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Abstract

Introduction:Epileptic condition can be detected in EEGdata seconds before it occurs,

according to evidence. To overcome the related long-term mortality and morbidity

from epileptic seizures, it is critical to make an initial diagnosis, uncover underly-

ing causes, and avoid applicable risk factors. Progress in diagnosing onset epileptic

seizures can ensure that seizures and destroyed damages are detectable at the time of

manifestation. Previous seizure detection models had problems with the presence of

multiple features, the lack of an appropriate signal descriptor, and the time-consuming

analysis, all ofwhich led to uncertainty anddifferent interpretations.Deep learning has

recently made tremendous progress in categorizing and detecting epilepsy.

Method: This work proposes an effective classification strategy in response to these

issues. The discrete wavelet transform (DWT) is used to breakdown the EEG signal,

and a deep convolutional neural network (DCNN) is used to diagnose epileptic seizures

in the first phase. Using a medium-weight DCNN (mw-DCNN) architecture, we use a

preprocess phase to improve the decision-makermethod. The proposed approachwas

tested on the CHEG-MIT Scalp EEG database’s collected EEG signals.

Result:The results of the studies reveal that themw-DCNNalgorithmproducesproper

classification results under various conditions. To solve the uncertainty challenge,

K-fold cross-validationwasused to assess thealgorithm’s repeatability at the test level,

and the accuracies were evaluated in the range of 99%–100%.

Conclusion: The suggested structure can assist medical specialistsin analyzing epilep-

tic seizures’ EEG signals more precisely.
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1 INTRODUCTION

Epilepsy is a painful disease that influences the nervous system, and

subsequent seizures appear for the patient with the continuation

(Capovilla et al., 2016). In some definition, seizures are known as sud-

den and transient abnormalities, leading to hallucinations, conscious-

ness loss, and whole-body seizure (de Lange et al., 2016). Mutation in a

molecular mechanism is one of the reasons for the occurrence of onset

of epileptic seizures, which conduce the brain damage malignant brain

tumor, stroke, and infection. Clinical statistics indicate that epilepsy

appears in 50 million people worldwide, and this neurological disorder

is a crucial cause of mortality after Alzheimer’s and stroke (Hill et al.,

2015).

Human societies and families of patients with epilepsy pay exorbi-

tant costs for care each year (Yu et al., 2019). These challenges justify

the requirement for a novel approach to more conventional handle

seizures that will serve both the person and their families responsi-

ble for the impacts and consequences of seizures. Proper and accurate

diagnosis of this disease will help the patient, and on the other hand,

the staggering costs of treatment and care of epileptic patients will be

significantly reduced. The main reason why many automated methods

are used in the early diagnosis of epilepsy is to find a way to predict

the disease smoothly. The automatic identification of epileptic EEG sig-

nals is a helpful method for epileptic seizure diagnosis. Recent deep

learningpatternsnot successful to fully examinediagnosis anddisorder

classification, which may lead to eliminating nonlinear and nonstation-

ary characteristic in an epileptic. We need a therapeutic method, and

thus, the therapeutic model should be capable of recognizing seizures

at their onset stage. This model is grouped by the treatment used to

slow theprogressionof seizures: local electrode stimulation (Li &Cook,

2018), thermal stimulation (Fernandes et al., 2018), or neurochemical

stimulation (Wang et al., 2018).

Although intelligent approaches to evaluating epilepsy seizures

have been widely proposed, deep learning techniques have been

accepted in order to increase input signals and improve classification

efficiency. The advantages of deep architectures are numerous: they

do not require the signal or picture at the feature extraction level,

making it possible to retain the input image and signal data. Addition-

ally, development in response to the points indicated above serves the

deep network architectures. Recently, Deep Neural Networks (DNNs)

have been trained using appropriate feature extraction and transfor-

mation strategies to attain the necessary performance in classifying

epilepsy occurrences (Rezaee et al., 2022; Rezaee et al., 2021). How-

ever, deep learning techniques are engaged in various fields, such as

disease classification based on physiological signals, speech recogni-

tion, brain-computer interface system (BCI), and other related items

(Kiral-Kornek et al., 2018; Nejedly et al., 2019). Accordingly, deep

learning to study and analyze physiological signals is seen inmany stud-

ies (Cho&Hyun-Jong, 2020; Antoniades et al., 2016; Chowdhury et al.,

2021).

Epilepsy is regarded as the most chronic, common, and severe

neurologic disease, and therefore, some studies have utilized deep

learning to recognize and process EEG signals. In Turner et al. (2014),

the Deep Belief Networks (DBNs) were employed to distinguish the

seizure events using recorded EEG signals from the multichannel

analysis. Wulsin et al. (2011) also demonstrated that DBN struc-

ture could be used in a semisupervised classification procedure for

modeling patterns and analyzing the EEG signals. Several researchers

have proposed CNN designs to diagnose seizures using EEG signals

(Johansen et al., 2016; Antoniades et al., 2016; Li et al., 2016; Amin &

Kamboh, 2016). A robust deep learning technique based on stacked

auto-encoders (SAE) and the maximum entropy correlation function

was presented for seizure detection (Qi et al., 2014). They tried to

reduce noise and artifacts from sample EEG signals. The generaliz-

ability and efficiency of similar methods are not practicable and easily

applied; nevertheless, the deep learningmethods can be useful models

to diagnose epileptic seizure onset.

Xiang et al. (2015) suggested using Fuzzy Entropy (FuzzyEn) as a

method for studying epileptic seizures and diagnosing the disorder. In

their work, classifying EEG data from patients with distinct epilepsy

disorders needs first doing a Fuzzy Entropy analysis. In order to suc-

cessfully train support vector machines with extracted features, a

grid optimization technique was utilized in combination with a grid

optimizationmethod.

In Li et al. (2015), it was demonstrated that a method based on dis-

tribution entropy (DistEn) outperformed standard entropy approaches

for detecting epileptic seizures via electroencephalogram (EEG) sig-

nals, particularly for short data lengths.

The EEG signals from normal and epileptic episodes were evalu-

ated using an empirical mode decomposition (EMD) method (Pachori

et al., 2015). The EMD generates internal mode functions, which are

composed of a succession of modulated components.

According to Bhattacharyya and Pachori (2017), epileptic incidents

can be diagnosed using multivariate oscillatory EEG data on adaptive

frequency scales. The empirical wavelet transform (EWT) was applied

to assess the amplitudes and frequencies of multivariate signals.

Raghu et al. (2019) claimed to have discovered a key feature

of the EEG matrix determinant for detecting epileptic occurrences

in patients. This study employed bivariate plots, polar coordinate

histograms, and descriptive analysis.

Tzimourta et al. (2019) proposed using EEG data and the Discrete

Wavelet Transform (DWT) to develop an automatic seizure detection

approach. These coefficients can be used to denote the wavelet layers

in each EEG segment.

Using Fourier–Bessel series expansion and weighted multiscale

Renyi permutation entropy, Gupta and Pachori (2019) have developed

a new approach to identify epileptic events by reconstructing rhythms

from EEG data.

Sriraam et al. (2019) classified varied seizure forms into an eight-

class categorization scheme using CNNs. According to their findings,

epileptic seizures can be classified as nonseizures, tonic-clonic, tonic,

absence, generalizednonspecific, focal nonspecific, difficult partial, and

simple partial.

Sharmaet al. (2020) developeda computationally efficient approach

for determining the type of seizure. Consistent results were obtained

using the proposed strategy. In their article, they used nonlinear
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higher-order statistics and deep neural network algorithms to identify

seizures.

de la O Serna et al. (2020) accomplished early diagnosis of epilepsy

by utilizing rhythm-specific EEG data as well as Taylor-Fourier filter

banks with O-splines. The frequency response of the EEG signal was

computed using Taylor-Fourier subband signals, and the results are

provided in their work.

Our main motivations and contributions are summarized in three

parts: (1) DWT helps to optimize the classification performance by

using frequency decomposition and variation detection of seizure and

nonseizure pattern, (2) the mw-DCNN are implemented as the EEG

signal classification model to reduce the computational complexity,

and (3) Design a generalizable model for classifying and diagnosing

epilepsy using in-depth learning that operates in the face of new signals

with appropriate speed and satisfactory performance. Deep learning

has eased epilepsy diagnosis and classification. Our study presents a

useful classification approach.We usemw-DCNN to improve decision-

making, and a discrete wavelet transform decomposes the EEG signal

todetect the subbandsofEEGsignals.Moreover,CHEG-MITScalpEEG

signals are used to evaluate the proposed procedure. The mw-DCNN

algorithm has been tested in several circumstances. Besides, we assess

the algorithm’s repeatability at the test level, with accuracy between

99and100%.Among the contributions that thiswork is aiming tomake

are the following:

a. The proposed new model significantly improves the framework’s

generalizability. Due to the system’s robustness, epileptic incidents

can be detected. By combining deep structure and decomposition

methods, classification errors may be reduced.

b. The method’s computing cost has been lowered while preserving

classification accuracy. Deep learning’s structureminimizes compu-

tational complexity in decisionmaking and enables it towork in real

time or near real time.

The remainder of the article is organized in the following manner.

The deep learning and decomposition process is discussed in Sec-

tion 2. The overview and the proposed approach for detecting epileptic

seizure are detailed in Sections 3 and 4. Finally, in Sections 5 and 6, the

experimental results and conclusion are discussed.

2 DEEP LEARNING, DECOMPOSITION, AND
SIGNAL ANALYSIS

Similar to Neural network (NN) designs, the ultimate output choice of

a DNN, such as CNN, is based on the biases and weights of the prior

layers in the network architecture (Rezaee et al., 2021). Therefore,

the biases and weights of the deep architecture in CNN models are

updated. In the convolution process, the feature map from the most

recent layer is mixed with the kernel’s feature map from the previous

layer. Nonlinear downsampling techniques such as max pooling can be

used to minimize the amount of feature maps generated by convolu-

tional layers. When a feature map is imported into the max-pooling

layer, the max operation is applied to it, as illustrated in the figure. The

feature map is used to update the maximum pooling layer. According

to Equation ( (1), the procedure begins with the largest object.

pj = max 𝛼i
i∈Regionj

, (1)

in which Regionj denotes the pooling region j contained within fea-

ture map a and i denotes the index of each contained element. Also, p

denotes the pooled feature map. Multiclassification problems can also

be solved using Softmax regression as (2):

h
𝜃
(x) = (1 + e−𝜃

Tx)−1. (2)

The cost function is minimized by training the model parame-

ters θ. Nonlinear processing layers are implemented in deep learning

structures for feature extraction and transformation. The enabling

hardware part (Elhosary et al., 2019), the architect of nonlinear designs

(Birjandtalab et al., 2017), and model fine-tuning procedures (Ullah

et al., 2018) are between the growing viewpoints of the deep struc-

ture. The extracted pattern of seizure in EEG signals may differ from

one patient to another.

The effects of extracted patterns from EEG signals in patients’

seizure may be similar to the influence in nonseizure disease in other

patients (Rezaee et al., 2016; Hassan et al., 2020; Dash et al., 2020).

Decomposing the EEG data into different subbands and various fre-

quencies will significantly lead to more valuable information due to

the similarity in the patterns obtained from both types of signals. Has-

san et al. (2020) proposed an automatic algorithm to diagnosis the

epileptic seizure from EEG signals that, in the first step, they decom-

posed EEG signals into intrinsicmode functions. In their study, intrinsic

mode functions were implemented by complete ensemble empirical

mode decomposition with adaptive noise (CEEMDAN). The EEG sig-

nals are decomposed into gamma band with f > 30 Hz, beta band with

12 < f < 30 Hz, alpha band with 8 < f < 12 Hz, theta band with 4 < f

< 8Hz, and delta bandwith f< 4Hz. Sharma et al. (2020) detect abnor-

mal fromseizureEEGsignals by combining localizedwavelet filter bank

features and classification procedure.

They were yield reliability of 79.34% by finding the combination of

extracted features from decomposed EEG signals. Jiang et al. (2020)

also used decomposed techniques, including the symplectic geometric

decomposition technique for epileptic EEG signal description. Raghu

et al. (2019) utilized a computationally efficient automatic seizure diag-

nosis based on successive decomposition index (SDI) procedure. The

decomposing EEG signals into subbands are different, and each can

have its effects to obtain the proper features. However, as shown in

Figure 1, we utilized the DWT to decompose sample signals.

3 MODEL OVERVIEW

The proposed model’s overall structure is depicted in Figure 2. The

DWT technique is employed to decompose sample signals to obtain

various subbands to implement the proposedmethod.
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F IGURE 1 Wehave used discrete wavelet decomposition (DWT)method to decompose EEG signals intomultiple subbands. The down arrow
is downsampling by 2

F IGURE 2 The schematic of introduced approach for identifying
the onset epileptic seizures

The training procedure is determined by the input of signals and

their subband decomposition, as shown in Figure 2. Signal windowing

and correlationmapping are performed. The test phase is completedby

considering the deep learning circumstances to acquire the appropri-

ate response. The technique is examined using the test step, regardless

of the featuremaps constructed during the training phase.

Moreover, the DWT has a substantial advantage over other trans-

forms, such as the Fourier transform, in that it extracts both time

and frequency information from a signal simultaneously (Hadadnia &

Rezaee, 2013; Subasi et al., 2019). The initial step in wavelet decom-

position is to pass a time series signal through a range of high- and

low-pass filters. It is desirable to employ DWT because of its speed of

processing and ease of implementation.

The deep learning structure is employed to classify patterns after

analyzing the signal, improving the classification accuracy of epilepsy

disorder. We show our algorithm based on separated steps, including

training and test processes. The introduced model consists of wavelet

decomposition and a robust framework for epileptic seizures classifi-

cation. The deep learning structure is configured on a medium-weight

deep convolutional neural network (mw-DCNN).

4 METHODOLOGY

As presented in Figure 3, we convert the EEG signals into various sub-

band data. In the next step, the subbands preprocessed by the DWT

strategy. We use two filters and a downward sampler with a sam-

pling coefficient of two rates. The g[.] is a primary inherently high-pass

wavelet and discrete method, and consequently, h[.] is defined as the

mirror versions of the same wavelets. Also, the h[.] is an inherently

low-pass filter that is employed as a second filter in the decomposition

procedure.

To segment and analyze the nonstationary EEG signals, an over-

lapped window technique is handled, which slides over the data with

a predefined size and a preset increment w. In proposed design, we

applied awindow size of 300mswith an increment of 20ms. According

to a study (Canolty et al., 2006), theEEGsignal is time series correlated.

As a result, the proposed approach initially feeds raw EEG data to the

CNN. Additionally, we visualize the sample signal as a two-dimensional

array, with time steps denoting breadth and EEG electrodes denot-

ing height. Additionally, some studies (Wei et al., 2018; Prathaban &

Balasubramanian, 2021) employed the aforementioned technique to

change the input’s size.

4.1 The proposed learning

The suggestedDCNNmodel is constructedof a hierarchical design that

includes three layers of aggregate. The convoluted layer in first part

is utilized to extract different solid features of the sample EEG signal.

Besides, the additional two layers can develop higher surface charac-

teristics, and individually feature mapping is formed of various inputs

mapping with a convolution. The output can be defined as (3):

x𝓁j = f
⎛⎜⎜⎝
∑
i∈Mj

x𝓁−1j × k𝓁ij + b𝓁j

⎞⎟⎟⎠ , (3)
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F IGURE 3 Utilization of h[n] and g[n] filters to decompose EEG signals (x[n]) into subbands

where ℓ depicts ℓ layer and kij is the convolution kernel. Furthermore,

bj shows the bias, andMj represents the collection of input mappings.

Also, the sigmoidal function is illustrated in the mapping of the jth

feature with the position (x, y) and the layer ith, vijxy is described as (4):

vxyij = sig

(
bij +

Pi−1∑
p=0

Qi−1∑
q=0

wxy
ij v

(x+p)(y+q)
(i−1)

)
, (4)

where bij and sig(.) are the bias-mapping functions and sigmoidal func-

tion, besides, Qj and Pi are the width and height of the kernel, and

finally, wij
pq is the kernel weight. The stochastic integration layer was

employed. Reducing the variance and finding the maximum value of

an appropriate feature in a domain of the EEG samples are the actual

implementing appearance of the stochastic integration layer. Also, pre-

venting the over-fitting problem is another proper aspect of using

mentioned layers.

Following the layers of combination and convolution, a consider-

able number of inadequate feature maps are prepared. The network

trained to analyze the signal status by importing all the training data

and defining the label of epilepsy and nonepilepsy. Eventually, by join-

ing these layers to the Softmax full connected layer, decision-making

is possible. These layers are considered as the input data, and thus,

label is defined at the training step. At the training level, the sys-

tem tries to determine the best-unexplored parameters, involving filter

weights and coefficients of layers. Therefore, the least error is reached

in the classification step. The recursive descending gradient algorithm

involves of two steps, including forward-feeding (FF) and propagation

error, and is also employed for training the network (Rezaee et al.,

2020). First, we examine the difficulty to be of a two-class representa-

tion, that the class c and N of the training signals are investigated. The

squared error function (SEF) is further displayed by (5):

Err = (1∕2)
N∑

n=1

c∑
k=1

(Tnk − Yn
k )

2
, (5)

where TkN and YkN are the kth dimensions of nth design of the corre-

sponding label and the predicted label returned by the CNN model,

we utilize low number of layers. Notably, two layers are developed for

adequate decomposition by DWT for EEG signals following the DCNN

model. The proposed structure of the introduced network is shown in

Figure 4. We implement multiple layers that include 4–12 layers. The

first structure has 3–5 layers (lw-DCNN), the second structure has 5–8

layers (mw-DCNN), and finally, third structure has 8–12 layers (hw-

DCNN). The structure of CNN layers, the filter size, and the number of

filters for CNN andmax-pooling operations are presented as layers 1–

7.Convolutional layers (i.e., 1, 2, 4, and6) areConv1,Conv2,Conv3, and

Conv4 with 10 × 1 (20 filters), 20 × 23 (20 filters), 10 × 20 (40 filters),

and 10 × 40 (80 filters) respectively. Stochastic layers (i.e., 3 and 5) are

2 × 1 (stride 2) and 2 × 1 (stride 2), respectively. The decision layer is

Softmax or dense layer with 2 and 3 classes.

4.2 Correlation map

The major challenge of network learning is interpreting and under-

standing CNN performance. Consequently, it is challenging to deter-

mine what the structure is learning, how it is attaining such prominent

outcomes, andwhat kinds of features utilize for classification. Thus, we

analyze the model to visualize and computations for CNN. The sub-

bands of EEG signals contribute the discriminative information for the

classification of motor imaginary signals. Figure 5 depicts correlation

maps of decomposed EEG signal for a patient.

The amplitudes of frequency subbands are employed to compute

the medium values for different frequencies and engaged as fea-

ture quantities. Accordingly, the mean values of features are related

within a receptive area for each layer of the Convolutional Network

as the usual spectral amplitude with the initial output for each layer.

Thereupon, the calculated correlation maps are a measurement of the

collection of the spectral amplitudeof a unit. The calculated correlation

maps are analyzed to the layer output to figure out which of the fea-

tures are appliedbyCNN.Bychanging the informationas artificial data,

the features and amplitude are also modified, and we can understand

whether there is a variation in the output of the CNN.
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F IGURE 4 Proposedmedium-weight structure of the deep convolutional network

F IGURE 5 This figure depicts correlationmaps of decomposed
EEG signal for a patient

5 EXPERIMENTAL RESULTS

The introduced strategy was performed on a workstation with Intel

(R), Core (TM) and Core i7 processors with a 64-bit operating machine

and 4GB of RAM.We utilizedMATLAB programming software (2019b

version) and presented the results in the form of quantitative and

qualitative outputs.

The near frequency spans of decomposed signal to multiple sub-

bands consist of 0–4 Hz, 4–7 Hz, 8–13 Hz, and 13 to 30 Hz ranges

(Liu et al., 2012). The EEG signal parts were converted the 5 levels

of decomposition into approximations and details coefficients to pro-

duce a more effective discriminative model among the nonseizure and

seizure signals in the various frequency subbands. The range of seizure

signals was extensive and happened in the frequency span of [3 Hz–

29 Hz] after the decomposition (Peker et al., 2015). The layers H1

throughH4aremadeupof200neuronswith104weights, 300neurons

with 12weights, 400neuronswith 112weights, and lastly 192neurons

with 24 weights. The network’s activation function was also chosen

as the hyperbolic tangent activator. The convolution layers, which are

multidimensional tensors, are converted to a unidimensional tensor

using Soft-extended Max’s fused full connected output layer. Finally,

weights are improved via RMSprop optimization, which is a technique

for determining a variety of optimization functions.

5.1 Data set

The CHB-MIT database was generated solely by Children’s Hospital

Boston (CHB) for this study (Goldberger et al., 2000). Twenty-four chil-

dren with uncontrollable epileptic convulsions were recorded using

electroencephalography (EEG). Twenty-three EEG instances, ranging

in age from 1.5 years to 22 years old, are included in this collection

of 916 h of EEG recordings. This collection consists of recordings and

cases ranging in age from 1.5 years to 22 years. This collection of

recordings has been separated into three distinct parts for the sake

of organization and accessibility. For youngsters as young as 1.5 years

old, there are recordings in the collection. There are people in the

database as young as 1-month-old and as old as 22 years old. One

month is how long the database is on average. In order to see if the

seizures were disappeared, an EEG scan was performed. This and the

discovery of what they had done shocked them. There are about 600

recordings in CHB-EEGMIT’s database, making it a substantial collec-

tion. One hundred ninety-eight people have been documented in these

files, including information on twodifferent types of seizures. Themost

common sort of seizure is a nonseizure, while seizures are quite rare.

For a maximum of 4 h, this collection’s data is stored on a disk. At

256 samples per second, the 16-bit precision EEG was used to record

each patient’s EEG. The International 10−20 method, developed by

UK academics, was used to record EEG signals on the scalp. A lab can

be set up to record and analyze EEG waves from the scalp. Physionet,

a medical research website, has this information (Goldberger et al.,

2000).
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TABLE 1 Evaluations of accuracy under a range of data division scenarios, both with andwithout the DWT technique, as well as changes in the
number of deep layers in the alpha subband

Data dividing No. layers

Without decomposition With decomposition

Best Mean Worst Best Mean Worst

10-fold (1) High 0.89± (0.03) 0.87± (0.04) 0.85± (0.04) 0.95± (0.01) 0.93± (0.04) 0.92± (0.04)

Med 0.86± (0.03) 0.85± (0.05) 0.83± (0.05) 0.96± (0.02) 0.93± (0.03) 0.92± (0.04)

Low 0.87± (0.03) 0.86± (0.03) 0.84± (0.03) 0.95± (0.01) 0.93± (0.03) 0.93± (0.04)

10-fold (2) High 0.89± (0.03) 0.85± (0.05) 0.83± (0.04) 0.96± (0.01) 0.94± (0.03) 0.92± (0.04)

Med 0.88± (0.03) 0.84± (0.03) 0.83± (0.03) 0.97± (0.01) 0.94± (0.01) 0.92± (0.03)

Low 0.87± (0.04) 0.85± (0.04) 0.84± (0.03) 0.96± (0.02) 0.93± (0.01) 0.91± (0.03)

10-fold (3) High 0.86± (0.03) 0.85± (0.04) 0.83± (0.03) 0.95± (0.01) 0.94± (0.01) 0.91± (0.02)

Med 0.86± (0.03) 0.84± (0.03) 0.83± (0.05) 0.96± (0.01) 0.94± (0.04) 0.93± (0.04)

Low 0.90± (0.04) 0.86± (0.05) 0.84± (0.06) 0.95± (0.02) 0.94± (0.03) 0.93± (0.04)

10-fold (4) High 0.88± (0.02) 0.86± (0.03) 0.85± (0.05) 0.95± (0.02) 0.94± (0.03) 0.92± (0.03)

Med 0.86± (0.03) 0.85± (0.03) 0.84± (0.03) 0.96± (0.01) 0.93± (0.04) 0.92± (0.05)

Low 0.90± (0.04) 0.87± (0.05) 0.86± (0.04) 0.95± (0.01) 0.94± (0.04) 0.90± (0.05)

10-fold (5) High 0.89± (0.03) 0.87± (0.03) 0.86± (0.04) 0.97± (0.02) 0.95± (0.04) 0.90± (0.04)

Med 0.91± (0.03) 0.88± (0.03) 0.87± (0.04) 0.96± (0.01) 0.95± (0.03) 0.93± (0.03)

Low 0.88± (0.04) 0.86± (0.05) 0.84± (0.06) 0.96± (0.03) 0.95± (0.03) 0.92± (0.03)

Note: The values in bold are themost precise.

Note: A bolded value represents the best value obtained.

5.2 Assessments

We used accuracy, sensitivity, and specificity criteria to evaluate the

epilepsy seizure detectionmodel according to Equations (6)–(8):

Accuracy =(
NTruePositive(TP) + NTrueNegative(TN)

NTruePositive(TP) + NTrueNegative(TN) + NFalseNegative(FN) + NFalsePopsitive(FP)

)
,

(6)

Sensitivity =
(

NTruePositive(TP)

NTruePositive(TP) + NFalseNegative(FN)

)
, (7)

Specificity =
(

NTrueNegative(TN)

NTrueNegative(TN) + NFalsePositive(FP)

)
. (8)

Tables 1–4 have been depicted the outcomes of the classification

scheme for five times trials of the design in two categories for the

theta, gamma, beta, and alpha subbands, respectively. In mentioned

tables, the results show the effect of the decomposition strategy on the

input signal. The approximate standard deviation and accuracies have

also been evaluated in low, medium, and high numbers of high layers

based on the used weights of each structure. In general, the initial sig-

nal decomposition increases the classification performance in all cases.

In other words, the design of the DCNN occurs with the best accuracy.

If the length of eachwindowon the signal is assumed to be 300ms, 165

windows will be obtained for a 30-s signal with 40% overlap between

windows. Since the sampling frequency is 256 Hz, each window will

have 75 step times for feature extraction. Thismeans thatwe have 165

× 200 windows for each subject, and since there were 24 subjects in

the test, the 3 classes consisted of about 790,000windows.

Higher frequencies are usuallymore commonplace in abnormal con-

ditions for epilepsy in which there is a position alteration of EEG signal

energy from lower to higher frequency subbands before and through-

out a seizure occurrence. Following wavelet decomposition of the

spectrum EEG signal, the extracted features from each subband inde-

pendently. Hence, onset epilepsy seizures from nonstationary signals

are easier to distinguish, mainly due to higher amplitudes. The selec-

tion of a proper wavelet and the number of decomposition stages is

also extremely momentous in any analysis of EEG signals utilizing the

wavelet transform. We computed the wavelet coefficients for all five

various subbands of EEG signals. The tabulated confusion matrix (CM)

beyond all 10-folds (CV= 10) is displayed in Tables 1–4. In these tables,

it is perceived that 98%of the three classes of EEG signals are precisely

classified as onset epilepsy seizure.

The classification proposed structure classified normal, onset

epilepsy seizure, and certain seizure EEG data sets with an accuracy

of 97%, 98%, and 99%, respectively. Overall, the EEG signals have been

classifiedwith an accuracy of 99%,which is the final classification accu-

racy bymw-DCNN indifferent subbands. The eventuated classification

accuracyof theproposedmw-DCNNisquitehighand thereforehas the

potential for a real clinical application.
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TABLE 2 Evaluations of efficiency in various data dividing conditions andwith andwithout DWT strategy and variation in the number of deep
layers for beta subband

Data dividing No. layers

Without decomposition With decomposition

Best Mean Worst Best Mean Worst

10-fold (1) High 0.91± (0.04) 0.90± (0.05) 0.88± (0.05) 0.96± (0.01) 0.94± (0.05) 0.93± (0.06)

Med 0.91± (0.03) 0.90± (0.06) 0.88± (0.06) 0.95± (0.02) 0.94± (0.05) 0.93± (0.06)

Low 0.93± (0.04) 0.90± (0.05) 0.87± (0.06) 0.95± (0.02) 0.93± (0.04) 0.92± (0.05)

10-fold (2) High 0.92± (0.04) 0.90± (0.06) 0.87± (0.05) 0.97± (0.03) 0.93± (0.04) 0.92± (0.05)

Med 0.89± (0.04) 0.88± (0.05) 0.87± (0.05) 0.97± (0.02) 0.94± (0.05) 0.93± (0.04)

Low 0.88± (0.03) 0.87± (0.03) 0.86± (0.05) 0.96± (0.02) 0.95± (0.04) 0.94± (0.04)

10-fold (3) High 0.87± (0.04) 0.86± (0.05) 0.85± (0.05) 0.96± (0.03) 0.93± (0.04) 0.92± (0.04)

Med 0.85± (0.03) 0.84± (0.05) 0.83± (0.06) 0.96± (0.02) 0.94± (0.03) 0.93± (0.03)

Low 0.88± (0.03) 0.87± (0.04) 0.85± (0.06) 0.95± (0.02) 0.94± (0.04) 0.92± (0.05)

10-fold (4) High 0.90± (0.03) 0.88± (0.05) 0.86± (0.06) 0.97± (0.03) 0.95± (0.04) 0.94± (0.04)

Med 0.92± (0.03) 0.89± (0.04) 0.86± (0.06) 0.96± (0.02) 0.94± (0.05) 0.92± (0.05)

Low 0.91± (0.05) 0.89± (0.04) 0.87± (0.05) 0.96± (0.03) 0.93± (0.05) 0.92± (0.04)

10-fold (5) High 0.90± (0.02) 0.89± (0.05) 0.87± (0.06) 0.96± (0.02) 0.94± (0.05) 0.93± (0.05)

Med 0.90± (0.02) 0.89± (0.04) 0.88± (0.07) 0.97± (0.03) 0.94± (0.04) 0.92± (0.04)

Low 0.89± (0.02) 0.87± (0.05) 0.86± (0.06) 0.95± (0.02) 0.96± (0.04) 0.93± (0.05)

Note: A bolded value represents the best value obtained.

TABLE 3 Evaluations of efficiency in various data dividing conditions andwith andwithout DWT strategy and variation in the number of deep
layers for gamma subband

Data dividing No. layers

Without decomposition With decomposition

Best Mean Worst Best Mean Worst

10-fold (1) High 0.93± (0.04) 0.92± (0.05) 0.89± (0.07) 0.98± (0.01) 0.97± (0.03) 0.94± (0.04)

Med 0.93± (0.03) 0.92± (0.05) 0.90± (0.06) 0.99± (0.01) 0.97± (0.03) 0.94± (0.04)

Low 0.94± (0.03) 0.93± (0.06) 0.89± (0.07) 0.98± (0.02) 0.96± (0.03) 0.95± (0.04)

10-fold (2) High 0.92± (0.04) 0.92± (0.06) 0.89± (0.06) 0.98± (0.01) 0.96± (0.02) 0.94± (0.04)

Med 0.94± (0.03) 0.92± (0.05) 0.89± (0.06) 0.99± (0.01) 0.96± (0.02) 0.93± (0.03)

Low 0.93± (0.04) 0.92± (0.05) 0.90± (0.06) 0.97± (0.02) 0.96± (0.03) 0.95± (0.04)

10-fold (3) High 0.92± (0.03) 0.90± (0.06) 0.89± (0.06) 0.97± (0.02) 0.95± (0.03) 0.94± (0.03)

Med 0.94± (0.04) 0.92± (0.05) 0.89± (0.05) 0.98± (0.01) 0.96± (0.04) 0.93± (0.04)

Low 0.92± (0.05) 0.92± (0.06) 0.87± (0.05) 0.98± (0.02) 0.95± (0.03) 0.93± (0.06)

10-fold (4) High 0.93± (0.04) 0.91± (0.06) 0.89± (0.05) 0.99± (0.01) 0.97± (0.03) 0.94± (0.03)

Med 0.94± (0.04) 0.92± (0.05) 0.90± (0.06) 0.99± (0.01) 0.97± (0.04) 0.95± (0.04)

Low 0.94± (0.04) 0.91± (0.05) 0.90± (0.06) 0.99± (0.01) 0.97± (0.03) 0.93± (0.05)

10-fold (5) High 0.92± (0.03) 0.91± (0.06) 0.89± (0.05) 0.99± (0.01) 0.97± (0.03) 0.93± (0.04)

Med 0.93± (0.04) 0.90± (0.06) 0.88± (0.06) 0.98± (0.01) 0.95± (0.04) 0.92± (0.05)

Low 0.93± (0.05) 0.90± (0.05) 0.88± (0.07) 0.98± (0.01) 0.97± (0.02) 0.93± (0.04)

Note: A bolded value represents the best value obtained.

The receiver operating characteristic (ROC) curve is engaged to

assess the accuracy of a continuous measurement for predicting a

binary outcome. The basic aim of visually illustrating the ROC curve is

to demonstrate the trade-off between the FPF and TPF as the cutoff c

varies. We investigate two classes (i.e., nonseizure and onset epilepsy

seizure) in our study to indicate ROC curve for test and unseen EEG

signals. There are several summary assessments of accuracy and sen-

sitivity associated with the ROC curve, namely the partial area under
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TABLE 4 Evaluations of efficiency in various data dividing conditions andwith andwithout DWT strategy and variation in the number of deep
layers for theta subband

Data dividing No. layers

Without subband decomposition With subband decomposition by DWT

Best Mean Worst Best Mean Worst

10-fold (1) High 0.92± (0.03) 0.91± (0.04) 0.89± (0.05) 0.97± (0.02) 0.95± (0.04) 0.94± (0.05)

Med 0.93± (0.03) 0.91± (0.04) 0.90± (0.06) 0.98± (0.02) 0.96± (0.04) 0.95± (0.04)

Low 0.92± (0.04) 0.91± (0.05) 0.89± (0.07) 0.96± (0.03) 0.95± (0.02) 0.93± (0.04)

10-fold (2) High 0.91± (0.04) 0.90± (0.06) 0.88± (0.07) 0.97± (0.02) 0.95± (0.04) 0.94± (0.05)

Med 0.91± (0.03) 0.90± (0.06) 0.88± (0.07) 0.97± (0.01) 0.95± (0.03) 0.92± (0.04)

Low 0.92± (0.03) 0.89± (0.04) 0.87± (0.07) 0.96± (0.02) 0.94± (0.02) 0.93± (0.04)

10-fold (3) High 0.92± (0.04) 0.91± (0.05) 0.88± (0.06) 0.96± (0.02) 0.94± (0.04) 0.93± (0.05)

Med 0.91± (0.03) 0.89± (0.05) 0.88± (0.06) 0.98± (0.02) 0.96± (0.02) 0.94± (0.05)

Low 0.93± (0.02) 0.89± (0.06) 0.87± (0.06) 0.97± (0.03) 0.96± (0.04) 0.95± (0.04)

10-fold (4) High 0.91± (0.03) 0.90± (0.05) 0.88± (0.05) 0.97± (0.02) 0.95± (0.02) 0.93± (0.04)

Med 0.91± (0.03) 0.89± (0.06) 0.87± (0.06) 0.98± (0.01) 0.96± (0.04) 0.94± (0.03)

Low 0.92± (0.03) 0.90± (0.04) 0.87± (0.07) 0.98± (0.02) 0.97± (0.04) 0.95± (0.04)

10-fold (5) High 0.91± (0.04) 0.89± (0.05) 0.87± (0.06) 0.97± (0.02) 0.96± (0.05) 0.95± (0.05)

Med 0.93± (0.03) 0.91± (0.05) 0.88± (0.07) 0.98± (0.02) 0.95± (0.03) 0.94± (0.05)

Low 0.94± (0.03) 0.91± (0.04) 0.89± (0.06) 0.97± (0.02) 0.96± (0.04) 0.94 ± (0.03)

Note: A bolded value represents the best value obtained.

F IGURE 6 The ROC curve of two test EEG signals

the curve at a fixed TPR and FPR, respectively (see Figures 6 and 7 for

illustration). These figures show the mean ROC curves received using

10-fold cross-validation for various durations when an mw-DCNN

classifier with a medium layer was utilized. To compute and quan-

tify the various runs, we plotted the AUC. Statistical significance tests

using paired t-tests demonstrate that the AUCs acquired applying low,

medium, and a high number of layers are not statistically diverse from

the AUCs acquired using similar deep learningmethods.

6 DISCUSSION

Compared to similar methods, the proposed algorithm asserts that it

can be effective for seizure analysis in EEG signal analysis with lesser

expert knowledge. The investigation further demonstrated that mv-

DCNN could be a potent pattern to identify the onset of epilepsy

seizure based on EEG signals. The proposed model attains state-

of-the-art efficiency on seizure patient detectors, learning a generic

description of onset epilepsy; therefore, the proposed model provides

meaningfully enhanced cross-patient detection outcomes. We further

observe in Figure 8 a qualitative comparison among the related sys-

tems. The suggested approach is associated with three comparable

designs. The designs consist of the patterns of Kaleem et al. (2018),

Bhattacharyyaet al. (2017), andAcharyaet al. (2018) that eachof these

techniques from the single SVM classifier, the adjustable Q wavelet,

and deep learning is composed of several numbers of the layer in

DNN structure, respectively. Instead of two categories classification,
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F IGURE 7 The ROC curve of two unseen EEG signals

F IGURE 8 Similar methods were compared to the recommended strategy in order to determine the onset of an epileptic episode

F IGURE 9 This figure shows the comparison of the accuracy of the classification with three classes. Experiment 1 has been performedwithout
decomposition of input signals. Experiment 2 has been carried out with decomposition by DWT on input signals, and also, the network has a large
number of layers. Finally, Experiment 3 has been conductedwith decomposition byDWTon input signals, and also, the network structure has a low
number of layers

the three categories classification, including multiple severity of the

seizures, was performed as another experiment.

The results are shown in Figure 9 by focusing on recognizing the

onset of seizures as a multiclass problem. In this figure, various situa-

tions such as nonoptimal classification, optimal condition, and analysis

based on decomposed signals are considered.

A comparison of similar methods reveals that the proposed proce-

dure is extremely reliable. Nonetheless, when compared to the system
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F IGURE 10 mw-DCNN convergence in reducing the error in
training data—random data 1 after 31 iterations and reaching the
minimum value of zero in the classifier cost function

of Acharya et al. (2018), the classification performance appears to

have significantly improved. Because of the aforementioned circum-

stance, the method may have a larger positive error rate (PER) than

their advised technique, but the supplied method’s negative error rate

(NER) is determined to be lower. Furthermore, the difficulty of trust-

ing the projected labels was established. In recursive circumstances,

the difference between the two test results was minimal. This signifies

the events’ suitability and dependability. Examination of variance and

standard deviation for the two-class classification category was car-

ried out twenty times with K-fold test, with values of 1.44 × 10−4 and

0.0153. In each iteration, various conditions of the number of layers

were considered, where the medium number of deep CNN structure

layers demonstrate the time spent to process in the lowest state dur-

ing the training stage and, consequently, during the test level. Hence,

the converged level of the error is evaluated based on the cost of the

loss function (i.e., the loss function is proportional to the estimation

of the classification error) of CNN for the limited number of epochs in

Figures 10–12 for the complexity resulting froma lownumber of layers

in the training step.

The accuracy obtained by the proposed mw-DCNN design is higher

than the current approaches for EEG onset epilepsy seizure classifica-

tion. The specificity and sensitivity criteria are additionallymore useful

than similar approaches.

In Table 5, we compare the provided model to state-of-the-art

approaches for EEG seizure diagnosis and onset epilepsy classifica-

tion. Additionally, Shoeb (1981) provides a patient-specific approach

for epilepsy onset that yields a 96% accuracy rate on identical EEG

readings. The use of recurrent and CNN for cross-patient detection of

initial epilepsy seizures was described in Thodoroff et al. (2016), with

a sensitivity of 85%. Similarly, Wilson et al. (2004) described a method

for cross-patient onset epilepsy episode categorization that relies on

fuzzy neural networks (FNN) andmeets the sensitivity criteria of 75%.

F IGURE 11 mw-DCNN convergence in reducing the error in
training data—random data 2 after 14 iterations and reaching the
minimum value of zero in the classifier cost function

F IGURE 12 mw-DCNN convergence in reducing the error in
training data—random data 3 after 8 iterations and reaching the
minimum value of zero in the classifier cost function

Fergus et al. (2016) proposed k-NN classifier for seizure classifi-

cation and achieved 93% accuracy and 88% sensitivity criteria. The

obtained results in our CNNmodel are better than similar approaches

in the classification of seizure disorder. Although in our model, the

features and effect of them investigated as correlation maps to visu-

alize the feature learning, the visualization of outputs was processed

to measure correlation in Chowdhury et al. (2021). When applied

to cross-patient EEG data, the Chowdhury et al.’s (2021) technique

yields a 98.05% overall accuracy, a 91.65% specificity, and a 90.00%

sensitivity. Besides, Chowdhury et al. (2021) present a 99.46% accu-

rate strategy for diagnosing seizures. However, it took around 5 h

to complete 90 epochs of training and testing on each patient’s
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TABLE 5 The comparison of similar approaches with the introducedmodel on the CHB-MIT database

Study Method Accuracy Sensitivity Onset epilepsy seizure

Thodoroff et al. (2016) CNN+RNN 95% 85% No

Hossain et al. (2019) Deep CNN 98.05% 90% No

Shoeb (1981) SVM classifier 96% – Yes

Kaleem et al. (2018) DWT decomposition—five classifiers 99.6% 99.8% No

Bhattacharyya et al. (2017) TQWT decomposition—kNN and

SVM classifiers

99% 99% No

Acharya et al. (2018) CNN (13 layers) 88.67% 95.00% No

Wilson et al. (2004) Fuzzy-NN – 76% No

Fergus et al. (2016) k-NN classifier 93% 88% No

Supratak et al. (2014) Stacked auto-encoder High false positive 100% No

Xun et al. (2015) SVM 88.8% – No

Proposed DWT decomposition—mwDCNN 99.34% 99.18% Yes

cross-patient signals. In contrast to their method, the brain mapping

process identifies only significant and relevant features for seizure

onset classification.

Some studies (Kaleem et al., 2018; Bhattacharyya et al., 2017;

Acharya et al., 2018; Supratak et al., 2014; Stober, 2017) proposed

a way to understand the features and weights learned by the CNN

model. In other words, they strived to discover which EEG signals

have the most efficacies on the convolution maps. As a result, our

method aids in visualizing the specific orientation of band power fea-

tures following decomposition of EEG signals. Furthermore, we can

apply correlation maps as the input of the deep learning technique

to classify onset epilepsy seizure and similar EEG signals. It should

be noted that windowing and decomposition of EEG signals have

facilitated the classification procedure of the nonstationary EEG sig-

nals in onset epilepsy seizure detection. Our method also obtained

satisfactory specificity and sensitivity criteria, which means that the

process algorithm has generalized well. Moreover, combining vari-

ousmachine learning approaches and optimization algorithms appears

to improve classification performance (Tavasoli et al., 2021). How-

ever, combining deep learning algorithms can significantly improve the

classification of various epilepsy signals (Abdelhameed & Bayoumi,

2021).

The fundamental disadvantage of DWT is that it analyzes signals

using a predetermined function, which limits its adaptability. Another

concern is that laboratory-based real-time EEG recordings comprise

both brain activity and noise signals. Additionally, EEG seizure patterns

vary significantly between patients and even within the same patient

over time.

One of the major benefits of this study is that it might be utilized

in hospitals or clinics to automatically detect epileptic EEG patterns.

This capacity aids in the selectionof antiepilepticmedications aswell as

the determination of prognosis. The proposed technique, on the other

hand, lowers humanerror and computing complexitywhilemaintaining

excellent classification accuracy.

7 CONCLUSION

We introduced a generic structure for EEG onset epilepsy seizure EEG

signals analysis and classification applying medium-weight deep CNN.

The introducedprocedure is a systembasedonaDCNNtechniquewith

a medium-weight model and initial decomposition of input signals by

the DWT method. The labels predicted by the proposed method are

significantly correlated to the opinions of the neurologist, and thus,

by applying unseen data, we overcame challenges such as uncertainty.

The accuracy of identifying epileptic seizures for the current study

for a two-class problem, including the presence or absence of disease,

was estimated to be greater than 99%. Besides, the accuracy in differ-

ent recurrences was estimated to be more than 98% on average. This

method, which uses deep learning with an average number of layers,

requires fewer signals for training, and on the other hand, can be used

as a robust system in clinical research and early detection of epileptic

seizures.

The authors intend to continue developing the system in the future,

focusing on real-time design and noise resistance. The authors will

refine and incorporate the existing technique for announcing the initial

seizure notice on a medical diagnosis platform into future research. In

the future, the method may aid neurologists in detecting and treating

the underlying neurological problem shown in the disease’s EEG signal

more successfully.
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