
SOFTWARE Open Access

FastMM: an efficient toolbox for
personalized constraint-based metabolic
modeling
Gong-Hua Li1, Shaoxing Dai1, Feifei Han2, Wenxin Li1, Jingfei Huang1,3* and Wenzhong Xiao2,4*

Abstract

Background: Constraint-based metabolic modeling has been applied to understand metabolism related disease
mechanisms, to predict potential new drug targets and anti-metabolites, and to identify biomarkers of complex
diseases. Although the state-of-art modeling toolbox, COBRA 3.0, is powerful, it requires substantial computing time
conducting flux balance analysis, knockout analysis, and Markov Chain Monte Carlo (MCMC) sampling, which may
limit its application in large scale genome-wide analysis.

Results: Here, we rewrote the underlying code of COBRA 3.0 using C/C++, and developed a toolbox, termed
FastMM, to effectively conduct constraint-based metabolic modeling. The results showed that FastMM is 2~400
times faster than COBRA 3.0 in performing flux balance analysis and knockout analysis and returns consistent
outputs. When applied to MCMC sampling, FastMM is 8 times faster than COBRA 3.0. FastMM is also faster than
some efficient metabolic modeling applications, such as Cobrapy and Fast-SL. In addition, we developed a Matlab/
Octave interface for fast metabolic modeling. This interface was fully compatible with COBRA 3.0, enabling users to
easily perform complex applications for metabolic modeling. For example, users who do not have deep constraint-
based metabolic model knowledge can just type one command in Matlab/Octave to perform personalized
metabolic modeling. Users can also use the advance and multiple threading parameters for complex metabolic
modeling. Thus, we provided an efficient and user-friendly solution to perform large scale genome-wide metabolic
modeling. For example, FastMM can be applied to the modeling of individual cancer metabolic profiles of
hundreds to thousands of samples in the Cancer Genome Atlas (TCGA).

Conclusion: FastMM is an efficient and user-friendly toolbox for large-scale personalized constraint-based metabolic
modeling. It can serve as a complementary and invaluable improvement to the existing functionalities in COBRA
3.0. FastMM is under GPL license and can be freely available at GitHub site: https://github.com/GonghuaLi/FastMM.

Keywords: FastMM, Constraint-based model, Metabolic modeling, Metabolism

Background
Constraint-based metabolic models have been developed
for over 30 years [1, 2]. As one of the most popular and
state-of-art toolbox, COBRA 3.0 [3, 4] can be used to
solve a variety of biomedical problems among which are:
1) understanding metabolism related disease mechanisms
by Markov Chain Monte Carlo (MCMC) sampling. 2)

inferring new potential drug targets by single or multiple
gene knockout analysis [5], 3) inferring potential bio-
markers by flux variability analysis (FVA) [6], 4) designing
anti-metabolites by single or multiple metabolite knockout
analysis [7]. The rapid accumulation of genomic and
metabolomic data from disease studies, such as TCGA [8],
provides an unprecedented opportunity for personalized
metabolic modeling of large number of patient samples.
However, three core applications in COBRA 3.0, includ-

ing MCMC sampling, FVA, and whole genome knockout,
require significant time-consuming computing [3, 9]. For
example, the genome wide double gene knockouts of hu-
man metabolic model require computing time of more than

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: huangjf@mail.kiz.ac.cn; wenzhong.xiao@mgh.harvard.edu
1State Key Laboratory of Genetic Resources and Evolution, Kunming Institute
of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
2Immue and Metabolic Computational Center, Massachusetts General
Hospital, Harvard Medical School, Boston, MA 02114, USA
Full list of author information is available at the end of the article

Li et al. BMC Bioinformatics (2020) 21:67
https://doi.org/10.1186/s12859-020-3410-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-3410-4&domain=pdf
https://github.com/GonghuaLi/FastMM
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:huangjf@mail.kiz.ac.cn
mailto:wenzhong.xiao@mgh.harvard.edu

one day on a computer sever. Recently, several applications
have been developed to efficiently perform metabolic mod-
eling, for example, Cobrapy to perform constraint-based
metabolic modeling for python [9], fastFVA to implement
efficient flux variability analysis [10], SL-finder [11] and
Fast-SL [12] to conduct genome-wide gene knockout ana-
lysis. However, the time cost of metabolic modeling still
limits the applications of constraint-based metabolic models
to large scale studies.
Here, we developed a toolbox, named FastMM, to im-

plement genome-wide personalized analysis of constraint-
based metabolic models. The underlying code of FastMM
is written in C/C++ and uses GNU Linear Programming
Kit (GLPK) and Gurobi to perform flux balance analysis
(FBA) in the constraint-based models. FastMM is 2~400
times faster than COBRA 3.0 and returns consistent re-
sults. It serves as a valuable tool for personalized genome-
scale metabolic modeling in large disease studies.

Implementation
Efficient flux variability analysis and knockout analysis
The underlying code of flux variability analysis and
knockout analysis in FastMM were written in C/C++,
and included six core modules: FBA, FVA, singleGen-
eKO, doubleGeneKO, singleMetKO, and doubleMetKO,
which represent flux balance analysis, flux variability
analysis, genome wide single gene knockout analysis,
genome wide double gene knockout analysis, genome
wide single metabolite knockout analysis, and genome
wide double metabolite knockout analysis, respectively.
All the six core programs call GLPK or Gurobi solver
and use a two-phase primal simplex method to itera-
tively solve the following standard FBA linear program-
ming (LP):

max or minCTV
Subject to : S� V ¼ 0

Vl < V < Vu
ð1Þ

Where S is the stoichiometry matrix with m rows and
n columns. m and n are the number of metabolites and
reactions, respectively. CT is a vector of the coefficient
factors of the objective function(s). In most cases, the
vector just contains one non-zero element. Vl and Vu is
the lower and upper bounds of the flux. For knockout
analysis, Vl and Vu can be different from wide type when
there is a gene or a metabolite knockout.
To perform efficient knockout analysis, we employed

an algorithm to reduce the number of LPs, which was
similar as Fast-SL [12]. Firstly, we solved a LP to
minimize the sum of reaction fluxes while the wild type
objective function (CTV) was optimized, termed as f, this
LP can be written as following:

min
X

j V j
Subject to : S� V ¼ 0

Vl < V < Vu
CTV ¼ f

ð2Þ

Then, we can obtain a small set of non-zero flux reac-
tions set J in the meanwhile the wild-type objective func-
tion (CTV) was optimized. In knockout analysis, only the
genes (or metabolites), taking participated in set J reac-
tions, were used to perform further knock out analysis.
Other genes (or metabolites) will be considered as in-
valid since they do not affect the wild-type objective
function (CTV). For example, when we used this algo-
rithm to the consistent general human metabolic model
consistRecon2_v3 (including 5317 reactions, 2960 metab-
olites and 2194 genes) [13, 14], and set the “biomass_re-
action” as the wild-type objective function, we obtained
245 non-zero flux reactions, and only 251 genes take
participant in these reactions. In the case of double gene
knockout analysis, the number of total LPs was greatly
reduced (from 4.8 × 106) to 63,001.

Efficient MCMC sampling
The underlying code of MCMC sampling was also writ-
ten in C/C++, and uses the hit and run MCMC algo-
rithm. The detailed information of this algorithm was
well document in COBRA 3.0 [4]. Briefly, FastMM firstly
generated the initial warming up points using GLPK or
Gurobi solver, then implemented hit-and-run sampling
based on the initial warm points. Since the sampling
procedure requires intensive linear algebraic computa-
tion, we used the state-of-art basic linear algebra subpro-
grams (BLAS) library, known as Intel® Math Kernel
Library (Intel® MKL), to perform large-scale MCMC
sampling. While the underlying BLAS of MKL is mul-
tiple thread, the MCMC is also automatically multiple
threaded base on the computer CPU. By default, the
number of MCMC threading is the half of the number
of CPU.

Matlab/octave interface and multiple threading
The Matlab interface was developed to ensure FastMM
is fully compatible with the COBRA 3.0. The multiple
threading of FVA and knock out analysis in FastMM
was developed using the Matlab parallel computational
toolbox. Users can define the number of CPU in each
FastMM Matlab interface function.

Development of “one-command” protocol
To ensure that FastMM could be easily and correctly
used by users without a strong metabolic modeling
background, we developed a “one-command” protocol.
This protocol firstly reconstructed the tissue-specific
metabolic model using the gene (or protein) expression

Li et al. BMC Bioinformatics (2020) 21:67 Page 2 of 7

information via the Fastcore method [14] or mCADRE
[15]. And then, the flux variability analysis and knockout
analysis were conducted by employing the precompiled
FastMM core modules. The only input is the gene ex-
pression matrix, and all of the results are stored in the.
/out subdirectory.

Results
Overall of FastMM
FastMM project (https://github.com/GonghuaLi/FastMM)
is aimed to provide an efficient, compatible, and user-
friendly toolbox/package for personalized constraint-
based metabolic modeling. FastMM is under GPL license
and located at GitHub in order to allow all developers in
this field to contribute. In current version (01/30/2020),
FastMM supports three LP solvers (GLPK, Gurobi and
Cplex), and contains two layers, including core modules
layer and the Matlab interface layer.
The core modules layer of FastMM was written in C/

C++, and can be compiled and run in nearly all plat-
forms (such as Windows, Mac-OS, and Linux). This
layer contains seven applications: FBA, FVA, singleGen-
eKO, doubleGeneKO, singleMetKO, doubleMetKO and
FastMCMC. FastMM uses small memory (20~30M for
FVA and knockout analysis, and ~ 100M for MCMC
sampling) and can be run on different types of com-
puters, such as PC, Mac, server, and supercomputer.
The Matlab interface layer was developed to make

FastMM fully compatible with COBRA 3.0 and user-
friendly. This interface layer standardizes input datasets,
calls executable files in core modules layer, performs
multiple threading and generates outputs.
Taken together, unlike the COBRA toolbox design strat-

egy, FastMM separated the constraint-based metabolic
modeling procedures into two layers. All time cost proce-
dures, such as FVA and genome-wide knockout analysis,
were written in C/C++, making FastMM efficient. On the
contrary, other procedures, including multiple threading,
model reconstruction, dataset standardization and input/
output generation, were wrapped and written in Matlab/
Octave, making FastMM compatible with COBRA 3.0 and
user-friendly.

FastMM is efficient
FastMM is efficient for both flux variability and knockout
analysis. We applied FastMM and COBRA 3.0 (using Gur-
obi solver) to analyze the consistent general human meta-
bolic model Recon 2.03 (5317 reactions and 2960
metabolites) [13, 14] on a CPU of Intel Xeon E5–2640
2.60GHz. COBRA 3.0 has made a large improvement on
computational efficiency compared with COBRA 2.0
(Table 1). For flux variability analysis, FastMM and
COBRA 3.0 spent 80 s, and 183 s, respectively. For gen-
ome wide single gene knockout analysis, FastMM and

COBRA 3.0 spent 9 s, and 19 s, respectively. For genome
wide double gene knockout analysis, FastMM and
COBRA 3.0 spent 260, and 118,570 s, respectively. These
results showed that FastMM is 2~400 times faster than
COBRA 3.0 (Table 1). The results of FVA and single gene
knockout analysis using FastMM are also consistent with
the results of COBRA 3.0 (Supplementary Table S1-S3).
We also compared FastMM with recently applications

for FVA and knockout analysis, including Cobrapy, fas-
tFVA, SL-finder and Fast-SL. When performing FVA,
FastMM is slightly faster than Cobrapy (Table 1). Since
fastFVA does not support the Gurobi solver, we com-
pared FastMM and fastFVA using GLPK solver, FastMM
and fastFVA spent 107 and 85 s respectively, indicating
FastMM is slightly slower than fastFVA. However, when
using Gurobi solver, FastMM spend 80 s.
For the knockout analysis, FastMM is significantly faster

than the state-of-art efficient applications, including Cobr-
apy and Fast-SL (Table 1). For example, in double gene
knockout analysis, FastMM is 9 and 12 times faster than
Cobrapy and Fast-SL, respectively. SL-finder was an appli-
cation to find synthetic lethal pairs [11]. Due to the plat-
form issue (SL-finder was running on General Algebraic
Modeling System), we did not directly compare FastMM
with SL-finder. However, it was reported that fast-SL is
comparable (or similar) efficient with SL-finder [12].
Design of novel drugs using metabolite analogues have

been reported as a promising strategy for metabolism-
based drug design [7, 16]. Metabolite analogues could
competitively bind the enzyme active sites and result to
inhibit the corresponding reactions. FastMM provides an
efficient solution to find candidate metabolite analogues,
while other toolboxes do not (Supplementary Table S4).
FastMM is also efficient for MCMC sampling. We ap-

plied FastMM to perform MCMC sampling in consistent
Recon 2.03 with the parameters of 2000 points and the

Table 1 Comparison of the time cost of metabolic modeling
between FastMM and other software using Gurobi solver

Applications COBRA 3.0 Cobrapy fastFVA Fast-SL FastMM

FVA $183 s 99 s **85 s \ ***80 s

SingleGeneKO 19 s 15 s \ 21 s 9 s

DoubleGeneKO 118,570 s *2324 s \ 3161 s 260 s

SingleMetKO \ \ \ \ 8 s

DoubleMetKO \ \ \ \ 578 s

MCMC 2185 s \ \ \ 254 s

Note: The consistent general human metabolic model Recon 2.03 (5317
reaction, 2960 metabolites, and 2194 genes) was used in the analyses. The
symbols of “s” represents seconds. MCMC sampling uses the parameter of
points of 2000, and steps of 1000. All FastMM applications used one CPU
cores, other software used default parameters. \: not available for the
corresponding applications. $: COBRA 3.0 used 4 CPU cores to perform flux
variability analysis. *: Cobrapy used 4 CPU cores to perform double gene
knockout. **: fastFVA do not support the Gurobi solver, the time cost (85 s) was
calculated using GLPK solver. ***: FastMM consumed 80 and 107 s to conduct
flux variability analysis using Gurobi and GLPK solver, respectively

Li et al. BMC Bioinformatics (2020) 21:67 Page 3 of 7

https://github.com/GonghuaLi/FastMM

1000 steps. FastMM spent 254 s, while the COBRA 3.0
spent 2185 s. FastMM was 8 times faster than COBRA
3.0 for MCMC sampling. In addition, the MCMC output
of FastMM was correct, and the error was small than
1e-7 (Table S5).
FastMM is flexible. Users not only can define one or

multiple objective function(s), but also can define add-
itional constraints. For example, users can use singleGen-
eKO to find which gene knockout changes the status of
secretory metabolites (see the user manual in Supplemen-
tary Materials).

FastMM is easy to use
FastMM can be implemented by “one-command” mode.
The only requirement for running FastMM is the par-
ameter file. This file defines the following information:
i). the path of the gene expression matrix file, ii) the path
of objective function(s) file, iii). the cutoff of gene ex-
pression, and iv). number of CPU for performing meta-
bolic modeling. After defined these parameters, the
users can just type one command in Matlab/Octave:
> > FastMM
Then, all of the metabolic modeling, including FVA,

knockout analysis, and MCMC simulation, will be per-
formed, and the results will be stored in the “./out”
subdirectory.

Example and advanced use
Since FastMM is ultra-efficient and user friendly, we
can now perform personalized genome wide metabolic

modeling in large scale disease studies. As an example,
we applied it to 528 individual samples of lung cancer
in TCGA to analyze the individual cancer metabolic
profiles. The detailed protocol and results are described
in the user manual (https://github.com/GonghuaLi/
FastMM/tree/master/doc). Briefly, these can be per-
formed by the following five steps (Fig. 1):
i) Model reconstruction. Many methods can be used

to reconstruct tissue specific metabolic model, such as
MBA [17] and fastcore [14]. In this study, we used fas-
tcore, since it balances between the time cost of comput-
ing and accuracy. In this study, we used one of FastMM
matlab function, name “reconstruction_by_fastcore.m”,
and obtained 528 individual TCGA lung cancer models.
There are 58 normal samples and 470 lung cancer sam-
ples. In this procedure, we used the cutoff of RESM as
75, because RESM is about 25 times larger than RPKM
[18], where RPKM > 3 was consider as expressed or
highly expressed [19]. Actually, there are about 10,
000~12,000 genes with the RESM > 75, which is consist-
ent with Ramskold’s result [20]. The reconstruction can
be implemented using FastMM:
> > rxnsmatrix = reconstruction_by_fastcore(consmodel,

expr, 75)
Where the Matlab input is the consistent cobra model(-

consistent recon 2 [14]), the gene expression matrix and
the gene expression cutoff. The output is the constructed
model with the binary format m × n matrix. m is the num-
ber of reactions in consistent input cobra model, n is the
number of samples (n = 528 in this case).

Fig. 1 Flowchart of personalized genome-scale knockout analysis of constraint-based metabolic models by FastMM. Shown in gray boxes are the
steps of the procedure followed by, in white boxed, the names of the modules of FastMM

Li et al. BMC Bioinformatics (2020) 21:67 Page 4 of 7

https://github.com/GonghuaLi/FastMM/tree/master/doc
https://github.com/GonghuaLi/FastMM/tree/master/doc

ii) Genome wide single and double gene knockout ana-
lysis to identify individual lethal and synergistic lethal
genes. Because the program “doubleGeneKO” contains
both single and double gene knockout results, we can im-
plement single and double gene knockout analysis by the
following Matlab interface function using 8 threading:
> > GeneKOout = FastMM_doubleGeneKO_multi(cons-

model, rxnsmatrix, 8)
The results suggested that PEPD, SLC15A1, and

SLC5A3 were candidates for individual lethal genes spe-
cific to lung cancer, and pairs of CBS-SLC7A11, CBS-
SLC3A2, CMPK1-PTDSS1, CMPK1-PLD2 were candidate
synergistic lethal genes specific in the tumors. GUK1 is a
target for a number of cancer chemotherapeutic agents
[21]; however among the 528 TCGA samples, while dele-
tions of GUK1 was lethal in 93% of the normal controls, it
was not lethal in 71% of the lung cancers.
iii) Large scale FVA to infer cancer-specific secretory

metabolites. Identifying the cancer-specific secretory me-
tabolites could be help to understand the cancer envir-
onment mechanism and environment-based drug design
and can be implemented by flux variability analysis. In
FastMM, we can perform multiple threading FVA by the
following function (eg, using 8 CPU):
> > [fluxmin,fluxmax] = FastMM_FVA_multi(consmo-

del,rxnsmatrix,8)
The results suggested that 16 metabolites were specif-

ically secreted in the tumors of lung cancer (5%~ 19%).
iv) Genome-wide gene knockout analysis to identify

genes that affect cancer cell secretion. After the identifi-
cation of the cancer-specific secretory metabolites, we
need to know which genes affect the secretion of these
metabolite. This procedure could be performed by gene
knock out analysis using the user defined objective func-
tions. Here is the Matlab interface function (using 8
threading):
> >Out = FastMM_singleGeneKO_multi(consmodel,

rxnsmatrix,8,’-f secret_rxns.txt’)
Where “secret_rxns.txt” is the user-defined objective

function file, containing 55 exchange reactions from last
step. The result indicated that 97 genes would be essen-
tial for metabolite secretion only in tumor samples.
Knockout of these genes, such as SLC35D1 and UGCG,
would not directly affect the cancer cell growth, but
could alter the micro-environment of cancer cells.
v) Genome wide single and double metabolite knockout

analysis to predict lethal and synergistic lethal metabolites.
Anti-metabolite drug design is one of the promise anti-
cancer strategy [7]. Identifying which metabolite is essen-
tial for cancer growth but not affect the normal cells could
provide novel anti-cancer metabolite targets [7]. This pro-
cedure can be performed by metabolic knockout analysis.
Using FastMM, we can just type one command in the
Matlab (using 8 threading):

> > metout = FastMM_doubleMetKO_multi(model,
rxnsmatrix,8)
The result suggested that the pair of AMP and 5-

Phosphoribosyl diphosphate (PRPP) is synergistic lethal
in 93% of the controls but only 29% tumors, suggesting
that alternative metabolic pathways are activated in the
majority of the tumor samples (71%).

Discussion
In the past decades, along with the high throughput of
“omic” technologies developed, large-scale biochemical
and clinical datasets have been available and give us the
opportunity to find novel metabolic mechanisms and
novel metabolic targets in individual patients. Several
toolbox, such as COBRA toolbox [3, 22], RAVEN [23],
have been developed to perform metabolic modeling to
study metabolic dysfunction in various diseases [5, 17,
24], however, the computational time still limits the
large scale application.
In this study, we developed a novel toolbox to effi-

ciently perform metabolic modeling. FastMM is 3~400
times faster than COBRA 3.0 in flux variability analysis
and knockout analysis and returned the consistent re-
sults. FastMM also had 8 times faster than COBRA in
MCMC sampling. FastMM is also faster than the most
of other efficient metabolic modeling applications, such
as Cobrapy [9] and Fast-SL [12]. Thus, FastMM covered
the computation time limitation and can be used in
large-scale metabolic modeling.
For flux variability analysis, the state-of-art efficient soft-

ware is fastFVA [10]. Similar as FastMM, the underlying
code of fastFVA was also written in C/C++, thus fastFVA
and FastMM FVA have similar efficient. FastMM FVA
supports both Gurobi and Cplex solvers while fastFVA
only supports cplex solver.
For knock out analysis, FastMM is significantly faster

than nearly all state-of-art efficient software. For ex-
ample, in the case of double gene knockout analysis,
FastMM is 8 and 12 times faster than Cobrapy [9] and
Fast-SL [12]. The ultra-efficiency of FastMM come from
the employment of a algorithm similar to Fast-SL [12] to
significantly reduce the number of total LPs. Unlike SL-
finder [11] and Fast-SL [12], the current version (01/31/
2020) of FastMM do not support the triple and other
high level knockout analysis. Besides gene knockout ana-
lysis, FastMM also provides efficient solution for metab-
olite knockout analysis, which would help to accelerate
the anti-metabolite drug design [16].
We also wrote a large number of Matlab interface func-

tions to make sure FastMM can fully compatible with the
state-of-art metabolic modeling toolbox COBRA 3.0.
These Matlab functions not only provide a “one-com-
mand” metabolic modeling solution for little background
users, but also provide advanced and multiple threading

Li et al. BMC Bioinformatics (2020) 21:67 Page 5 of 7

solution for users with strong programming background
users.
There is still a limitation in FastMM. In this study, we

used the Fasctcore [14] as the example. Unfortunately,
nearly all published methods, such as MBA [17], Fas-
tcore [14], GIMME [25], just use the Presence/Absence
call of gene expression or protein abundance to perform
tissue specific metabolic modeling [26]. Most of quanti-
tative expression information was lost in reconstruction
and would result in fail to identify the metabolic
changes. Besides, in recent FastMM release, only Matlab
interface was developed, this would be not convenience
for the users without Matlab license. We would develop
python interface of FastMM in next release.

Conclusion
FastMM is an efficient toolbox for metabolic modeling
in large scale disease studies. FastMM enables the identi-
fication of personalized targets of genes and metabolites
as new candidates for therapy or biomarkers, by person-
alized metabolic modeling on each of the hundreds to
thousands of samples in a disease study.

Availability and requirements
Project name: FastMM
Project home page: https://github.com/GonghuaLi/

FastMM
Operating system(s): Platform independent
Programming language: MATLAB and C
Other requirements: COBRA toolbox, Gurobi 5.0 or

higer, and Cplex 12.0 or higher
License: GNU AGPLv3
Any restrictions to use by non-academics: license

needed

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-020-3410-4.

Additional file 1 Table S1. Comparison of the time cost of metabolic
modeling between FastMM and other software using Gurobi solver.

Additional file 2 Table S2. Single gene knockout results between
COBRA 3.0 and FastMM.

Additional file 3 Table S3. FVA results between COBRA 3.0 and
FASTMM.

Additional file 4 Table S4. Single knockout results of 2960 metabolites
in FastMM.

Additional file 5 Table S5. Maximum MCMC error using FastMM and
COBRA 3.0.

Abbreviations
FBA: flux balance analysis; FVA: flux variability analysis; MCMC: Markov Chain
Monte Carlo

Acknowledgements
Not applicable.

Authors’ contributions
GHL, WZX and JFH designed the Software. GHL wrote the software and the
manuscript. WZX, SXD, WXL and FFH read and edited the manuscript. GHL,
SXD, WXL and FFH checked and debugged the software.

Funding
This work was supported by the grants from National Basic Research
Program of China (2013CB835100), National Natural Science Foundation of
China (31401137), and grants from National Institutes of Health (P50-
GM021700, P01-HG00205), and Shriners Research Grant (85500-BOS). The
funding bodies had no role in the design of the study, collection, analysis
and interpretation of data, or in writing the manuscript.

Availability of data and materials
The software and related data can be found at https://github.com/
GonghuaLi/FastMM. The datasets supporting the conclusions of this article
are included within article (and its Additional files).

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1State Key Laboratory of Genetic Resources and Evolution, Kunming Institute
of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.
2Immue and Metabolic Computational Center, Massachusetts General
Hospital, Harvard Medical School, Boston, MA 02114, USA. 3Collaborative
Innovation Center for Natural Products and Biological Drugs of Yunnan,
Kunming 650223, Yunnan, China. 4Stanford Genome Technology Center,
Stanford University, Palo Alto, CA 94304, USA.

Received: 12 March 2019 Accepted: 12 February 2020

References
1. Bordbar A, Monk JM, King ZA, Palsson BO. Constraint-based models predict

metabolic and associated cellular functions. Nat Rev Genet. 2014;15(2):107–
20.

2. Le Novere N. Quantitative and logic modelling of molecular and gene
networks. Nat Rev Genet. 2015;16(3):146–58.

3. Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, Zielinski
DC, Bordbar A, Lewis NE, Rahmanian S, et al. Quantitative prediction of
cellular metabolism with constraint-based models: the COBRA toolbox v2.0.
Nat Protoc. 2011;6(9):1290–307.

4. Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A,
Haraldsdottir HS, Wachowiak J, Keating SM, Vlasov V, et al. Creation and
analysis of biochemical constraint-based models using the COBRA toolbox
v.3.0. Nat Protoc. 2019;14(3):639–702.

5. Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T. Predicting
selective drug targets in cancer through metabolic networks. Mol Syst Biol.
2011;7.

6. Shlomi T, Cabili MN, Ruppin E. Predicting metabolic biomarkers of human
inborn errors of metabolism. Mol Syst Biol. 2009;5.

7. Agren R, Mardinoglu A, Asplund A, Kampf C, Uhlen M, Nielsen J.
Identification of anticancer drugs for hepatocellular carcinoma through
personalized genome-scale metabolic modeling. Mol Syst Biol. 2014;10:721.

8. Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K,
Shmulevich I, Sander C, Stuart JM, Network CGAR. The Cancer genome atlas
pan-Cancer analysis project. Nat Genet. 2013;45(10):1113–20.

9. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR. COBRApy: COnstraints-based
reconstruction and analysis for Python. BMC Syst Biol. 2013;7:74.

10. Gudmundsson S, Thiele I. Computationally efficient flux variability analysis.
BMC bioinformatics. 2010;11:489.

11. Suthers PF, Zomorrodi A, Maranas CD. Genome-scale gene/reaction
essentiality and synthetic lethality analysis. Mol Syst Biol. 2009;5.

Li et al. BMC Bioinformatics (2020) 21:67 Page 6 of 7

https://github.com/GonghuaLi/FastMM
https://github.com/GonghuaLi/FastMM
https://doi.org/10.1186/s12859-020-3410-4
https://doi.org/10.1186/s12859-020-3410-4
https://github.com/GonghuaLi/FastMM
https://github.com/GonghuaLi/FastMM

12. Pratapa A, Balachandran S, Raman K. Fast-SL: an efficient algorithm to
identify synthetic lethal sets in metabolic networks. Bioinformatics. 2015;
31(20):3299–305.

13. Thiele I, Swainston N, Fleming RMT, Hoppe A, Sahoo S, Aurich MK,
Haraldsdottir H, Mo ML, Rolfsson O, Stobbe MD, et al. A community-driven
global reconstruction of human metabolism. Nat Biotechnol. 2013;31(5):
419–+.

14. Vlassis N, Pacheco MP, Sauter T. Fast Reconstruction of Compact Context-
Specific Metabolic Network Models. Plos Comput Biol. 2014;10:e1003424.

15. Wang Y, Eddy JA, Price ND. Reconstruction of genome-scale metabolic
models for 126 human tissues using mCADRE. BMC Syst Biol. 2012;6:153.

16. Baughman RP, Grutters JC. New treatment strategies for pulmonary
sarcoidosis: antimetabolites, biological drugs, and other treatment
approaches. Lancet Resp Med. 2015;3(10):813–22.

17. Jerby L, Shlomi T, Ruppin E. Computational reconstruction of tissue-specific
metabolic models: application to human liver metabolism. Mol Syst Biol.
2010;6.

18. Guo Y, Sheng QH, Li J, Ye F, Samuels DC, Shyr Y. Large Scale Comparison of
Gene Expression Levels by Microarrays and RNAseq Using TCGA Data. Plos
One. 2013;8(8):e71462.

19. Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B. Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):
621–8.

20. Ramskold D, Wang ET, Burge CB, Sandberg R. An Abundance of
Ubiquitously Expressed Genes Revealed by Tissue Transcriptome Sequence
Data. Plos Comput Biol. 2009;5(12):e1000598.

21. Overington JP, Al-Lazikani B, Hopkins AL. Opinion - how many drug targets
are there? Nat Rev Drug Discov. 2006;5(12):993–6.

22. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ.
Quantitative prediction of cellular metabolism with constraint-based
models: the COBRA toolbox. Nat Protoc. 2007;2(3):727–38.

23. Agren R, Liu LM, Shoaie S, Vongsangnak W, Nookaew I, Nielsen J. The
RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic
Model for Penicillium chrysogenum. Plos Comput Biol. 2013;9:e1002980.

24. Mardinoglu A, Agren R, Kampf C, Asplund A, Uhlen M, Nielsen J. Genome-
scale metabolic modelling of hepatocytes reveals serine deficiency in
patients with non-alcoholic fatty liver disease. Nat Commun. 2014;5:3083.

25. Becker SA, Palsson BO. Context-specific metabolic networks are consistent
with experiments. Plos Comput Biol. 2008;4:e1000082.

26. O'Brien EJ, Monk JM, Palsson BO. Using genome-scale models to predict
biological capabilities. Cell. 2015;161(5):971–87.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Li et al. BMC Bioinformatics (2020) 21:67 Page 7 of 7

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Efficient flux variability analysis and knockout analysis
	Efficient MCMC sampling
	Matlab/octave interface and multiple threading
	Development of “one-command” protocol

	Results
	Overall of FastMM
	FastMM is efficient
	FastMM is easy to use
	Example and advanced use

	Discussion
	Conclusion
	Availability and requirements
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

