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Abstract

During the last decade, our understanding of cancer cell signaling networks has significantly

improved, leading to the development of various targeted therapies that have elicited pro-

found but, unfortunately, short-lived responses. This is, in part, due to the fact that these

targeted therapies ignore context and average out heterogeneity. Here, we present a

mathematical framework that addresses the impact of signaling heterogeneity on targeted

therapy outcomes. We employ a simplified oncogenic rat sarcoma (RAS)-driven mitogen-

activated protein kinase (MAPK) and phosphoinositide 3-kinase-protein kinase B (PI3K-

AKT) signaling pathway in lung cancer as an experimental model system and develop a

network model of the pathway. We measure how inhibition of the pathway modulates protein

phosphorylation as well as cell viability under different microenvironmental conditions.

Training the model on this data using Monte Carlo simulation results in a suite of in silico

cells whose relative protein activities and cell viability match experimental observation. The

calibrated model predicts distributional responses to kinase inhibitors and suggests drug

resistance mechanisms that can be exploited in drug combination strategies. The suggested

combination strategies are validated using in vitro experimental data. The validated in silico

cells are further interrogated through an unsupervised clustering analysis and then inte-

grated into a mathematical model of tumor growth in a homogeneous and resource-limited

microenvironment. We assess posttreatment heterogeneity and predict vast differences

across treatments with similar efficacy, further emphasizing that heterogeneity should mod-

ulate treatment strategies. The signaling model is also integrated into a hybrid cellular

automata (HCA) model of tumor growth in a spatially heterogeneous microenvironment. As

a proof of concept, we simulate tumor responses to targeted therapies in a spatially segre-

gated tissue structure containing tumor and stroma (derived from patient tissue) and predict

complex cell signaling responses that suggest a novel combination treatment strategy.
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Author summary

A signaling pathway is a network of molecules in a cell that is typically initiated by stimuli

(e.g., microenvironmental cues) acting on receptors and internal signaling molecules to

determine cell fate. Signaling pathways in cancer cells are different from those in normal

cells, and this difference helps cancer cells to grow and thrive indefinitely. Drugs that tar-

get the aberrant signaling pathways in cancer cells (often referred to as targeted therapy)

are promising for improving treatment outcomes of many different cancers in patients.

However, most patients eventually develop resistance to these drugs. Resistance may

already be present in the tumor or may emerge via mutation or via microenvironmental

mediation. Tumor heterogeneity, which is characterized by subtle or dramatic differences

among tumor cells, plays a key role in the development of drug resistance. Some tumor

cells respond well to therapy, while others may adapt to the stress induced by the drug

within the microenvironment. Moreover, removal of drug-sensitive cells may result in the

competitive release of drug-resistant cells. Here, we present mathematical models to assess

the impact of heterogeneity in signaling pathways within tumor cells on the outcomes of

targeted therapy. We consider a simplified version of two well-known signaling pathways

that modulate the growth of lung cancer cells. By using different targeted therapies, we

quantify the effect of pathway inhibition on protein activity and cell viability and devel-

oped a mathematical model of the network, which is trained to reproduce these data and

to develop a panel of heterogeneous in silico cells. The model predicts potential mecha-

nisms of drug resistance and proposes combination therapies that are effective across the

panel. We validate these combination therapies experimentally using the lung cancer cells

and integrated the in silico cells into a computational lung tissue model that explicitly cap-

tures the microenvironment of lung cancer. Our results suggest that heterogeneity in both

the tumor and microenvironment impacts treatment response in different ways and sug-

gest a novel combination therapy for a better response.

Introduction

Normal cell signaling is significantly altered in cancer as a result of genetic and epigenetic

changes, facilitating uncontrolled proliferation and cell survival [1, 2]. Targeted therapies

directly exploit these alterations by blocking the activity of specific proteins typically mutated

or abnormally up-regulated [3]. These therapies have elicited dramatic success in controlling

the growth of multiple cancers [4–10] but showed little to moderate impact on others [11, 12].

Drug resistance, however, remains a major problem due to both cancer cell–intrinsic (innate

and acquired) resistance mechanisms [13] and microenvironment-mediated resistance

[14–16].

Tumor heterogeneity is known to contribute to drug resistance [17, 18]. Cancer cells within

a tumor exhibit differential genetic and phenotypic characteristics [19]. Genomic heterogene-

ity leads to cell-to-cell variability in protein expression and activity as genes drive the produc-

tion of proteins. Protein activity is variable even in genetically identical cancer cell populations

in the same microenvironment [20–22]. This cell-to-cell variability arises from intrinsic sto-

chastic fluctuations [23–30] and variation in microenvironmental conditions that affect the

protein-signaling network. This variation can affect sensitivity to stimuli, contribute to cell

phenotype decisions, and cause clonal cells to differently respond to stimulus and targeted

therapies (e.g., erlotinib) [31, 32].
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Understanding how cancer cell signaling variation affects targeted therapy outcomes is

challenging. Cancer-driven signaling proteins do not function in isolation but rather function

in protein complexes that belong to large and complex signaling networks that govern key phe-

notypic processes such as proliferation, apoptosis, and response to targeted therapy [33, 34].

Furthermore, the cancer signaling network and drug response are modulated by microenviron-

mental factors [35, 36]. Therefore, experimental data obtained from simplified cell-based exper-

iments in single uniform environments will have limited ability to tease apart the impact of

signaling network and microenvironmental variation on targeted therapy outcomes. A number

of previous studies have used mathematical models to understand complex signaling networks

and improve treatment strategies. Various modeling approaches were developed (reviewed in

[37]). Boolean or probabilistic Boolean models were developed to analyze cancer signal path-

ways and predict treatment outcomes [38–41]. A logical modeling approach was employed to

understand various cell signaling pathways [42–47]. An artificial neural network approach was

used to map between microenvironments, pathways, and phenotypes [48]. Detailed kinetic

models of cell signaling pathways have been studied using systems of ordinary differential equa-

tions (ODEs) [49–57]. Most studies, however, ignore signaling heterogeneity or extrinsic varia-

tion in microenvironmental cues that will differentially stimulate the signaling network.

To investigate the effects of signaling heterogeneity on targeted therapy outcomes, we

develop an integrated approach combining in vitro experiments with three different mathe-

matical models, an intracellular signaling model, a cancer cell population growth model, and a

hybrid cellular automata (HCA) model of tumor and stroma (see Fig 1 for an overview).

Materials and methods

Mathematical modeling of MAPK and PI3K-AKT pathway

We consider a simplified signaling network composed of interactions between key proteins in

an oncogenic rat sarcoma (RAS)-driven mitogen-activated protein kinase (MAPK) and phos-

phoinositide 3-kinase (PI3K)–protein kinase B (AKT, PKB) pathway (Fig 2A). This pathway

has been studied extensively, and the positive or negative feedback regulations between pro-

teins in the pathway are known [58–62]. Of note, mammalian cells express three RAS gene

family members (HRAS, NRAS, and KRAS), and our model is based on empirical data ob-

tained from a lung cancer cell line (A549); KRAS is always activated by a point mutation

(Gly12Ser), whereas the other two RAS proteins (HRAS and NRAS) are wild type. Recent stud-

ies reported the importance of crosstalk between wild-type and mutant RAS proteins in can-

cers driven by oncogenic mutant RAS [59, 63, 64]. Therefore, we consider two different types

of RAS, wild type (RAS_w) and mutant type (RAS_m). The network node connectivity is

based on prior pathway information between signaling proteins [58–62]. Most interactions are

feed-forward and positive (Fig 2A, green lines) except the one negative feedback regulation of

epidermal growth factor receptor (EGFR) by extracellular receptor kinase (ERK) (Fig 2A, red

line). While network connectivity is assumed fixed in the model, the strength of interactions is

variable and is modeled using a weight matrix (W). Each element in the network (node xi) is

updated by solving the following equation,

dxi
dt
¼ T

X

j2NðiÞ

Wijxj
� �

� axi; xið0Þ ¼ 0; i ¼ 3; 4; . . . ; n;

TðzÞ ¼ εtanhðbzÞ;

ð1Þ

where x1,2 correspond to two inputs (growth factor and hepatocyte growth factor [HGF]), and

χ3,4. . .,n correspond to the relative change of protein activities or cell viability due to an
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Fig 1. Overview. A simplified signaling pathway was derived based on literature. Various kinase inhibitors were

applied to an experimental model system to perturb the simplified pathway in different microenvironmental

Impact of heterogeneity on targeted therapy
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inhibitor with respect to untreated conditions (log2 (treated/untreated)) to be consistent with

experimental data. Of note, all of the experimental measures in our study are relative values,

normalized to the unperturbed condition. The absolute concentration or activity of signaling

proteins as well as cell viability are difficult to acquire from experiments performed in our

study, namely western blot experiments and cell viability measurement assays. Therefore, the

weights in the model represent relative abundance or protein activities in treated conditions

compared to treatment-naïve conditions. The model assumes that the rate of change of a vari-

able is determined by the linear combination of neighboring nodes with corresponding

weights. This additive linear function has successfully described protein reaction networks [54,

55, 65] although other functions such as Michaelis-Menten kinetics are viable options [51]. In

the experiments we carried out, the microenvironmental conditions are growth factor and

HGF. The growth factor (model variable x1) is always present, while HGF (model variable x2)

is present in only some of the experimental conditions. In particular, the HGF is not present in

the control condition. All experimental results are normalized to this control (no-HGF) condi-

tion. To represent these experimental conditions in the model, the input value x1 is set to a

nonzero constant value (e.g., x1� C), while the variable x2 is set to be 0 or nonzero (e.g., x2�

C) if HGF is present. We chose to set the parameter constant C to be 10. N(i) represents the

neighborhood of a protein node i (a set of nodes connected to the node i), and α indicates a

tendency to return to the untreated state. The transfer function T accounts for saturation

effects, and the constants ε and βmodulate amplitude and slope. In the model, we set ε to be

4.5 and β to be 0.5 to model a smooth sigmoidal behavior.

Drug inhibition is modeled by knocking out a corresponding protein activity. For example,

if a drug inhibits a protein xi, then the variable xi is set to be a very small number (xi ¼

log
2

xtreated
xuntreated

� �
¼ � m;m� 1). It is worth noting that we modeled the effect of drugs tyrosine-

protein kinase Met inhibitor (METi), EGFRi, and AKTi by inhibiting pMET, pEGFR, and

pAKT activities, respectively. Two other drugs, mitogen-activated protein kinase kinase

(MEKi), and ERKi, are modeled to inhibit pERK and pRSK, respectively (Fig 2B).

Logistic tumor growth

We combine the pathway model to a logistic growth ODE model to simulate the growth of in

silico cells as a well-mixed population in a resource-limited environment. The model is defined

as follows,

dyi
dt
¼ ri 1 �

PN
j¼1

yj
K

 !

yi; i ¼ 1; 2; . . .N; ð2Þ

where yi represents the number of in silico cell i, ri is the cell intrinsic growth rate of the cell i,
N is the total number of cell types, and K is the carrying capacity (set to be 1 billion). To model

influence of the signaling pathway on cell population growth, we formulate a cell population

conditions (e.g., HGF and no-HGF). A mathematical model of the pathway was developed and calibrated by

comparing model predictions with experimental data. The model predictions were validated with experimental data. A

validated pathway model was integrated into a logistic growth model to simulate the impact of competition between

cells in a homogeneous and resource-limited microenvironment. Another integration of the pathway model into a

hybrid model highlighted the impact of both microenvironmental heterogeneity and direct spatial competition of one

cell with its direct neighbors on targeted treatment outcomes. AKT (PKB), protein kinase B; DMSO, Dimethyl

sulfoxide (control); EGFR, epidermal growth factor receptor; ERK, extracellular receptor kinase; HGF, hepatocyte

growth factor; MEK, Mitogen-activated protein kinase kinase; MET (c-MET), tyrosine-protein kinase Met or

hepatocyte growth factor receptor (HGFR); PI3K, phosphoinositide 3-kinase; RAF, rapidly accelerated fibrosarcoma;

RAS, rat sarcoma; RAS_m, mutated RAS; RAS_w, wild-type RAS; RSK, ribosomal S6 kinase.

https://doi.org/10.1371/journal.pbio.2002930.g001
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Fig 2. Signaling pathway model development and model calibration. (A) Simplified Signaling Network Model. Two inputs (growth factor and HGF), signaling

protein nodes (EGFR, MET, RAS_m, RAS_w, PI3K/AKT, RAF, MEK, ERK, RSK), and one output (cell viability). Of note, RAS_m indicates a mutant RAS, while RAS_w

indicates a wild-type RAS. A green line represents a positive relation (stimulation) and red line represents a negative relation (inhibition). (B) pMET (Y1234/5), pMEK,

pERK, pAKT (both T308 and S473), and pRSK (T359) expression after different inhibitors (1 μM), MET inhibitor (METi, PHA665752), EGFR inhibitor (EGFRi,

Impact of heterogeneity on targeted therapy
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growth rate, ri, as a function of cell viability solutions and the treatment-naïve growth rate

(ri� f (θi, r0); θi: cell viability solution in linear scale not in log2 scale; r0: growth rate in an

untreated control condition). Specifically, the cell viability for each cell type is obtained by fit-

ting pathway model to our experimental data, as described in the Results section. The cell via-

bility of cell type i (θi) represents the number of cell type i that survived after being given

therapy relative to an untreated control condition (i.e., θi = Pi(t)/P0(t), θi: cell viability, Pi,0(t):
number of cell type i at time t in a treated and untreated condition, respectively). To obtain a

functional form for the growth rate, we make the following assumptions. We assume that a cell

population initially grows exponentially ðPiðtÞ ¼ Pið0Þerit; P0ðtÞ ¼ P0ð0Þer0t; t < T for some

time T). We also assume that the number of initial cell population is the same in a treated con-

dition and in an untreated control condition (Pi(0) = P0(0)). Then, cell viability is presented as

a function of growth rates and time (yi ¼ PiðtÞ=P0ðtÞ ¼ erit=er0t). Solving the function for

growth rate ri, we obtain a functional form for the growth rate. We use the doubling time of

A549 cells (22 hours from [66]) to obtain the treatment-naïve growth rate (r0 = 0.76 per day).

We use our cell viability assay experimental time point (t = 3 days, described in Results sec-

tion). Now, we have a constant growth rate of cell type i for each treatment condition (500

cells x 28 treatment conditions, total 14,000 growth rates, ri). Then, the ODE Eq (2) is solved to

simulate a given treatment response of cell i over time. All of the in silico cells are solved simul-

taneously competing for limited resource (carrying capacity K).

HCA tumor model

The pathway model is integrated into an HCA model [67, 68] to simulate treatment responses

in a spatially heterogeneous microenvironment. The model has the following assumptions. In

the HCA, the cells are defined as points on a two-dimensional lattice that also contains contin-

uous concentration fields of microenvironmental factors, together representing a cross-section

of tumor composed of cancer cells and stroma (50 cells x 38 cells). Here, we define the tumor

and stroma region explicitly based on an image segmentation of lung adenocarcinoma tissue

from a patient. The tumor region contains cancer cells. Each cancer cell contains the pathway

model, as developed above (Fig 2A), that links the microenvironment to cell phenotypes. The

model grid can contain any number of possible microenvironmental variables. For simplicity,

however, we consider only growth factors and HGF. The growth factors are assumed to be

constant in the domain. We explicitly model HGF dynamics in space and time using the fol-

lowing partial differential equation,

@Hðx; tÞ
@t

¼ Dr2Hðx; tÞ � lHðx; tÞ; ð3Þ

Erlotinib), RAF inhibitor (RAFi, LY3009120), MEK inhibitor (MEKi, GDC0623), ERK inhibitor (ERKi, SCH772984), and AKT inhibitor (AKTi, MK2208) in both

control medium (DMSO) and after 2-hour stimulation-by-HGF (50 ng/mL) condition (DMSO plus HGF). (C) Relative cell viabilities after treatments. Cells were

treated inhibitors (1 μM) for 72 hours. Cell viabilities were assessed by CellTiter-Glo assay (Promega). Representative triplicates (± SD) are presented, which showed

similar results at least three times. (D) The western blots were quantified using ImageJ and relative changes (log2 scale) are reported. Average values of relative cell

viabilities are also reported in log2 scale. All the data are normalized to the treatment-naïve control condition. pAKT (T308) readouts are quantified and used in the

model. Of note, we didn’t quantify total protein levels because our primary interest was protein activity (protein phosphorylation). The effects of all inhibitors are

modeled by assuming very small activity of a target protein (i.e., 1/16 of control, Methods section), and therefore pMET under METi is set be a very small number (i.e.,

1/16 of control) for consistency. (E) Comparison between model predictions (gray box plots) and experimental data (black dots). A log2 fold change of pMET, pMEK,

pAKT, pERK, pRSK, and cell viability after treatments of different inhibitors (METi, EGFRi, MEKi, ERKi, AKTi) in both a control medium and HGF-stimulated

conditions. RMSE of each protein is following. pMET: 0.03; pMEK: 0.49; pAKT:0.33; pERK: 0.96; pRSK: 0.57; and cell viability: 0.47. The numerical data used in Fig 2

are included in the first sheet S1 Data. AKT (PKB), protein kinase B; DMSO, Dimethyl sulfoxide (control); EGFR, epidermal growth factor receptor; ERK, extracellular

receptor kinase; HGF, hepatocyte growth factor; MEK, mitogen-activated protein kinase kinase; MET (c-MET), tyrosine-protein kinase Met or hepatocyte growth

factor receptor (HGFR); PI3K, phosphoinositide 3-kinase; RAF, rapidly accelerated fibrosarcoma; RAS, rat sarcoma; RAS_m, mutated RAS; RAS_w, wild-type RAS;

RMSE, root-mean-squared-error; RSK, ribosomal S6 kinase.

https://doi.org/10.1371/journal.pbio.2002930.g002
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where H(x,t) represents the concentration of HGF at a lattice point x in tumor region and at

time t. D represents the diffusion rate, and λ is a decay rate. The parameter values used in a

simulation are given in the corresponding figure legend. The concentration of HGF is fixed to

be a constant value (H(x,t) = γ) in the stromal region. A Neumann boundary condition

(@H
@n xð Þ ¼ 0, normal derivative = 0) was imposed on the domain boundary. A Dirichlet condi-

tion (H(x,t) = γ) was imposed at the interface between tumor and stroma.

The steady state solution of Eq (3) is fed into one of the inputs (HGF) in the pathway model

in each cell (Fig 2A). The pathway determines cell viability and controls three different pheno-

types—proliferation, quiescence, and death—as defined by the rules summarized in the flow-

chart (S1 Fig). Each cell is allowed to execute only one phenotype per time step (day). Of note,

the model considers only orthogonal neighbors (north, west, south, and east) for space to

divide or move. Cells are not allowed to leave nor enter across the boundary and are thus con-

fined within the domain. We assume that the distribution of HGF barely changes during HCA

simulation. For example, if a cell divides into two daughter cells, this increased number of cells

does not impact the HGF distribution because we assume the consumption of HGF by cells

negligible and that cells do not produce HGF. Because HGF consumption is minimal and the

HGF diffusion timescale (approximate seconds) is a lot shorter than cell division time scale

(approximate day) and the model domain size is small (50 cells x 38 cells), any consumption

would quickly be equilibrated to the steady state.

Cell line

A549 lung adenocarcinoma cell line was maintained in RPMI 1640 medium supplemented

with 10% FBS. Cells were confirmed to be free of mycoplasma using PlasmoTest (Invivogen,

San Diego, CA).

Western blots

Cells were washed with ice-cold PBS, and whole cell extracts were prepared using lysis buffer

(0.5% NP-40, 50 mM Tris-Cl, pH 8.0, 150 mM NaCl, 1 mM EDTA) supplemented with prote-

ase inhibitor (Roche, Mannheim, Germany) and phosphatase inhibitor cocktail (Sigma-

Aldrich, Carlsbad, CA). Whole-cell extracts were resolved on SDS-PAGE and transferred to

nitrocellulose membrane. The membrane was blocked in 5% skim milk/PBST and then incu-

bated in primary antibody at 4˚C overnight. Bound antibodies were visualized by horseradish

peroxidase-conjugated secondary antibodies and SuperSignal West Pico Chemiluminescent

Substrate (Thermo Scientific, Waltham, MA). Primary antibodies used for our study were pur-

chased from Cell Signaling Technology (Danvers, MA) (except for β-actin, which was from

Sigma-Aldrich, St. Louis, MO).

Cell viability measurement

Cells were plated on 96-well plate at 2,000 cells per well and then exposed to drugs for 72

hours. Cell viability was analyzed by CellTiter-Glo (Promega, Madison, WI) according to the

manufacturer’s recommendations.

Proximity ligation assays

Proximity ligation assays were performed as described using Duolink Far Red kit (Sigma-

Aldrich, Carlsbad, CA) with antibodies to the following: EGFR (clone B38, Cell Signaling,

Danvers, MA), GRB2 (clone 81, BD, San Jose, CA), and AF488-conjugated pan cytokeratin

(clone Ae1/Ae3, eBioSciences, San Diego, CA). Tissue specimen was from a de-identified

Impact of heterogeneity on targeted therapy
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patient treated at Moffitt Cancer Center and was obtained via an institutionally approved

protocol.

Results

We followed the steps described in Fig 1 to investigate the effects of signaling heterogeneity on

targeted therapy outcomes. First, we develop an intracellular signaling pathway model. We

construct a simplified cancer signaling pathway based on prior information about the pathway,

and we experimentally perturb the pathway using various kinase inhibitors in two different

microenvironmental conditions (Fig 1 Design & Experiments). Among key microenviron-

mental factors, HGF has been shown to contribute to resistance in multiple Food and Drug

Administration (FDA)-approved targeted therapy drugs [35, 36]. Therefore, we consider HGF

as an additional microenvironmental stimulus. Then, we build a mathematical model of the

cancer signaling pathway to predict both signaling and a phenotypic response (cell viability

change due to a given therapy) to different inhibitors that target the pathway (Fig 1 prior path-

way information). It is important to note that the model includes two microenvironmental

factors (i.e., growth factor or HGF) and cell viability (Fig 1 prior pathway information) in

addition to intracellular proteins (Fig 1 prior pathway information). Model parameters are cal-

ibrated using experimentally measured protein expression levels and cell viability after differ-

ent inhibitors are applied under different microenvironmental conditions (Fig 1 Pathway

Modeling, model calibration). Now using this panel of in silico cells with calibrated signaling

networks, we predict distributional responses to different targeted therapies, reveal possible

mechanisms of drug response and resistance, and propose combination therapy strategies that

could deal with heterogeneity. The model predictions are then tested experimentally.

Next, we develop a logistic cancer cell population growth model to describe tumor growth

in a homogeneous but resource-limited microenvironment (Fig 1 Multiscale Mathematical

Modeling). The intrinsic growth rate of each cancer cell is estimated based on the treatment-

naïve growth rate and cell viability obtained from the signaling pathway model calibration. We

predict post-treatment cell population heterogeneity and average efficacy after continuous

application of various inhibitors (both mono and combination therapies). Finally, we develop

an HCA model to investigate the effects of spatially heterogeneous microenvironments on tar-

geted therapy outcomes (Fig 1 Multiscale Mathematical Modeling). The model couples contin-

uous microenvironmental factors with a discrete cell–based model. Each individual cell

contains the trained network model that links microenvironment to its phenotype, which

determines cell fate in a given condition. As a proof of concept, we simulate the response to an

inhibitor in a section of tissue composed of both tumor cells and stroma. The model predicts

complex cancer cell signaling responses and treatment outcomes, driven by both cell-intrinsic

and -extrinsic mechanisms.

Experimentally measured cancer cell response to various kinase inhibitors

Kirsten rat sarcoma (KRAS)-driven cancer treatment is an important clinical need that re-

mains largely unmet due to limited targeted drug efficacy of key downstream effectors, includ-

ing MAPK and PI3K-AKT pathways. We therefore choose the KRAS mutant non–small-cell

lung cancer (NSCLC) cell line (A549 cell line) as our experimental model system. Using our

simplified oncogenic KRAS signaling pathway (Fig 2A, Mathematical modeling section for an

explanation of how we obtained this simplified pathway) as a guide, we pharmacologically

inhibited individual proteins in the MAPK pathway (MET, EGFR, MEK, ERK inhibitors) and

PI3K-AKT (AKT inhibitor) pathway in A549 cells in the both absence and presence of HGF.

Drug-induced changes in the phosphorylation of pathway proteins, surrogates for protein
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activity, were measured by western blotting (Fig 2B). Cell viability was also assessed after 72

hours of drug treatment (Fig 2C). These experimental data were quantified using ImageJ (Fig

2D), and all data were normalized to the control experimental condition (treatment-naïve

condition).

Model calibration

The quantified changes (Fig 2D) and the Monte Carlo simulation were then employed as an

optimization procedure to estimate model parameters (weights, Wij) that minimize our cost

function. A network with lower cost represents the experimental data more accurately. The

cost function is defined as follows,

CðWÞ ¼
Xn

i

XM

d

ðxi;d � ydÞ
2
þ
X

j2NðrÞ

w

1þ expðZwjrÞ
ð4Þ

where xi;d is the steady state activity of protein or cell viability xi in treatment condition d, yd
represents experimental data, and M is the total number of treatment conditions. The weight

wjr indicates the weight between RAS_m (r) and its neighbors (N(r)), and the constants (χ, η)

modulate the magnitude of the penalty. The first term explains the difference between model

prediction and experimental data for a network W. The second term is directed at the activat-

ing RAS mutation and incorporates a penalty for estimated weights from the RAS_m node

(mutant RAS) that are too small. We included this penalty because our model is based on

empirical data of a KRAS mutant cancer cell line (A549 cell), where the resulting KRAS pro-

tein is constitutively active. We aimed to capture this activating mutation by penalizing small

weights from RAS_m to its neighbors.

We used the following method to implement Monte Carlo simulations:

1. Initialize a sparse weight matrix (W, Wij = 0, for no connection in Fig 2A) with random

numbers.

2. Enforce the weight elements to satisfy the prior pathway information (Wij = |Wij| for green

line; Wij = −|Wij| for red line; Fig 2A).

3. Update protein node values using the Eq (1).

4. Evaluate cost Cold = C (W) using the Eq (4).

5. Randomly select an element of weight matrix and perturb it (Wnew
ij ¼Wijþ Z; Z � Nð0; sÞ;)

for some small σ, σ> 0) and enforce weight constraints (step 2).

6. Update cost Cnew = C (Wnew) (Eq [4]) with a perturbed weight matrix (Wnew).

7. If Cnew< Cold, accept the perturbation; otherwise, mostly reject the perturbation. Only

accept the perturbation with a small probability of p, where p = exp(−ν(|Cnew − Cold|) for

some large ν.

8. Go to the step 5 and repeat 5 through 7 until achieving error = |Cnew − Cold|< δ, where δ is

a predefined tolerance (for small non-negative number, δ> 0).

The model calibration resulted in more than 5,000 weight matrices that fit to the experi-

mental data. We selected the best 500 (top 10%) weight matrices and used these to define our

500 in silico cells. The distributions of in silico cells are presented as box plots in Fig 2E along

with the experimental measures. Errors (root-mean-squared-error [RMSE] formula given in

S1 Text) are in the range of (0.03–0.56, except ERK: 0.96). The fit of ERK was poor because of
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unexpected inhibition of pERK by the drug (ERK inhibitor, SCH772984) [69]. The trained net-

works (weights) are quite heterogeneous (S1 Table). The distribution for each weight is differ-

ent (S1 Table, skewed, normal, bimodal distributions, with a range of heterogeneity [Shannon]

index values).

The weights here may represent relative protein abundance or protein-binding activity.

There is ample evidence for differential abundance of protein species across cellular popula-

tions. An excellent example was recently published showing that variations in adaptor protein

abundance are a major source of regulation of the EGFR-MAPK pathway [70]. There are sev-

eral examples of differential binding activity of proteins in cell signal transduction. It is well

established that adaptors such as GRB2, SHC1, and GAB1 can be recruited to receptor tyrosine

kinases (RTKs) either directly or indirectly. Therefore, stochastic variation in multiprotein

complex composition at individual receptors exists, and this will vary both within and between

cells. It is also accepted that activation-induced receptor degradation and phosphatase activity

will affect not only RTK adaptor interactions but also downstream signaling molecules such as

rapidly accelerated fibrosarcoma (RAF), MEK, and ERK. Additionally, we have previously

shown that, in EGFR mutant cell lines, only a fraction of the receptor is phosphorylated, and

cell lines harboring the same oncogenic mutation have different levels of phosphorylated Tyro-

sine (Tyr) and Serine/threonine (Ser/Thr) residues [71]. Collectively, these examples indicate

that protein–protein interactions in response to growth factors are not simply on–off states

and that multiple factors independent of protein abundance control final signaling output.

Distributional responses to kinase inhibitors

We simulated responses of in silico cells to seven different inhibitors (EGFRi, METi, RAS_mi,

AKTi, RAFi, MEKi, and ERKi). Of note, cell viability in untreated conditions is set to be a sin-

gle constant value (cell viabilityuntreated� 1). It is also worth noting that RAS_mi is assumed to

inhibit only RAS_m (RAS mutant), not RAS_w. Distributions of relative cell viability (log2

scale, log2 (treated/untreated)) of all in silico cells are presented in Fig 3A. Similar to the exper-

imental results (Fig 2B–2D), MEKi and ERKi reduced average cell viability significantly,

whereas mean effects of EGFRi, METi, and AKTi are marginal. These results reveal quite het-

erogeneous responses to drugs, which could be assessed by experimental approaches [72, 73].

For example, the distribution of EGFRi treatment is bimodal due to a bimodal distribution of

trained MEK-ERK weights (S1 Table and S2 Fig), suggesting the presence of a subpopulation

that responds significantly differently to drug from the rest of the population (S2 Fig, green

versus pink).

In silico–predicted rational drug combinations

With our calibrated in silico cell lines, we next examine which drug combinations significantly

reduce cell viability and which show marginal effects. For example, what should be cotargeted

with AKTi to decrease cell viability significantly? The model predicts that activation of alterna-

tive pathways under therapy may provide an escape route to therapy. For example, AKT inhib-

itor induced increased activity of ERK and ribosomal S6 kinase (RSK) (S3 Fig). Cells with high

ERK and RSK activity display resistance (cell viability >0) under the inhibitor, which implies

that simultaneous inhibition of this alternative pathway would overcome resistance. We rea-

soned that combination targeting of proteins that are highly correlated with relative cell viabil-

ity under a given treatment would be beneficial. In order to identify such protein nodes,

scatter plots between predicted protein activity (phosphorylation) and predicted relative cell

viability were considered (S4 Fig). Then, the Pearson’s coefficient was calculated for all cases.

We observed that, under multiple treatment conditions—including inhibition of EGFR, MET,
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RAS_m, AKT, and RAF—ERK and RSK showed the highest correlation with relative cell via-

bility (S4 Fig, pink box). This suggests that co-inhibition of ERK (by MEKi) or RSK (by ERKi)

activity with other therapies would decrease cell viability most significantly. Further simulation

Fig 3. Model prediction and validation. (A) Histograms of relative cell viabilities (log2 scale) of all in silico cells after treatments of EGFRi, METi, RAS_mi, AKTi,

RAFi, MEKi, and ERKi. First, a bimodal distribution EGFRi-treated in silico cells (one mode: −1.25; second mode: −0.5). Second, a skewed distribution after METi (a

skew toward 0; 0: no change). Third, a uniform distribution in response to RAS_mi (almost uniform distribution from −1.5 to 1.5). Fourth, a slight bimodal distribution

after AKTi. Fifth, a distributional response after RAFi. Sixth, a normal distribution in response to MEKi. Seventh, a normal distribution after ERKi. (B) Histograms of

relative cell viabilities of all in silico cells in log2 scale. First: EGFRi only (blue), EGFRi/ERKi (orange), and EGFRi/MEKi (yellow). Second: METi only (blue), METi/

ERKi (orange), and METi/MEKi (yellow). Third: RAS_mi only (blue), RAS_mi/RAFi (green), RAS_mi/ERKi (orange), and METi/MEKi (yellow). Fourth: AKTi only

(blue), AKTi/RAFi (green), AKTi/ERKi (orange), and AKTi/MEKi (yellow). Fifth: RAFi only (blue), RAFi/ERKi (orange), and RAFi/MEKi (yellow). (C) Validation.

Model predicted relative cell viabilities (red bars) and experimental data (gray bars) after 10 different treatments. First: EGFRi, EGFRi/MEKi, and EGFRi/ERKi. Second:

METi, METi/MEKi, METi/ERKi. Third: AKTi, AKTi/RAFi, AKTi/MEKi, AKTi/ERKi. The numerical data used in Fig 3 are included in the second sheet S1 Data. AKT

(PKB), protein kinase B; DMSO, Dimethyl sulfoxide (control); EGFR, epidermal growth factor receptor; ERK, extracellular receptor kinase; MEK, mitogen-activated

protein kinase kinase; MET (c-MET), tyrosine-protein kinase Met or hepatocyte growth factor receptor (HGFR); RAF, rapidly accelerated fibrosarcoma; RAS, rat

sarcoma.

https://doi.org/10.1371/journal.pbio.2002930.g003
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revealed an additional application of either MEKi or ERKi to each—EGFRi, METi, RAS_mi,

RAFi, and AKTi—significantly decreased cell viability compared to monotherapy of EGFRi,

METi, RAS_mi, RAFi, and AKTi (Fig 3B). We tested some of these model predictions experi-

mentally and validated, to some degree, the model’s predictive ability (Fig 3C).

Hierarchical clustering of in silico cell responses

We next systematically assessed cell viability reduction to all mono and combination therapies

using an unsupervised hierarchical clustering approach to classify cell populations on the basis

of their treatment response (relative cell viability). The treatments were categorized into multi-

ple groups (Fig 4A, a tree diagram on the right end of heat-map). The combination of AKTi

with MEKi is uniformly effective to all the cells (see the red asterisk [�] row, dark blue across

all in silico cells, with little variation between cells). This combination (MEKi/AKTi) has previ-

ously been shown to be effective in NSCLC both in vitro and in vivo [74]. A striking variation

is observed in response to the treatments of AKTi, RAS_mi, and RAS_mi/AKTi (Fig 4A, red

bars in the first two groups versus dark blue to yellow bars in the rest of the groups). The first

two clusters (pink and black color on the top of the heat-map) are associated with poor

responses (little to no reduction of cell viability after a given therapy), while others are corre-

lated with good treatment outcomes (significant reduction of cell viability after a given

therapy).

Possible mechanisms of response and resistance

Why are some cells sensitive to a given therapy while others are resistant to the same therapy?

We hypothesize that this differential drug sensitivity, at least within the context of our model,

must be attributed to differential protein activity as modulated by protein–protein interactions

(i.e., the weights). To highlight possible mechanisms, we visualized the weights between pro-

tein nodes (Wij in our model) using both circular chord diagrams [75] and network diagrams

with weighted edges (Fig 4, bottom panels; left: chord diagram; right: weighted network with

different edge widths). In the circular diagrams, protein nodes are arranged around a circle

with the weight between protein nodes connected to each other through the use of arcs. The

width of each arc is determined proportionally by the weight between two protein nodes. To

illustrate differences in signaling, we selected two representative in silico cells (Fig 4A and 4B),

where cell a is resistant to AKTi, RAS_mi, and RAS_mi/AKTi and cell b is more sensitive to

these therapies. In addition, we compared ranges of all weights of all in silico cells between

clusters defined by the hierarchical clustering (S5A Fig). We observe heterogeneity of weights

within each cluster and between clusters. Differences between clusters are significant for some

weights such as weights of growth factor EGFR, EGFR-RAS_w, MET-RAS_w, RAS_w-RAF,

and MEK-ERK (S5A Fig).

Heterogeneous responses to HGF stimulation

We next asked how an additional microenvironmental stimulation would modulate the

responses to targeted treatments. To address this question, all in silico cells were treated in the

presence of HGF, a significant stromal factor that contributes to drug resistance [35, 36]. An

unsupervised hierarchical clustering on the basis of cell viability changes, from the no-HGF

condition, separated the treatments into several groups (Fig 5A, clustering of treatments on

the right tree diagram). The analysis also classified the in silico cells into several groups based

on cell viability changes due to HGF stimulation (Fig 5A, tree diagram on the top of heat-

map).
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To test some of these model predictions, we considered three different combination thera-

pies, AKTi/MEKi, EGFRi/MEKi, and EGFRi/AKTi. Of note, the model predicted that the

treatments AKTi/MEKi and EGFRi/MEKi are not affected by HGF stimulation (Fig 5B, first

two red bar graphs). The experimental data matched well with these predictions (Fig 5B, first

Fig 4. Model predicted combination therapy effect. (A) Hierarchical clustering and heat-map of relative cell viabilities after 28 different treatments. Simulated

treatment responses (cell viability changes) were clustered using an unbiased hierarchical method with a Euclidian distance function, resulting in 7 different clusters

(pink, black, blue, green, purple, cyan, and orange color) indicated by color bar on the top of heat-map. Each row indicates an individual therapy. Each column indicates

an individual in silico cell. Blue to yellow bars: decrease to increase. The asterisk [�] indicates relative cell viability after a combination therapy of AKTi with MEKi. (B–

C) Chord diagrams and weighted network diagrams of the representative in silico cells a and b. Chord diagram: each node in the circle represents each protein node in

the network model, represented by different colors. The thickness of chord between two protein nodes represents a weight between two protein nodes (weight, wij). The

chords are directed, colored by originating sector color. For example, the interaction between RAS_m and RAF is depicted as a light blue chord because the direction is

from RAS_m to RAF (RAS_m! RAF; color of RAS_m sector: light blue). Weighted network diagram: the width of each edge represents the weight. A thicker edge

represents a larger weight between two proteins. The numerical data used in Fig 4 are included in the third sheet S1 Data. AKT (PKB), protein kinase B; EGFR,

epidermal growth factor receptor; ERK, extracellular receptor kinase; HGF, hepatocyte growth factor; MEK, mitogen-activated protein kinase kinase; MET (c-MET),

tyrosine-protein kinase Met or hepatocyte growth factor receptor (HGFR); PI3K, phosphoinositide 3-kinase; RAF, rapidly accelerated fibrosarcoma; RAS, rat sarcoma;

RAS_m, mutated RAS; RAS_w, wild-type RAS; RSK, ribosomal S6 kinase.

https://doi.org/10.1371/journal.pbio.2002930.g004
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two gray bar graphs). The model also predicted that the effect of combination therapy EGFRi/

AKTi is significantly modulated by HGF stimulation (Fig 5B, the third red bar). This was also

corroborated by experiment (Fig 5B, the third gray bar).

Possible mechanisms explaining HGF modulation

The suite of in silico cells is differentially affected by HGF stimulation. For example, some cells

are not affected by the HGF stimulation (e.g., gray bars in EGFRi/RAS_mi in Fig 5A), while

others are significantly affected by stimulation (e.g., red bars in EGFRi/RAS_mi in Fig 5A).

Why are some cells affected by HGF stimulation, while others are not? To understand why this

is the case, we selected two representative cells (a and b) and visualized the weights between

protein nodes using both chord diagrams and weighted network diagrams (Fig 5C, bottom

panels). In cell a, the influence of MET on RAS_w is relatively small (Fig 5C, thin blue chords

from MET! RAS_w). In contrast to cell a, the influence of MET on RAS_w in cell b is much

Fig 5. Effect of HGF stimulation on treatment responses. (A) Heat-map of cell viability changes due to HGF stimulation (log2 (treated with HGF/untreated)-log2

(treated without HGF/untreated)). An unbiased hierarchical clustering separated the cell population into 6 different clusters (indicated by colors on the top of heat-

map). Each row indicates a treatment, and each column indicates an in silico cell. Gray to red: no change to increase due to HGF. (B) Model validation. Comparisons

between experimental data (gray bars) and model predictions (red bars) after three different combinations (AKTi/MEKi, EGFRi /MEKi, and EGFRi/AKTi). Relative

change of cell viability in treated-with-HGF condition to one in treated-without-HGF condition (no HGF) is reported. (C) Chord diagrams and weighted network

diagrams that visualize weights between two protein nodes in the representative in silico cell a and b. The numerical data used in Fig 5 are included in the fourth sheet

S1 Data. AKT (PKB), protein kinase B; EGFR, epidermal growth factor receptor; ERK, extracellular receptor kinase; HGF, hepatocyte growth factor; MEK, mitogen-

activated protein kinase kinase; MET (c-MET), tyrosine-protein kinase Met or hepatocyte growth factor receptor (HGFR); PI3K, phosphoinositide 3-kinase; RAF,

rapidly accelerated fibrosarcoma; RAS, rat sarcoma; RAS_m, mutated RAS; RAS_w, wild-type RAS; RSK, ribosomal S6 kinase.

https://doi.org/10.1371/journal.pbio.2002930.g005
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stronger (Fig 5C, cell b, thick blue chord from MET! RAS_w). This may explain why cell b

increased its viability significantly upon HGF stimulation compared to no-HGF condition. In

addition, distributions of all weights in each cluster show differential activity of proteins and

its effects across all six different clusters (S5B Fig).

Competition between in silico cells drives different dominant populations

So far, treatment responses were assessed as if all in silico cells were treated in isolation. To

address the effects of cell competition on treatment outcomes, we simulated all cells growing

together under treatment with various inhibitors in a homogeneous, resource-limited micro-

environment (Methods section). The entire in silico cell population responds in a similar way

on some therapies (Fig 6, e.g., EGFRi, METi, RAFi, EGFRi/RAS_mi, etc.), but under other

therapies (Fig 6, e.g., MEKi, ERKi, MEKi/ERKi, AKTi/RAFi, etc.)—due to differential viability

—some cells became dominant. Interestingly, some treatments simultaneously selected for the

same dominant in silico cell (Fig 6, color-shaded boxes). Addition of HGF to some treatments

(e.g., EGFRi, RAS_mi, RAFi) significantly changes the fitness of in silico cells and thus drives a

different dominant in silico cell (S6 Fig, dotted lines in no-HGF vs solid lines in HGF).

Assessment of post-treatment in silico cell population heterogeneity

We assessed post-treatment population heterogeneity by measuring the Shannon index

(H(x) = −∑ipi(x)log(pi(x)), where pi(x) is the probability of finding an in silico cell i after a

given therapy). We compared the index with average cell viability change (Fig 6B). The two are

linearly correlated (ρ = 0.65), implying that the less effective a treatment is in controlling the

average in silico population growth, the more heterogeneous the post-treatment population

would be (Fig 6B). Combination therapies not only display a better average treatment response

but also a less diverse post-treatment population (Fig 6B, boxes versus circles). Among all com-

bination therapies, those that combined either with ERKi or MEKi display much better average

therapeutic responses (Fig 6B, small cell viability). These treatments not only effectively

decrease average cell viability but also lead to a less diverse post-treatment population (e.g., Fig

6B, EGFRi/[ERKi or MEKi] vs EGFRi/[METi,AKTi,RAFI] in red-color circles). HGF stimula-

tion minimally affected the linear relationship between post-treatment heterogeneity and aver-

age cell viability reduction (Fig 6C, ρ = 0.63 vs Fig 6B, ρ = 0.65). However, a few treatments did

elicit significant changes in both average response and heterogeneity due to HGF stimulation

(Fig 6D).

Impact of microenvironmental heterogeneity on targeted therapy

outcomes

Because activated receptors require multiple protein interactions to activate downstream sig-

naling, we have utilized proximity ligation assays that measure the functional association of

RTKs and adaptor proteins. Using NSCLC patient specimens and xenograft models, we have

previously identified an association of EGFR:GRB2 complexes and response to EGFR inhibi-

tion [76] and more recently identified a correlation between MET:GRB2 complexes and

response to MET kinase inhibitors [77]. Using this approach, we consistently observe spatial

heterogeneity in abundance of RTKs binding to adaptor complexes. The abundance is often

highest at tumor regions that are adjacent to stromal regions (Fig 7A).

Motivated by this experimental observation (Fig 7A), we developed an HCA model to

investigate the effects of microenvironmental heterogeneity on treatment outcomes (See Meth-

ods section and S1 Fig). A steady state configuration of HGF is considered throughout the

whole simulation (See Methods section and Fig 7B). We randomly initialized in silico cells that
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contain calibrated signaling networks (Fig 2) in the domain to mimic a slice of tumor tissue

(Fig 7C first, time step = 0; domain size: 50 cells × 38 cells). As proof of concept, we simulated

RAS_m inhibition. After 180 days of the inhibition, distinct cells emerge near stroma (high

HGF) in contrast to the nonstroma region (Fig 7C second, light- and dark-blue cells near

stroma versus orange, red cells elsewhere). A clearer separation among the cell population

emerges as therapy continues (S1 Movie). We also observed heterogeneous protein activity

across the tissue (Fig 7D and S2 Movie). The signaling responses of some cells are affected by

HGF (Fig 7D, e.g., high MET and RAF, black arrows near stroma), while signaling in other

cells is not (Fig 7D, e.g., low activity of MET and RAF near stroma, red arrow).

The treatment selects for cells with high MET and RAF activity (phosphorylation), espe-

cially residing near the stroma (high HGF), which suggests that a therapy of METi or RAFi in

addition to RAS_mi may be more effective. To test this suggestion, we simulated two sequential

therapies of RAS_mi and RAFi and one concurrent therapy (Fig 7E and S3–S6 Movies).

Depending on the order of the sequence (RAS_mi first versus RAFi first), different patterns of

cells emerge after 400 days of treatment (Fig 7E, first versus second). Importantly, a concurrent

combination of the two inhibitors was effective enough to eradicate all cells in this small region

just after 30 days of treatment (S5 Movie and Fig 7E third, number of cells). The direct spatial

competition of each cell within the tissue directly facilitated this result. To be more relevant to

the clinical timeframe, we also simulated a shorter treatment schedule (e.g., 60 days) and

observed similar cell behavior (S7 Fig).

Until now, we assumed that the initial states of the protein activities in our in silico cells

were all zero. In order to examine the impact of changing this on the above treatment out-

comes, we randomly seeded in silico cells in a slice of tissue (Fig 7C), and for each in silico cell,

a random number was assigned to each initial protein activity. Then, we simulated RAS_m
inhibitor for 30 days using our HCA model (S1 Fig) and repeated this process 100 times. The

resulting configurations display some degree of heterogeneity (S8A Fig, shows representative

results for three different initial configurations) due to cell–cell spatial competition as well as

variable HGF modulation of the in silico cells. The HGF selects for cells whose cell viability is

significantly modulated by HGF (violet to red cells near stroma). To illustrate this more accu-

rately, we quantified the total number of surviving cells at time step 30 for each simulation (see

S8B Fig for distributions) and classified them in terms of HGF modulation (S8C Fig). The

treatment consistently selected for certain cells (S8C Fig), some of which are more influenced

by HGF than others (S8C Fig).

Fig 6. Effect of homogeneous, resource-limited microenvironment on treatment outcomes and heterogeneity. (A) The growth dynamics of all in silico cells

treated with various therapies for three months in a homogeneous and resource-limited microenvironmental condition. A color line at each treatment indicates

the most dominant cell after a given therapy. Color-shaded boxes indicate treatments selecting for the same dominant in silico cell. Orange box: dominant cell

(cell ID: 342) after treatments of EGFRi/METi, EGFRi/AKTi, METi/AKTi, EGFRi/RAFi, and AKTi/RAFi. Red box: dominant cell (ID: 417) after RAS_mi/METi

and AKTi. Yellow box: dominant cell (ID: 337) after EGFRi/MEKi, METi/MEKi, and AKTi/MEKi. Blue box: dominant cell (ID: 36) after RAFi/MEKi, MEKi,

RAFi/ERKi, and MEKi/ERKi. Purple box: dominant cell (ID: 156) after EGFRi/ERKi, METi/ERKi, and AKTi/ERKi. Green box: dominant cell (ID: 113) after

ERKi and ERKi/RAS_mi. (B) Linear relationship between average relative cell viability (log2 scale) and post-treatment Shannon indexes. Linear correlation

constant: 0.65. Square: monotherapy; circle: combination therapy. Red: EGFRi alone or combination with METi, RAS_mi, AKTi, RAFi, MEKi, or ERKi. Blue:

METi alone or combination with RAS_mi, AKTi, RAFi, MEKi, or ERKi. Pink: RAS_mi alone or combination with RAFi, AKTi, MEKi, or ERKi. Green: AKTi

alone or combination with RAFi, MEKi, or ERKi. Gray: RAFi, RAFi/MEKi, RAFi/ERKi. Yellow: MEKi, MEKi/ERKi. Orange: ERKi. (C) Linear relationship

between average relative cell viability (log2 scale) and post-treatment (with HGF stimulation) Shannon indexes. Linear correlation constant: 0.63. Square:

monotherapy; circle: combination therapy. Color definitions are the same as panel B. (D) Therapies affected by HGF significantly. Each arrow starts from a

point without HGF stimulation to a point with HGF stimulation. Gray: RAFi/ERKi and RAFi/MEKi. Blue: RAS_mi, RAS_mi/AKTi, RAS_mi/ERKi. Red: EGFRi,

EGFRi/RAS_mi, EGFRi/AKTi, EGFRi/MEKi, and EGFRi/ERKi. The numerical data used in Fig 6 are included in the fifth sheet S1 Data. AKT (PKB), protein

kinase B; corr, linear correlation; EGFR, epidermal growth factor receptor; ERK, extracellular receptor kinase; HGF, hepatocyte growth factor; MEK, mitogen-

activated protein kinase kinase; MET (c-MET), tyrosine-protein kinase Met or hepatocyte growth factor receptor (HGFR); PI3K, phosphoinositide 3-kinase;

RAF, rapidly accelerated fibrosarcoma; RAS, rat sarcoma; RAS_m, mutated RAS; RAS_w, wild-type RAS.

https://doi.org/10.1371/journal.pbio.2002930.g006
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Fig 7. Effect of microenvironmental heterogeneity on a targeted therapy outcome and combination therapy. (A) Heterogeneous EGFR activity in a lung squamous

cell carcinoma. Representative image of red foci showing EGFR:GRB2 proximity. Tumor cells (green) are stained with a cytokeratin antibody demarcating epithelial

origin. Nuclei (blue) are stained with DAPI. Image was acquired at 200x. (B) HGF distribution. The Eq (3) was solved assuming the following parameters: γ = 1.0,

diffusion rate D = 0.04, and decay rate λ = 0.001. To be consistent with the choice of parameter in the pathway model (Eq [1]), we use a scaling factor ω (ω� 10) (i.e.,

HGF input in the pathway model x2 = ωH(x,t), H(x,t): solution obtained using the assumed parameters). (C) First, an initial randomized configuration of cells (domain

size: 50 cells × 38 cells). Color represents different in silico cells. Second, a snapshot of RAS_m inhibitor simulation (day 180). (D) Simulated protein activity after 180

days of RAS_m inhibition. The activities of MET, EGFR, RAS_w, and RAF are heterogeneous (yellow to blue color), while those of AKT, MEK, ERK, and RSK are less

heterogeneous (blue color). (E) Comparison of combination therapies for 400 days. First, a snapshot of simulation (day 400) after a sequential therapy of RAS_mi for the
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Discussion

We implemented an integrated mathematical and experimental approach to develop a panel of

in silico cells that readily reproduced average kinase inhibitor responses in two different

microenvironments (HGF and no-HGF). The mathematical model of a simplified oncogenic

RAS-driven MAPK and AKT-PI3K pathway describes weighted interactions between proteins

in the pathway. The weights here may represent relative protein abundance or protein activity.

The calibrated model predicted heterogeneous responses to kinase inhibitors due to differen-

tial activities of proteins from the in silico cells under a given therapy condition. In addition,

the model identified a combination therapy that effectively reduced cell viability across the

entire in silico cell population (Fig 4, AKTi/MEKi). Critically, the effects are not modulated by

HGF stimulation (Fig 5). This combination has been shown to be effective in NSCLC both in

vitro and in vivo [74]. Integrating the pathway model into a two-dimensional lattice-based

model allowed us to take a significant step toward modeling the multiscale behavior of cancer

by bridging the signaling, cell, and multicellular scales with feedback from the microenviron-

ment. We were also able to simulate the impact of an inhibitor on a tissue structure composed

of tumor and stroma, showing complex signaling responses and selection for distinct in silico

cells by the stroma (Fig 7 and S1 and S2 Movies), which highlighted a novel combination ther-

apy (Fig 7 and S3–S6 Movies).

We are only just beginning to understand the importance of nongenetic heterogeneity [19,

78]. Much more needs to be done in teasing apart the different scales of heterogeneity (genetic,

cellular, microenvironmental), how they interact and modulate one another, and how this

might alter our current combination treatment strategies. Variable protein activity has been

observed in previous studies of isogenic cancer cell lines, revealing that single-cell heterogene-

ity and protein–protein interaction strength is different [73]. A more recent study, of an iso-

genic cancer, showed striking variation in genetic, cellular, and phenotypic heterogeneity [79].

Our own experiments and simulations showed heterogeneous cancer cell signaling in a section

of lung adenocarcinoma (Fig 7) [76, 77].

There are other modeling approaches for analysis of signaling pathways including logical,

Boolean, and artificial neural network (reviewed in [37]). In particular, several recent studies

developed integrated approaches of mathematical modeling with systematic perturbation

experiments applying various kinase inhibitors to cancer cells. Some of these studies proposed

novel combination therapies [43, 51, 54], just as we have. However, in addition to predicting

average cell viability, we also consider post-treatment heterogeneity and, critically, the impact

of the microenvironment. Historically, Boolean models have been used in understanding can-

cer cell–signaling responses. To investigate applicability of such a Boolean approach, we con-

structed an equivalent Boolean model of the signaling pathway (S2 Text and S9 Fig). This

model predicted the treatment combinations (AKTi/MEKi and AKTi/RAFi) consistent with

experimental data (Fig 3C, two out of seven different combination therapies). However, the

other five combination therapies were not consistent with experimental data (yellow asterisks

in S9C Fig). Taken together, these results suggest that the Boolean model (S9A Fig) is insuffi-

cient to predict combination therapies.

first 200 days and then RAFi for the rest 200 days (200 days of RAS_mi! 200 days of RAFi). Color represents different in silico cells. Second, a snapshot of simulation

(day 400) after a sequential therapy of RAFi for the first 200 days, then RAS_mi for the remaining 200 days (200 days of RAFi! 200 days of RAS_mi). Third: the

number of cells over time during the two sequential therapies of RAS_mi and RAFi (blue: RAS_mi! RAFi, red: RAFi! RAS_mi) and a concurrent therapy of the two

(green: RAS_mi/RAFi). The numerical data used in Fig 7 are included in the sixth sheet S1 Data. AKT (PKB), protein kinase B; DAPI, 4’,6-diamidino-2-phenylindole;

EGFR, epidermal growth factor receptor; ERK, extracellular receptor kinase; GRB2, growth factor receptor bound protein 2; HGF, hepatocycte growth factor; MEK,

mitogen-activated protein kinase kinase; MET (c-MET), tyrosine-protein kinase Met or hepatocyte growth factor receptor (HGFR); RAF, rapidly accelerated

fibrosarcoma; RAS, rat sarcoma; RSK, ribosomal S6 kinase.

https://doi.org/10.1371/journal.pbio.2002930.g007
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To obtain a tractable model, several simplifications have been made in this study. The

model considered only two microenvironmental variables (HGF and a generic growth factor)

on a two-dimensional square lattice, where the heterogeneous population of in silico cells

mimicked a slice of lung tissue. Although three-dimensional models will describe these

dynamics in a more realistic way, the key predictions—for example, the effect of stroma—will

be consistent in a three-dimensional setting. Other simplifying aspects of the HCA approach

included not considering tissue mechanical properties as well as constraining cell movement

to orthogonal neighbors with discontinuous displacement. A potential alternative approach

would be to consider off-lattice models that allow force-driven interactions that better describe

mechanical aspects of tumor growth [80–83] and tumor morphology [84–86]. We are also

acutely aware that the signaling network considered is only a fragment of a much larger and

far more complex signaling cascade that turns external signals into phenotypic decisions.

Because not all proteins in cancer cells are directly measurable due to experimental limitations,

many players and intermediate proteins in the pathway are not included in our study. There-

fore, an interaction between two proteins represents diverse influence of one entity on other

entity in steady state, such that an entity can be a microenvironmental variable, an intracellular

protein, or cell viability. We emphasize that, by definition, all models are but simplifications of

reality and the true utility of a model is not that it can mimic reality but that it provides useful

insight into the system. Despite this simplicity, our integrated approach provided multiple test-

able hypotheses for the complex KRAS NSCLC cell signaling network, proposed possible drug

resistance mechanisms, and suggested better treatment strategies.

Finally, while we relied on western blots for protein activity (phosphorylation) readouts,

alternative approaches such as Reverse Phase Protein Array exist [87]. The important step,

however, was combining this average protein activity with prior information about network

connectivity, allowing us to generate a suite of in silico cell lines that not only reproduced this

average behavior but also gave insights into potential single-cell variability. This highlights a

key need to improve our understanding of heterogeneous cell signaling networks: single-cell

profiling. Such data would ideally include intracellular, cellular, and phenotypic profiling in

multiple, uniform microenvironments. However, our results also emphasize the importance of

interactions between heterogeneous cell populations and spatially structured environments.

Therefore, while quantifying single-cell dynamics will provide key information about intrinsic

cell heterogeneity, to fully understand how these differences impact treatment responses, we

must consider how interactions that change through space and time alter this heterogeneity

and thus treatment outcomes.

Supporting information

S1 Fig. Flowchart of each cell in the HCA model. Each cell contains its own signaling net-

work (calibrated network model, Fig 2A) and processes signaling to determine its viability. If

the viability is low, the cell commits death with a probability of the viability. Otherwise, the cell

waits for the next time step. If the cell viability is not too low, we check for an empty space in

its nearest four neighbors (north, east, south, west from the cell). If there is an empty space, the

cell divides with a probability of the viability. If there is no empty space, the cell becomes quies-

cent and waits for next time step. HCA, hybrid cellular automata.

(TIFF)

S2 Fig. The in silico cells were divided into two groups based on MEK-ERK weights (large

weights: Green versus small weights: Pink; a distribution figure on the right upper corner).

Then, distributions of treatment responses for each group were considered. The in silico cells

with larger MEK-ERK weights seem to be more sensitive to both EGFRi and RAFi and are
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more resistant to AKTi than the ones with smaller MEK-ERK weights. AKT (PKB), protein

kinase B; EGFR, epidermal growth factor receptor; ERK, extracellular receptor kinase; MEK,

mitogen-activated protein kinase kinase; RAF, rapidly accelerated fibrosarcoma.

(TIFF)

S3 Fig. Activation of alternative pathway in response to AKTi. A scatter plot of relative cell

viability (ratio of cell viability after treatment to cell viability before treatment, log 2 scale) as a

function of relative activities of ERK and RSK (ratio of protein activity after treatment to pro-

tein activity before treatment, log 2 scale) is given. Color represents cell viability (blue: small

and yellow: large). Gray plane indicates no change of cell viability. AKT (PKB), protein kinase

B; ERK, extracellular receptor kinase; RSK, ribosomal S6 kinase.

(TIFF)

S4 Fig. Linear correlation between cell viability and each protein activity. Scatter plots of

cell viability changes (y axis) against individual protein activity changed (labeled on the bot-

tom, EGFR, MET, RAS_m, RAS_w, AKT, RAF, MEK, ERK, RSK) after each monotherapy

(labeled on the top of each row; first row: EGFRi; second row: METi; third: RAS_mi; fourth:

AKTi; fifth: RAFi; sixth: MEKi; seventh: ERKi). Each dot represents an individual in silico cell.

Dotted lines: no change; colored box: highly correlated relations; r: correlation coefficient.

AKT (PKB), protein kinase B; EGFR, epidermal growth factor receptor; ERK, extracellular

receptor kinase; MEK, mitogen-activated protein kinase kinase; MET (c-MET), tyrosine-pro-

tein kinase Met or hepatocyte growth factor receptor (HGFR); RAF, rapidly accelerated fibro-

sarcoma; RAS, rat sarcoma.

(TIFF)

S5 Fig. Distributions of weights. (A) Box plots of weights from each cluster in Fig 4A. Colors

correspond to the different clusters in Fig 4A. (B) Boxplots of weights from each cluster in Fig

5A. Colors correspond to the different clusters in Fig 5A.

(TIFF)

S6 Fig. Each therapy was applied to all in silico cells with HGF stimulation for three

months. Color-shaded boxes indicate treatments selecting the same dominant clone. Com-

pared with no-HGF treatment (Fig 6A), the treatments of EGFRi/MEKi, RAS_mi/MEKi, and

EGFRi/ERKi select a different dominant cell (dashed-color line vs solid-color line). AKT

(PKB), protein kinase B; corr, linear correlation; EGFR, epidermal growth factor receptor;

ERK, extracellular receptor kinase; HGF, hepatocyte growth factor; MEK, mitogen-activated

protein kinase kinase; MET (c-MET), tyrosine-protein kinase Met or hepatocyte growth factor

receptor (HGFR); PI3K, phosphoinositide 3-kinase; RAF, rapidly accelerated fibrosarcoma;

RAS, rat sarcoma.

(TIFF)

S7 Fig. Treatments considered in Fig 7 (RAS_mi! RAFi and RAFi! RAS_mi) were simu-

lated over 60 days. (A) Cell configuration after 30 days of RAS_mi first followed by 30 days of

RAFi. Different cells are represented by different colors. (B) Cell configuration after 30 days of

RAFi first followed by 30 days of RAS_mi. Different cells are represented by different colors.

(C) Total number of cells over time; blue: RAS_mi! RAFi; red: RAFi! RAS_mi. HCA,

hybrid cellular automata; RAF, rapidly accelerated fibrosarcoma; RAS, rat sarcoma.

(TIFF)

S8 Fig. We considered 100 different randomly selected initial conditions of protein states

and simulated RAS_m inhibitor for 30 days. (A) Three different representative configura-

tions of cells at time step 30. Color: HGF modulation, gray: no change of cell viability due to
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HGF stimulation; violet: significant increase of cell viability due to HGF. (B) Distribution of

number of cells at time step 30. Boxplots of number of all of 500 cells at time step 30. “+” indi-

cates outliers. The maximum difference of interquartile range is 30 cells (approximately 0.02%

of total cell population). (C) Boxplots of the number of cells whose median cell numbers at

time step 30 is greater than 0. Color: HGF modulation; gray: no change of cell viability due to

HGF stimulation; violet: significant increase of cell viability due to HGF. HCA, hybrid cellular

automata; HGF, hepatocyte growth factor; RAS, rat sarcoma.

(TIFF)

S9 Fig. (A) Boolean network model. (B) Seven different attractors represented by different

colors. (C) Active or inactive state of proteins and cell viability after various mono and combi-

nation therapies were applied. Yellow star: cell viability state that is inconsistent with experi-

mental data (Figs 2 and 3).

(TIFF)

S1 Text. RMSE formula used in Fig 2. RMSE, root-mean-squared-error.

(DOCX)

S2 Text. Boolean network model. We constructed an equivalent Boolean model of the signal-

ing pathway (S9 Fig). In the model, each node has a binary value (1: active, on; 0: inactive, off).

The behavior of each node is modeled as a sequence of discrete steps in a Boolean function

defining the value of a node on the next step based on values of its neighbor nodes (S9A Fig).

For all nodes except EGFR, a node will be active if at least one of its neighbors is active. The

node EGFR will be active if either growth factor is active or ERK is inactive (inhibitory regula-

tion of EGFR by ERK). Of note, RAS_m node is always active, representing RAS mutation in

the cell line (A549) used in our experiments. Assuming both of the input nodes—(growth fac-

tor and HGF) and RAS_m—are always active, all possible initial states (210) are exhaustively

simulated, using the R package BoolNet [88], until reaching attractors (steady states). The sim-

ulations converged on seven different attractors (S9B Fig). We then simulated seven different

combination therapies that we tested in our experiments (Fig 3C). To simulate drug-induced

inhibition, we made each target node constitutively inactive (e.g., EGFR = 0 for EGFRi;

MET = 0 for METi; AKT = 0 for AKTi; ERK = 0 for MEKi; and RSK = 0 for ERKi). Two drug

combinations result in an inactive viability state (S9C Fig, viability in red, AKTi/RAFi, AKTi/

MEKi), which are consistent with both our modeling and experimental data (Fig 3C and Fig

4A). The Boolean network model predicts that other combinations are not effective (S9C Fig,

active viability state in green), which are not consistent with both our model predictions and

experimental data (yellow asterisks in S9C Fig vs Fig 3C). Taken together, these results suggest

that this simple Boolean network is insufficient to recapitulate our experimental data.

(DOCX)

S1 Table. For each weight of interaction, kernel density of distribution was estimated

using R (gray probability density plots on the edge). Shannon index (SI) was also reported.

A blue box indicates weights with the lowest Shannon index, while red boxes indicate weights

with large Shannon index (>4.0).

(TIFF)

S1 Data. Numerical data used in figures.

(XLSX)

S1 Movie. RAS_m inhibitor simulation (cells).

(AVI)
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S2 Movie. RAS_m inhibitor simulation; protein phosphorylation (activity). Yellow: high

activity; blue: low activity.

(AVI)

S3 Movie. A sequential therapy of RAS_m inhibitor for the first 200 days and then RAF

inhibitor for 200 more days.

(AVI)

S4 Movie. A sequential therapy of RAF inhibitor for the first 200 days and then RAS_m
inhibitor for 200 days.

(AVI)

S5 Movie. Concurrent combination of RAS_m inhibitor with RAF inhibitor for 30 days.

(AVI)

S6 Movie. Temporal evolution of the number of cells (bar graphs; color: Different in silico

cells).

(AVI)
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