyMnzO2

(x + y + z = 1, x ≥ 0.6) layered transition metal oxides possess a higher capacity and lower cost as
compared to LiCoO2, which have stimulated widespread interests. However, the wide application
of Ni-rich cathodes is seriously hampered by their poor diffusion dynamics and severe voltage
drops. To moderate these problems, a nanobrick Ni-rich layered LiNi0.6Co0.2Mn0.2O2 cathode
with a preferred orientation (110) facet was designed and successfully synthesized via a modified
co-precipitation route. The galvanostatic intermittent titration technique (GITT) and electrochemical
impedance spectroscopy (EIS) analysis of LiNi0.6Co0.2Mn0.2O2 reveal its superior kinetic performance
endowing outstanding rate performance and long-term cycle stability, especially the voltage drop
being as small as 67.7 mV at a current density of 0.5 C for 200 cycles. Due to its unique architecture,
dramatically shortened ion/electron diffusion distance, and more unimpeded Li-ion transmission
pathways, the current nanostructured LiNi0.6Co0.2Mn0.2O2 cathode enhances the Li-ion diffusion
dynamics and suppresses the voltage drop, thus resulting in superior electrochemical performance.

Keywords: Li-ion batteries; Ni-rich layered cathode; preferred orientation; diffusion dynamics;
voltage drop

1. Introduction

The pursuit of environmental protection and low carbon emission has been causing a daily
increasing requirement of high-value ratio energy storage devices. Lithium-ion batteries (LIBs) with
long cycle life, and high energy density and working potential have been occupying a high proportion of
the commercial battery market [1–3]. Nevertheless, there is still a lack of appropriate cathode materials
with ultra-stable cycle life and fast charge/discharge rates to meet the demand of next-generation
batteries [4,5]. It is well known that the cathode considerably determines the whole energy density
of batteries. Recently, Ni-rich LiNixCoyMnzO2 (x + y + z = 1, x ≥ 0.6) layered transition metal
oxides have been emerging as the most potential cathode candidates for LIBs due to their relatively
higher capacity and output working voltage than LiFePO4, more abundant resources, and lower
cost than traditional LiCoO2 [6–10]. Unfortunately, its practical application still suffers from low
cycle stability, severe voltage drops and poor kinetics [11,12]. There are many factors that including
cation mixing, phase transition, loss of lattice oxygen, particle cracking, electrolyte decomposition,
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electrode/electrolyte parasitic reaction, transition metal dissolution and surface reconstruction could
influence the voltage drops, charge transfer rate, and cycle-stability of cathode during long-term
charge/discharge process [4,8,13–18]. To address these problems and promote its further development,
various strategies have been proposed and evaluated, such as surface modification (including Li3PO4,
ZnO, MgO, AlF3, Al2O3, TiO2, and ZrO2, etc.) [15,19–23], cationic (or anionic) doping (including
Zr4+, Ti4+, Al3+, Mg2+, F–, and B3+, etc.) [21,22,24–26], concentration gradient and core-shell structure
designing [27–29], and morphology control [30].

Among the current used multiple modification methods, nanocrystallization has been identified as
the most effective measure to improve the kinetic property of electrode materials and is widely studied
and adopted to enhance the electrochemical performance [27,31–36]. The advantages of nanostructured
materials that offer short Li+ transport pathways and provide a large contact area for charge transfer.
On the other hand, Ni-rich layered oxides possess a typical hexagonal α-NaFeO2 structure which
offers two-dimensional (2D) channels for Li-ion migration along with the a (or b) axis during the
charge/discharge process. Therefore, a large number of researchers are committed to improving
electrochemical performance by exposing the active electrochemical facets [37–39]. Some crystal planes
(i.e., (010), (100), and (110) planes) can provide an open structure for Li-ion diffusion and charge
transfer while others do not. Certainly, a large number of studies have been published to support this
point. Wu and co-workers verified that it was beneficial to enhance the electrochemical performance
by synthesizing fusiform hierarchical particles with exposing (110) plane [40]. Moreover, the work
of Notten’s research examined that it was beneficial to enhance the rate performance by exposing
the more active {010} facets, which could afford the fast Li+ ion transmission rate [41]. Take all the
above factors into account, synthesizing nanostructured materials with preferential orientation crystal
planes will dramatically improve the poor kinetics, moderate the voltage drops and achieve superior
charge/discharge performance.

Herein, Ni-rich LiNi0.6Co0.2Mn0.2O2 nanobricks cathode with a preferred orientation (110)
electrochemical plane was synthesized via solid-state reaction by mixing Li source with Ni-Co-Mn
composite oxide nanosheets. The nanosheets structure of Ni-Co-Mn composite oxide is originated
from thermal decomposition of navel hydroxide precursor. The precursor with nanosheet structure is
massively prepared by a modified co-precipitation route. This unique nanobrick morphology with
more exposed (110) electroactive planes can offer an open structure for Li-ions diffusion. Additionally,
the synergistic effect of the nano-size effect and the exposed (110) crystal plane significantly improve
the electrochemical performance and endow superior dynamics. Especially, the voltage drop is as
small as 67.7 mV in the current density of 0.5 C for 200 cycles. Hence, this rational strategy to improve
performance is instructive for other materials.

2. Materials and Methods

2.1. Preparation of LiNi0.6Co0.2Mn0.2O2 (NCM622) Cathode Materials

Firstly, the hydroxide precursor nanosheets were synthesized via a modified co-precipitation
route. 100 mL 20 mM feed solution prepared by mixing NiSO4·6H2O, CoSO4·7H2O, and MnSO4·H2O
with the proportion of Ni: Co: Mn at 3:1:1. Then, the feed solution was dripped into a 50 mL NH3·H2O
(pH = 11) solution three-necked flask with continuously stirring. Synchronously, 100 mL 30 mM
Na2CO3 solution and 100 mL 0.6 mM NH3·H2O solution were completely put into the flask. After that,
the temperature was maintained at 55 ◦C and stirring velocity controlled at 800 rpm for 24 h to
accomplish the co-precipitation reaction procedure. Then, the precursors were filtered, washed three
cycles alternately with ultrapure water and ethanol, and dried at 80 ◦C overnight. The oxide composite
intermediates were obtained by pre-sintering hydroxide precursor at 600 ◦C for 5 h in a furnace.
Finally, the mixture of as-synthesized oxide precursors and Li2CO3 with an appropriate proportion
was calcined at 850 ◦C for 12 h in the air to obtain pristine LiNi0.6Co0.2Mn0.2O2, denoted as NCM622.
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2.2. Characterization Methods

The crystalline structure of these materials was determined by using a PANalytical Empyrean
X-ray diffractometer (XRD, PANalytical B.V., Almelo, The Netherlands) equipment with Cu-K radiation
(λ = 1.54056 Å, operating at 40 kV, 45 mA). The intensity data collected by XRD was analyzed by
the Rietveld improved program-General Structural Analysis System-I (GSAS-I) software package.
The morphology, microstructure and elemental distribution were measured by a field emission
scanning electron microscope (SEM, Zeiss Gemini DSM 982, Carl Zeiss AG, LEO Oberkochen,
Germany) equipped with an EDS energy dispersive X-ray spectrometer with an acceleration voltage of
15 kV. High-resolution transmission electron microscopy (HRTEM) data was obtained by a JEM-2100F
(JEOL Co., Akishima City, Tokyo, Japan) instrument operating at 200 kV. N2 desorption and adsorption
isotherms were evaluated at 77 K with a Quadrachrome adsorption instrument.

2.3. Electrochemical Measurements

The electrochemical properties were tested in CR2016 coin-type cells. These cells were assembled
with the NCM622 cathode, Li metal anode, organic electrolyte, and polypropylene separators
in an Ar-filled glove box. The organic electrolyte was that 1.0 M LiPF6 dissolved in ethylene
carbonate/diethylene carbonate/dimethyl carbonate (EC/DEC/DMC, 1:1:1 in volume). The NCM622
electrode was prepared by thoroughly mixing the active material, Super-P, and polyvinylidene fluoride
(PVDF) with a weight ratio of 8:1:1 in N-methyl(pyrrolidinone) (NMP). Then the slurry spread onto the
aluminum foil and dried in a vacuum oven at 100 ◦C for 12 h. The mass loading of cathode materials
was measured in the range of 1.6–2.2 mg cm−2. LAND CT2001A testing system (LAND Electronic Co.
Ltd., Wuhan, China) was performed to evaluate the cycling performance and rate capacity at various
current density in the voltage region of 2.8–4.4 V. Electrochemical impedance spectroscopy (EIS) was
measured by an electrochemical workstation (Gamry Interface 1000, Gamry Electrochem. Instru. Co.,
Warminster, PA, USA) with an amplitude of 10 mV from 105 Hz to 10−2 Hz. Galvanostatic Intermittent
Titration Technique (GITT) was performed at a constant current pulse of 0.1 C rate for 15 min and then
rest for 90 min to stabilize the cell voltage between 2.8 and 4.4 V.

3. Results and Discussion

Figure 1 presents the detailed formation procedure of TM (Ni, Co, Mn) (oxy)hydroxide precursor
and nanobricks LiNi0.6Co0.2Mn0.2O2 (marked as NCM622). First, The Mn/Co ions co-substituted
Ni(OH)2 with nanoplates morphology was prepared by a modified co-precipitation route using
a high-pH values ammonium hydroxide as the base solution. Subsequently, these (Ni, Co, Mn)
hydroxide nanoplates were adopted as novel phase precursors for the formation of the final high
nickel NCM622. XRD pattern (Figure 2a) verifies that this TM (Ni, Co, Mn) hydroxide can be
precisely indexed to hexagonal α-Ni(OH)2 (JCPDS no. 38-0715) phase. According to the XRD results,
there are two fundamental phases of Ni(OH)2 that exist in the precursor. It is interesting to note
that the c-parameter of α-Ni(OH)2 is greater than that of β-Ni(OH)2 [42], which means that the
diffraction angle of α-Ni(OH)2 is equivalent to a low angle shift of β-Ni(OH)2. This phenomenon
is originated from the type of anions (OH−, CO3

2−, SO4
2−) and H2O molecules embedded in the

Ni(OH)2 lattice [43–46]. Separately, the corresponding XRD parameters were listed in Tables S1−S3.
The diffraction peaks of NiOOH were associated with the easy oxidization of α-Ni(OH)2 to NiOOH [47].
Therefore, the as-synthesized precursor is (oxy)hydroxide (TM(OH)2/TMOOH) and can be precisely
indexed to (Ni(OH)2(NiOOH)0.167)0.857 (JCPDS no. 89-7111). As depicted in Figure 2d, the obtained
(oxy)hydroxide precursor shows a hierarchical architecture, which is consists of randomly assembled
nanosheets. To avoid destructive morphology change resulting from the crystal growth during
solid-state lithiation and attain intermediate oxides composite, the (oxy)hydroxide precursor was
pre-calcined at 600 ◦C in air condition [48]. The XRD result (Figure 2b) directly reveals the changes
of (oxy)hydroxide to precursor NiO (JCPDS no. 78-0643) and MnCo2O4 (JCPDS no. 84-0482). As it
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appears in the SEM signals (Figure 2e), this oxide composite well inherited the nanosheets’ morphology.
To gain an in-depth realizing of the intermediate’s elemental composition, SEM-EDS mapping was
also performed. The EDS mapping signals reveal the uniform distribution and co-exists of Ni, Co, Mn,
and O elements (Figure S1). Furthermore, and the atomic ratio of Ni, Mn, and Co is determined at
approximately 3:1:1, which is well consistent with the designed stoichiometric values (Figure S2).
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The structure and morphology of NCM622 materials after lithiation reaction were also investigated
by XRD and SEM. Evidently, all the XRD diffraction peaks of NCM622 (Figure 2c) could be indexed
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to the layered hexagonal α-NaFeO2 single-phase with a space group of R3m [49]. On account of
previous studies, the splitting of (006)/(102) and (108)/(110) peaks indicates this NCM622 cathode with
a well-ordered layered structure [33,50]. Certainly, no distinct extra peaks appear in the XRD patterns
suggesting the attained NCM622 cathode without any impurity phase. Figure 2f displays the SEM
result of NCM622 products, which confirm that the as-prepared cathode with an architecture nanobrick
morphology possesses smooth surfaces and enhanced sidewalls. Separately, the thickness of these
nanobricks can be intuitively acquired as about 300 nm. Additonally, EDS mapping signals of Ni, Co,
Mn, and all elements (Figure 2g) verify that all elements are uniformly distributed. It is worth noting that
the thickness difference between the NCM622 and precursor nanosheet is associated with the merging
of the multilayer boards during the high-temperature reaction [41]. The unique hierarchical structure
is not only effectively forms good penetration of electrolytes, but also markedly increases the transport
pathway for Li-ion diffusion during the delithiation/lithiation processes. To accurately verify the
element composition of Li:Ni:Co:Mn in the nanobricks, ICP-OES (Agilent 720ES) measurements were
performed and provided in Table S4. The results demonstrate that the molar ratio of Li:Ni:Co:Mn in
nanobricks is well consistent with the expected stoichiometric ratio of LiNi0.6Co0.2Mn0.2O2.

To gain more insight into the crystal structure, the XRD pattern of this NCM622 cathode was
refined and analyzed by using GSAS software. Figure 3a and Table S5 display the refined results of
NCM622 material based on hexagonal phase α-NaFeO2 (R3m) layered structure. It is worth noting
that the intensity of (110) peak is stronger than (108) peak in the magnified view, and the ratio values
of I(110)/I(108) is 1.06. The ratio of I(110)/I(108) over 1.0, which further indicates the abundance of exposed
electroactive (110) facets NCM622 cathode possessed. This phenomenon has been reported and verified
in many previous works, in which the preferential growth of the crystal structure with an exposed
plane is believed to enhance the electrochemical performance [39,40,51–53]. This particular structure
with more exposed (110) facets of NCM622 cathode is believed to offer unobstructed Li+ diffusion
channels. The microstructure of NCM622 was characterized by transmission electron microscopy
(TEM), high-resolution TEM (HRTEM) and fast Fourier transform (FFT). Figure 3c further verifies
that the resulted NCM622 with a nanobrick structure, which is well inherited the structure from the
precursor. The HRTEM image and inset FFT pattern (Figure 3e) with an interplanar distance of 2.07 Å
is assigned to the (104) planes of NCM622 cathode materials.
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Figure 3. (a) Refined XRD pattern of NCM622 material based on LiNiO2 hexagonal (R3m) phase and
magnified view of (108) and (110) peaks; (b) The atomic structure of NCM622 vertical viewed (110) and
(108) planes; (c–e) TEM, HRTEM images and FFT pattern (inset) of NCM622. Note: Zox. is the position
of O2− along the c axis in a hexagonal unit cell. Typically, (0, 0, Zox.) is used as the coordinate for O2−.
The slab thickness S(MO2) and the interslab thickness I(LiO2) correspond to the distances along the
chex axis between the oxygen layers of the (Ni, Co, Mn)O2 slab and LiO2 interslab spaces, respectively.
They are defined as S(MO2) = (2/3 − 2Zox.)chex. and I(LiO2) = (chex/3) − S(MO2) [54].

The intrinsic lithium-ion diffusion dynamic properties of current NCM622 with preferred
orientation (110) facets structure was further characterized. Galvanostatic intermittent titration
technique (GITT) and electrochemical impedance spectra (EIS) were carried out to analyze the Li-ion
diffusion coefficient, which is the key indicator for ion transport kinetics. The DLi

+ is calculated by
Equation (1) [30,55,56]:

DLi+=
4
πτ

(nMVM

S

)2(∆Es

∆Et

)2(
τ ≤

L2

DLi+

)
(1)

where DLi+ is the Li+ diffusivity (cm2 s−1), τ is the time duration of the pulse (s), nM and VM are the
molar mass (mol) and volume (cm3 mol−1) of the active material, S is the cell interfacial area (cm2),
respectively. ∆Es is the potential difference at the state of equilibrium (V), and ∆Et is the polarization
potential (V), and L is the length of Li+ diffusion (cm). The applied current plus vs. cell voltage for a
single titration step of GITT curves are extracted out in Figure S3, in which the different parameters
of Vo, IR drop, V1, V2, V3, etc., are schematically marked out. The GITT values in the entire interval
charge state are shown in Figure 4a and the corresponding calculated DLi

+ of NCM622 electrode lies in
the range of 10−12–10−8 cm s−1 (Figure 4b).
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Figure 4. (a) The GITT curves of NCM622 cathode in the voltage of 2.8–4.4 V at C/10 rate and
(b) corresponding variations in Li+ diffusion coefficient as functions of the potential during the charging
processes; (c) Nyquist plots; (d) the relationship between Zre and ω−1/2 at low frequencies; (e) rate
capability of NCM622 electrode at different discharge rates (0.1 C, 0.2 C, 0.5 C, 1 C, 2 C, 1 C, 0.5 C, 0.2 C,
0.1 C) in the voltage of 2.8–4.4 V and (f) corresponding discharge voltage profiles at various rates.

Furthermore, the EIS tests were also measured and depicted in Figure 4c. The DLi
+ is further

evaluated from the Warburg impedance date according to the following Equation (2) [57]:

DLi+ =
R2T2

2A2n4F4C2σ2
(2)

Z’= RD+ RL+ σω−1/2 (3)

where R is the ideal gas constant, T is the absolute temperature, F is the Faraday constant, n is the
number of electrons per molecule oxidized, C is the concentration of Li+ in the cathode. A is the
surface area of the electrode, which was determined by Brunauer-Emmett-Teller (BET) measurement
using Quadrachrome adsorption isotherms at 77 k. As shown in Figure S4, the value of A was
concluded as 5.92 m2 g−1. σ is the Warburg coefficient related to Z′ in Equation (3), which is the
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fitted slope of the relationship between the Z′ and the square root of frequency (ω−1/2) (Figure 4d).
On account of Equations (2) and (3), DLi+ of NCM622 cathode could be calculated as 2.03 × 10−8 cm2 s−1.
This value is also in good agreement with the results obtained by GITT. It is illustrated that the materials
with preferred orientation (110) active facets have favorable Li-ion diffusion kinetics, which strongly
supports the excellent electrochemical performance NCM622 cathode achieved.

To validate the rate capability and cycling performance NCM622 reached, the NCM622//Li
half-cells were measured. Figure 4e,f show the rate capability of NCM622 at various charge-rates in the
voltage range of 2.8–4.4 V. This NCM622 cathode retains a capacity of 178.6, 173.8, 162.1, 152.1, 140.6,
1551.1, 160.0, 171.7, and 179.0 mAh g−1 at 0.1, 0.2, 0.5, 1, 2, 1, 0.5, 0.2, and 0.1 C, respectively. When the
current density returns to 0.1 C (from 1 to 0.1 C), yielding a capacity retention of 99%. The distinguished
capacity retention proves that this NCM622 material possesses excellent rate capability. The superior
performance also is an echo with previous GITT and EIS analysis. These superior properties can be
attributed to the unique nanobrick structure with more exposed electroactive (110) facets and thereby
reduced the diffusion distance, thus improving the Li+ diffusion kinetics.

The cycling stability of NCM622 nanobriks cathode was also evaluated and displayed in Figure 5.
Figure 5a shows the smooth charge/discharge curves of NCM622 for the first cycle. It delivers a high
initial discharge capacity of ~175 mAh g−1 and coupled with an initial coulomb efficiency (ICE) of 85%
at a current density of 0.1 C. Moreover, at a certain high discharge voltage, this NCM622 cathode has a
negligible discharge open circuit voltage drop of only 8.3 mV. To further unveil the charge/discharge
mechanism, the corresponding differential capacity (dQ dV−1) curves as a function of cell voltage is
provided in Figure 5b. The differential capacity curves mainly consist of a couple of redox peaks and
display lower anodic peak voltages in the second charging process. Besides, the prepared NCM622
possesses a small voltage interval between the anodic and corresponding cathodic peaks indicating
almost negligible polarization and well reversibility of this cathode [14]. Gratifyingly, the NCM622
material displays stable cycling performance (Figure 5c) and achieves superior capacity retention of
89.7% and 88.2% after 100 cycles at 0.2 C and 2 C, respectively. The corresponding discharge curves
displayed in Figure 5h,i which vividly appear as stable discharge platforms and capacities without
obvious drops and decay. As shown in Figure 5d–g, the long-term cycle stability of NCM622 was also
measured at 0.5 C. Figure 5d exhibits a detailed analysis of the capacity retention of NCM cathode
during the whole 200 cycles, which is conducted out through the recorded number of cycles (50 times
interval) displaying a capacity retention as high as 82.2% after 200 cycles. The ICE of the nickel-rich
layered cathode materials was associated with the side reactions and irreversible phase transitions at
the electrode/electrolyte interface during the delithiation process. Especially for nano-sized particles,
which possess highly active electrode/electrolyte interface thereby the side reactions are inevitable take
place, thus causing part of the capacity irreversibly [11,15,16]. The coulombic efficiencies are all close to
100% in subsequent cycles, revealing that the NCM622 undergoes a highly reversible electrochemical
reaction during the whole cycling process (Figure 5e). Figure 5f exhibits a small midpoint potential
difference of 67.7 mV, suggesting a low voltage drop, thus delivering excellent long-term cycle stability.
The corresponding charge/discharge curves (Figure 5g) directly present the voltage platform change
reflecting the high-capacity retention this NCM622 achieved. The high-capacity retention and low
voltage drop can be ascribed to the abundance of exposed (110) planes, which offers an open structure
for rapid Li-ions transportation and ensures a small polarization.
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Figure 5. Electrochemical performance of NCM622 cells at 30 ◦C in the region of 2.8–4.4 V: (a) Typical
charge/discharge curves for the first cycle at 0.1 C rate; (b) Differential capacity curves of the
first and second charge/discharge cycles; (c) cycling performances at 0.2 C and 2 C after four
activation cycles at 0.1 C and (h,i) their corresponding discharge voltage profiles; (d) long-term
cycling performance at 0.5 C for 200 cycles and (e) corresponding coulombic efficiencies; (f) midpoint
potential; and (g) charge/discharge voltage profiles.

Also, the structure and morphology of the electrode after cycling were investigated by XRD and
SEM measurements. The XRD pattern of the NCM622 electrode (Figure S5(a)) in the voltage range of
2.8–4.4 V at 0.5 C rate after 200 cycles reveals that the NCM622 electrode still preserve a hexagonal
crystal structure relating to the R3m space group. Furthermore, the corresponding SEM images (Figure
S5(b)) indicate NCM622 cathode still maintained the nanobrick morphology with a smooth surface
and sharp edges. The XRD pattern and SEM images evidence that the rational structure design well
protects the structural integrity of NCM622 from destruction.

To acquire more helpful information revealing the possible changes NCM622 undergoes, the AC
impedance measurements were evaluated at various cycles at a 0.5 C rate. As demonstrated in
Figure 6a–e, the semicircles of high and medium frequency features can be observed for all Nyquist
plots. The high and medium frequency region are associated with Rf and Rct, respectively. Based on
the equivalent circuit (Figure S6), The Rf and Rct values can be calculated and offered in Figure 6f.
It can be observed that the Rf values without significant changes from 50th to 150th cycles suggest that
the current cathode possesses stable cathode electrolyte interface (CEI) film during the cycle process.
The Rct value with continuous increase throughout the cycle is caused by the oxidative decomposition
of the electrolyte on the electrode surface.
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4. Conclusions

Ni-rich NCM622 nanobricks with preferred orientation (110) active planes are successfully
synthesized via a scalable approach, which consists of a modified co-precipitation procedure followed
by a solid lithiation reaction. This NCM cathode achieves superior rate capability retaining a discharge
capacity of 178.6, 173.8, 162.1, 152.1, and 140.6 mAh g−1 at 0.1, 0.2, 0.5, 1, and 2 C, respectively. The GITT
and EIS analysis reveal that this NCM622 exhibits a good kinetic property equipped with a Li-ion
diffusion coefficient around 2.03 × 10−8 cm2 s−1 and a sufficiently small voltage drop (67.7 mV) at
0.5 C after 200 cycles, and superior capacity retention, ca. 89.7% (0.2 C) and 88.2% (2 C). The superior
Li+ storage performance NCM622 possessed could be attributed to the unique architectures with a
preferred orientation (110) facet, which not only endows more channels for ion/electros transporting,
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but also reduces the diffusion distance and, thus, resulting in excellent diffusion dynamics and attaining
superior electrochemical performance. This imaginative design sheds a light on constructing multistage
structured cathode materials for the next-generation batteries.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/12/2495/s1,
Figure S1: SEM image and elemental EDS mapping of Ni, Co, Mn, O and all elements for the intermediate oxides
composite, the scale bar is 90 µm in all figures, Figure S2: EDS spectrum and corresponding element composition
of intermediate oxides composite, Figure S3: Applied current plus vs. cell voltage for a single titration step of
GITT curves, Figure S4: N2 adsorption/desorption isotherms of NCM622 nanobricks, Figure S5: Typical XRD
pattern and SEM images of NCM622 electrode after long-term 200 cycles at 0.5 C rate, Figure S6: Equivalent circuit
model is used for fitting the experimental results. Rs: solution resistance, Rf: surface film resistance, related to
Li-ions diffusion in the cathode electrolyte interface (CEI), and Rct: charge transfer resistance, CPE: constant phase
element, Wo: Warburg element (open), Table S1: Unit cell parameters for the two fundamental phases of Ni(OH)2,
Table S2: X-ray diffraction parameters of α-Ni(OH)2 based on JCPDS No.38-0715, Table S3: X-ray diffraction
parameters of β-Ni(OH)2 based on JCPDS No. 14-0117, Table S4: The ICP-OES results of NCM622 nanobricks,
Table S5: Atomic site information and crystallographic data for NCM622.
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