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Abstract: In order to enhance the therapeutic potential, it is important that sufficient knowledge regard-
ing the dynamic changes of adipose-derived stem cell (ASC) immunophenotypical and biological prop-
erties during in vitro growth is available. Consequently, we embarked on a study to follow the evolution
of highly defined cell subsets from three unrelated donors in the course of eight passages on tissue cul-
ture polystyrene. The co-expression patterns were defined by panels encompassing seven and five cell
surface markers, including CD34, CD146, CD166, CD200, CD248, CD271, and CD274 and CD29, CD31,
CD36, CD201, and Stro-1, respectively. The analysis was performed using multichromatic flow cytome-
try. We observed a major paradigm shift, where the CD166-CD34+ combination which was found across
all cell subsets early in the culture was replaced by the CD166+ phenotype as the population homo-
geneity increased with time. At all analysis points, the cultures were dominated by a few major clones
that were highly prevalent in most of the donors. The selection process resulted in two predominant
clones in the larger panel (CD166+CD34−CD146−CD271− CD274−CD248−CD200− and CD166+CD34+

CD146−CD271−CD274−CD248−CD200−) and one clone in the smaller panel (CD29+CD201+CD36−

Stro-1− CD31−). The minor subsets, including CD166+CD34−CD146−CD271+CD274−CD248−CD200−

and CD166+CD34+CD146+CD271−CD274−CD248−CD200−, and CD29+CD201−CD36−Stro-1−CD31−,
CD29+CD201+CD36−Stro-1+CD31−, and CD29+CD201+CD36+Stro-1−CD31−, in the seven and five
marker panels, respectively, were, on the other, hand highly fluctuating and donor-dependent. The
results demonstrate that only a limited number of phenotypical repertoires are possible in ASC cultures.
Marked differences in their relative occurrence between distinct individuals underscore the need for
potency standardization of different ASC preparation to improve the clinical outcome.

Keywords: adipose-derived stem cells; heterogeneity; immunophenotype; cell subsets

1. Introduction

Fat tissue is a rich source of cells, which, based on their multilineage differentia-
tion potential, are referred to as adipose-derived stem cells (ASCs) [1,2]. During in vitro
isolation from fat tissue by enzymatic dissociation and further processing, they are ini-
tially contained within a heterogeneous cell mixture termed stromal vascular fraction
(SVF), together with other progenitor and more mature cell types. The potential for a
positive impact on regenerative processes of crude SVF or populations more enriched
for ASCs is great due to their significant pro-angiogenic, anti-apoptotic, pro-trophic, and
immunomodulatory effects as well as their effect on extracellular matrix deposition and
composition [3–8]. Currently, various ASC-based approaches are being assessed to treat
some highly prevalent and recalcitrant conditions, such as osteoarthritis, cardiovascular
disease, or chronic wounds [9–13]. However, it is important to note that these clinical
trials employ either crude fat tissue, SVF, or primary cell cultures, which represent highly
heterogeneous populations, also entailing cells that may not be active in supporting the
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required specific therapeutic outcome. It is undoubtedly of great interest to explore how
the hallmark biological properties are distributed among the immunophenotypically dis-
crete subpopulations, since such knowledge would be a major step towards cell-based
therapeutics rationally designed for maximum efficacy.

Surface epitope expression patterns are commonly used to identify and select discrete
subpopulations in order to determine their biological properties. Previous studies were
able to determine the functional significance of some of the phenotypical variants; however,
these investigations were based on the selection of either single markers or rather limited
combinations thereof [14–23]. Based on the number and frequency of detectable surface
epitopes, and their possible combinations, there appears to be a great number of distinct
immunophenotypes within the ASC cultures [24,25]. Available evidence also indicates that
the lineage heterogeneity is subject to substantial variation determined by the donor and
culture-related factors [26,27]. To understand the impact of these factors on the potential
clinical utility of different ASC preparations, the evolution of highly complex epitope
patterns during the expansion in vitro should be elucidated.

We have previously examined the progression of more complex immunophenotypical
changes during in vitro expansion on the tissue culture polystyrene surface in variants
that were defined by a triple cluster of differentiation (CD) co-expression. Altogether,
15 surface epitopes were selected based on the potential significance with regards to mes-
enchymal stem cell (MSC)markers, wound healing, immune regulation, ASC markers, and
differentiation capacity. For a more complete description of the rationale for the selection,
please refer to the paper [28]. The epitopes were assorted into five particular combinations,
CD90/CD105/CD73, CD166/CD271/CD248, CD29/CD200/CD274, CD146/CD34/CD31,
and CD201/CD36/Stro-1. Among those, we found that the CD90/CD105/CD73 profile
was invariantly present after expansion. Therefore, in the current study, we set out to iden-
tify stem cell subpopulations represented by their co-expression of the remaining 12 surface
markers. To this end, two panels, enabling 7- or 5-fold multiplexing, were established
and the cell subsets were identified using flow cytometry. This advanced approach allows
for the detection of how highly defined ASC subpopulations appear and evolve during
in vitro expansion.

2. Materials and Methods
2.1. Cell Isolation and Culture

Lipoaspirates were obtained after informed consent from three healthy donors under-
going elective liposuction surgery at the Aleris-Hamlet Private Hospital, Aalborg, Denmark.
The protocols were approved by the regional committee on biomedical research ethics in
Northern Jutland (N-20160025). Tissue collection complied with the principles defined
by the Declaration of Helsinki and followed the rules defined by Danish legislation on
anonymized tissue (Komitélov §14). The SVF was isolated as described previously [29].
Briefly, the aspirate fat, after being washed with sterile phosphate-buffered saline (PBS,
Gibco, Taastrup, Denmark), was digested in Hanks’ Balanced Salt Solution (Gibco, Taastrup,
Denmark) containing 0.6 U/mL collagenase NB 4 standard grade (Nordmark Biochem-
icals, Uetersen, Germany) on a shaker for 1 h at 37 ◦C. After digestion, the dissociated
cells were referred to as a stromal vascular fraction (SVF). They were filtered through a
100 µm filter (Millipore, Omaha, NE, USA), and sedimented at 400× g for 10 min. SVF was
then resuspended in prewarmed growth media (alpha-Minimum Essential Medium with
GlutaMAX supplemented with 10% fetal calf serum and 1% antibiotics) (all from Gibco,
Taastrup, Denmark), and clarified through a 60 µm filter (Millipore Omaha, NE, USA).
The SVF was pelleted again by final centrifugation at 400× g for 10 min and resuspended
in growth media. Nucleocounter NC-200 (Chemometec, Allerod, Denmark) was used to
determine the cell yield.

The SVF suspension was plated into T175 culture flasks (Greiner Bio-one, Fricken-
hausen, Germany), and was referred to as passage 0 (P0). In total, three cultures were
established from two donors and two cultures from one donor. The cells were released
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using TrypLE (Gibco, Taastrup, Denmark) when they reached 80–90% confluency (every
4–5 days), and the subsequent cultures were established at a density of 5000 cells/cm2. The
population doublings (PD) were calculated using the formula PD = 3.32(log Xe−log Xb),
where Xe is the cell number at the end of the passage and Xb is the cell number at the
beginning of the passage [30]. On average, the population doubling during a passage was
1.65. The medium was changed twice a week. The cultures were propagated until P8.

2.2. Multichromatic Flow Cytometry (MFC)

To enable optimal simultaneous analysis, the markers were assorted into two panels,
one entailing CD34, CD146, CD166, CD200, CD248, CD271, and CD274, and the other
CD29, CD31, CD36, CD201, and Stro-1, as indicated in Table 1. The panels were designed
to take into account the technical limitations of multichromatic flow cytometry. The
combination of the specific antibodies and fluorophores, particularly for lowly expressed
surface markers, were selected to minimize loss of resolution caused by spillover. In each
run, only viable cells were considered with the aid of the Fixable Viability Stain 570 (FVS570)
and all antibodies were directly conjugated (all from BD Biosciences, Lyngby, Denmark) as
specified in Table A1. The particular staining and compensation steps followed essentially
our previously published procedures [28]. Briefly, BD CompBeads Plus Set Anti-mouse Ig,
k and Anti-rat Ig, k (BD Biosciences) were run first to determine the compensation values.
The cell samples were incubated with FVS570 for 15 min at room temperature followed by
the addition of antibody cocktails optimally diluted in BD Horizon Brilliant Stain Buffer
(BD Biosciences) for 30 min at 4 ◦C. The working dilutions were determined by a series
of titrations. In addition to the experiment samples, tubes omitting one of the antibodies
were prepared for fluorescence minus one (FMO) controls.

Table 1. Antibody panel design for flow cytometry.

Laser Channel Dye Panel A Panel B

405 nm 450/45 BP BV421 CD248 CD201
525/40 BP BV510 CD200
610/20 BP BV605 CD166 CD36
660/20 BP BV650 CD29

561 nm 610/20 BP PE-CF594 CD146
585/42 BP FVS570 + +
780/60 BP PE-Cy7 CD34

638 nm 660/20 BP Alexa Fluor 647 Stro-1
712/25 BP APC-R700 CD274
780/60 BP APC-Cy7 CD31

488 nm 525/40 BP BB515 CD271

BP, bandpass; FVS570, fixable viability stain 570 was used in both panels.

The labeled cell samples were analyzed in a CytoFLEX (Beckman Coulter, Indianapolis,
IN, USA), and the data analysis was done by the Kaluza 2.1 software package (Beckman
coulter). The basic gate strategy and gate examples for the selected fractions can be
found in Figure 1. Four basic gates were adopted to remove debris, ensure flow stability,
discriminate doublets, and eliminate dead cells. The top 2.5 percentile of the FMO controls
were utilized as the cutoff values to define the positive boundary, and the Boolean gates
were employed to determine the potentially significant lineages whose proportions were
over 5% at any passage.
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Figure 1. Flow cytometric and gating strategy. Four basic gates, one (FSC-A vs. SSC-A) to discriminate cells from debris, 
one (FSC-A vs. time) to ensure flow stability, one (viability intensity histogram) to exclude dead cells, one (FSC-A vs. FSC-
H) to collect singlet cells, were used to target the analyzed cells. Representative gating strategies are demonstrated for the 
seven and five markers co-expressing variants in the panel A and B, respectively. These subpopulations were gated in 
colors using FMO controls and Boolean gates. The top 2.5 percentile of FMO control was set to define the positive bound-
ary of the antigen intensity of the x-axis. Abbreviations: FSC-A, forward scatter-area; FSC-H, forward scatter-height; SSC-
A, side scatter area; FMO, Fluorescence minus one; CSA, cell subset panel A; CSB, cell subset panel B. −, absence of the 
marker; +, presence of the marker. 

  

Figure 1. Flow cytometric and gating strategy. Four basic gates, one (FSC-A vs. SSC-A) to discriminate cells from debris,
one (FSC-A vs. time) to ensure flow stability, one (viability intensity histogram) to exclude dead cells, one (FSC-A vs. FSC-H)
to collect singlet cells, were used to target the analyzed cells. Representative gating strategies are demonstrated for the
seven and five markers co-expressing variants in the panel A and B, respectively. These subpopulations were gated in colors
using FMO controls and Boolean gates. The top 2.5 percentile of FMO control was set to define the positive boundary of
the antigen intensity of the x-axis. Abbreviations: FSC-A, forward scatter-area; FSC-H, forward scatter-height; SSC-A, side
scatter area; FMO, Fluorescence minus one; CSA, cell subset panel A; CSB, cell subset panel B. −, absence of the marker; +,
presence of the marker.



Cells 2021, 10, 218 5 of 13

2.3. Statistical Analysis

Statistical analysis was performed using IBM SPSS Statistics v.26 software package
(IBM, Armonk, NY, USA). Data are shown as means of the means from two or three
independent cultures from three unrelated donors + standard deviation (SD). Statistical
comparisons were conducted using one-way repeated measures analysis of variance with
Bonferroni post hoc tests. The significance value was set at 0.05.

3. Results
3.1. Phenotypical Variant Evolution

Panel A enabled analysis of the evolution of 128 possible cell subsets (Figure 2A).
Upon invoking an inclusion criterion of average proportion from gated cells from three
donors at any passage being higher than 5%, eight cell variants were identified. The CD
combination profile of the selected subpopulations is listed in Table 2 and their frequencies
of occurrence are specified in Table A2. Panel A demonstrates a prominent change taking
place, whereby upon culturing, the four initially present cell subsets CSA1–4 disappear
and two evolutionary rather distant and, at the same time dominant, variants CSA5
and CSA7 appear (Figure 2B,C). At the basis of this adaptation process is the loss of the
CD34+CD166− combination and acquisition of CD166 and its combinations, in particular
with CD34, CD146, and CD271.

Table 2. The definition of the adipose-derived stem cell (ASC) subpopulation.

Panel Subpopulation Immunophenotype Profile

A CSA1 CD166–CD34+CD146–CD271–CD274–CD248–CD200–

A CSA2 CD166–CD34+CD146–CD271+CD274–CD248–CD200–

A CSA3 CD166–CD34+CD146+CD271–CD274–CD248–CD200–

A CSA4 CD166–CD34+CD146+CD271+CD274–CD248–CD200–

A CSA5 CD166+CD34–CD146–CD271–CD274–CD248–CD200–

A CSA6 CD166+CD34–CD146–CD271+CD274–CD248–CD200–

A CSA7 CD166+CD34+CD146–CD271–CD274–CD248–CD200–

A CSA8 CD166+CD34+CD146+CD271–CD274–CD248–CD200–

B CSB1 CD29+CD201–CD36– Stro-1–CD31–

B CSB2 CD29+CD201+CD36–Stro-1–CD31–

B CSB3 CD29+CD201+CD36–Stro-1+CD31–

B CSB4 CD29+CD201+CD36+Stro-1–CD31–

CSA, cell subset panel A; CSB, cell subset panel B; boldface highlights positivity.

Panel B enabled analysis of the evolution of 32 possible cell subsets, and four signif-
icantly represented cell variants were identified (Figure 3A). The common denominator
across all of these subsets is the expression of CD29. Contrary to panel A, a single subpop-
ulation CSB2 (CD29+CD201+) dominates throughout the whole culture period, indicating
that no major change is taking place (Figure 3B,C). However, less prominent, and opposing,
trends can be discerned with the minor subsets. Here, the single CD29+ phenotype (CSB1)
is detected only during the first four passages, whereas CD201 positivity along with CD36
(CSB4) or Stro-1 (CSB3) increases as a result of culturing.
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Figure 2. Evolution in the culture of ASC immunophenotype variants in panel A providing for combinations of seven cell 
surface markers. (A) The temporal changes in the distribution of distinct cell subsets are visualized using a tree plot. (B) 
Quantitative analysis of evolution trends. Only cell subsets with the relative prevalence of more than 5% at any passage 
are accounted for. (C) Subpopulation adaptation trends. The data represent the means of the means from two or three 
independent cultures from three unrelated donors + standard deviation (SD). The presence of a specific epitope is indi-
cated by �, the absence by �. Abbreviations: P, passage; CSA, cell subset panel A. *, indicates a statistically significant 
change p < 0.05. 
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Figure 2. Evolution in the culture of ASC immunophenotype variants in panel A providing for combinations of seven cell
surface markers. (A) The temporal changes in the distribution of distinct cell subsets are visualized using a tree plot. (B)
Quantitative analysis of evolution trends. Only cell subsets with the relative prevalence of more than 5% at any passage
are accounted for. (C) Subpopulation adaptation trends. The data represent the means of the means from two or three
independent cultures from three unrelated donors + standard deviation (SD). The presence of a specific epitope is indicated
by y, the absence by ~. Abbreviations: P, passage; CSA, cell subset panel A. *, indicates a statistically significant change
p < 0.05.
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Figure 3. Evolution in the culture of ASC immunophenotype variants in panel B providing for combinations of five cell
surface markers. (A) The temporal changes in the distribution of distinct cell subsets are visualized using a tree plot. (B)
Quantitative analysis of evolution trends. Only cell subsets with the relative prevalence of more than 5% at any passage
are accounted for. (C) Subpopulation adaptation trends. The data represent the means of the means from two or three
independent cultures from three unrelated donors + standard deviation (SD). The presence of a specific epitope is indicated
by y, and the absence by ~. Abbreviations: P, passage; CSB, cell subset panel B. *, indicates a statistically significant change
p < 0.05.

3.2. Interpersonal Variability

As far as the subpopulations comprised in panel A are concerned, their occurrence
differs markedly between different donors; nevertheless, the major variants, including
CSA1–4, 5, and 7, appear to be expressed in a consistent fashion (Figure 4). In contrast, the
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minor subsets that appear during the course of expansion occur only sporadically, such
as the CSA6 only at P4 in donor 3, and CSA8 only at P8 in donor 2. Similarly, in panel B,
the dominant subset CSB2 is found in all donors, but what distinguishes it from panel A
is the highly consistent prevalence rate at which it can be detected (63–87%). The minor
subsets on the other hand appear highly irregularly, being apparently associated with a
single donor, such as the CSB1 with donor 2, CSB3 with donor 3, and CSB4 with donor 1.
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Additional insight into the clustering patterns was provided by multidimensional
data rendering using radar spatial plots (Figure 5). In panel A, the radar plots indicate a
shift from a broad P1 pattern involving four subsets, CSA1–4, towards two major subpopu-
lations, CSA5 and 7, in P4 and P8 in all three donors. As explained above, this is taking
place through the loss of the CD34+CD166− phenotype and the acquisition of CD166 and
combinations thereof. The radar plots, furthermore, reveal that the cell subsets cluster in
donor-specific patterns. This stems from the fact that although the particular subsets from
different individuals display an identical set of markers, they are expressed at relatively
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different levels. In a similar way, the panel B radar plots confirm a steady temporal pat-
tern dominated by the CSB2, and further highlights the distinctiveness of each donor’s
subset distributions.
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4. Discussion

The single cell preparations resulting from the fat tissue enzymatic processing are
inherently highly heterogeneous, harboring many different cell types, which upon in vitro



Cells 2021, 10, 218 10 of 13

culturing undergo adaptation and natural selection. These processes are reflected by
an evolution of the immunophenotypical profiles of the expanded cells. To be able to
fully harness the biological potential of ASCs, it is important to understand whether
such changes bear any implications for the functional properties. Previously, it has been
demonstrated that single surface markers are associated with specific functionalities, such
as differentiation, angiogenesis, or bioactive secretion [14,15,31,32]. The single markers,
however, provide only limited information about the clonal complexity. There is initial
support for the notion that highly defined cell subsets are involved in enhanced specific
functionality [24]; thus, a better understanding of the behavior of complex co-expression
patterns would go a long way towards a better definition of the potency of different
ASC therapeutic modalities [16,19,33]. A rational and effective application of ASC-based
therapies could, thus, become a reality in spite of hindrances caused by a significant
donor variability [34], differences in the site of the tissue of origin [35], or manufacturing
processes [34].

One of the major observations of the currents study is the finding that although all
12 of the selected CD markers have been identified in the cultured ASCs [25,28], only
some will participate in meaningfully represented variants. These comprise eight epitopes
(CD166, CD34, CD146, CD271, CD29, CD201, CD36, and Stro-1), which altogether define
12 dominant variants in two different CD profile panels. On the other hand, CD274, CD248,
CD200, and CD31 were found not to participate in any significant subpopulation, as they
were distributed broadly among the great number of different marker combinations. In
general, the cultures are dominated by few subsets, which are shared in all donors, but their
relative proportions are highly individual, and this may carry non-negligible consequences
for the clinical outcome of any given preparation. In contrast, the minor subsets are highly
donor-dependent, but if they turn out to be associated with a specific functionality, they
may also contribute to inter-individual differences regarding the therapeutic efficacy.

When looking for explanations for the temporal changes, two major mechanisms
might explain why the proportion of distinct subpopulations changes with passaging; either
differences in proliferative capacity between subsets or appearance of new phenotypes due
to changes in expression of epitopes. In light of the de novo appearance of subsets, it can
be concluded that while differences in proliferation rate may play a role, the major driving
force of the phenotypic changes appears to be differential expression of surface markers.

From a temporal perspective, a remarkable switch is taking place, where the universal
CD34 expression at the initial period is complemented with CD166 in later passages in
accordance with our former observations [36]. CD166 has previously been reported, along
with the other canonical markers CD73, CD90, and CD105, to indicate stem/progenitor
cells [23,36]; thus, its appearance may have important connotations regarding the stemness
potential of the propagated cell population. On the other hand, the rearrangement of CD34
from being a pan-clone hallmark into a single and novel CD166+CD34+ subset looks to
suggest adaptation responses that underlie processes involved in the commitment [37]. It
appears worthwhile that this variant be explored in more detail, while it seems to impart
functionality in at least some of regenerative applications [38,39]. Another marker of
interest is CD201, since together with CD29, it supports a highly prevalent and stable
subset. To date, there is an opacity of evidence as to the role of this epitope within the
context of human ASCs, but the notion that this particular clone supports hitherto unknown
specific functionality warrants further investigation.

The current study provides an insight into the complex patterns of ASC subsets during
adaptation to in vitro conditions. While identification of the major subsets of cell surface
markers represents an important tool for the characterization of the cell product in a clinical
setting, immunophenotyping alone cannot fully reveal the potency of an ASC population.
The ensuing effort should aim to further associate the comprehensive surface epitope
profile with biological potency. To this end, the major as well as minor lineages need to
be separated and comprehensively evaluated in functional assays. These investigations
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will undoubtedly contribute to improving the ASC therapeutic value in a wide range of
regenerative applications.
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Appendix A

Table A1. List of primary antibody conjugates.

Antigen Fluorophore Host Company Cat. No.

CD29 BV650 M BD Biosciences 743785
CD31 APC-Cy7 M BD Biosciences 563653
CD34 PE-Cy7 M BD Biosciences 560710
CD36 BV605 M BD Biosciences 563518

CD146 PE-CF594 M BD Biosciences 564327
CD166 BV605 M BD Biosciences 742373
CD200 BV510 M BD Biosciences 563254
CD201 BV421 R BD Biosciences 743552
CD248 BV421 M BD Biosciences 743899
CD271 BB515 M BD Biosciences 562125
CD274 APC-R700 M BD Biosciences 565188
Stro-1 Alexa Fluor 647 M R & D system FAB1038R

R, rat; M, mouse.

Table A2. The proportion of ASC subsets (%).

CSA 1 CSA 2 CSA 3 CSA 4 CSA 5 CSA 6 CSA 7 CSA 8 CSB 1 CSB 2 CSB 3 CSB 4

P1 D1 13.5 7.4 8.3 7.5 0.2 0.0 6.3 3.8 2.8 82.1 4.3 4.6
D2 15.0 5.6 28.9 14.5 0.4 0.1 3.5 4.4 6.8 79.1 1.8 5.4
D3 22.9 21.6 10.5 17.2 0.2 0.2 2.2 1.4 9.5 70.4 2.7 4.9

P4 D1 0.0 0.0 0.0 0.0 26.6 4.2 42.8 0.8 0.0 75.4 4.1 13.8
D2 0.0 0.0 0.0 0.0 38.5 4.0 37.4 0.8 15.9 63.1 5.0 7.2
D3 0.0 0.0 0.0 0.0 43.9 7.2 14.9 3.6 0.2 75.3 14.9 3.2

P8 D1 0.0 0.0 0.0 0.0 27.6 4.0 36.4 0.6 0.1 75.3 5.7 14.8
D2 0.0 0.0 0.0 0.0 10.2 0.1 53.5 20.2 0.2 86.7 5.8 3.5
D3 0.0 0.0 0.0 0.0 31.6 0.5 29.9 1.4 0.1 77.6 17.3 1.4

CSA, cell subset panel A; CSB, cell subset panel B; P, passage; D, donor.
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