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Abstract

Background: Module detection algorithms relying on modularity maximization suffer from an inherent resolution
limit that hinders detection of small topological modules, especially in molecular networks where most biological
processes are believed to form small and compact communities. We propose a novel modular refinement
approach that helps finding functionally significant modules of molecular networks.

Results: The module refinement algorithm improves the quality of topological modules in protein-protein
interaction networks by finding biologically functionally significant modules. The algorithm is based on the fact that
functional modules in biology do not necessarily represent those corresponding to maximum modularity. Larger
modules corresponding to maximal modularity are incrementally re-modularized again under specific constraints so
that smaller yet topologically and biologically valid modules are recovered. We show improvement in quality and
functional coverage of modules using experiments on synthetic and real protein-protein interaction networks. We
also compare our results with six existing methods available for clustering biological networks.

Conclusion: The proposed algorithm finds smaller but functionally relevant modules that are undetected by
classical quality maximization approaches for modular detection. The refinement procedure helps to detect more
functionally enriched modules in protein-protein interaction networks, which are also more coherent with
functionally characterised gene sets.
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Background
Module detection in molecular networks has applica-
tions in identifying protein complexes, biological path-
ways, and functional and disease modules [1–4]. Many
algorithms have been introduced to obtain biologically
significant modules of genes, proteins and metabolites
[5–13]. These algorithms use topological properties of
networks to cluster nodes into modules; a module being
defined as a subgraph of nodes, having more dense con-
nections among themselves than with the rest of the net-
work. Examples of such few state-of-art algorithms are
Newman-Girvan [5, 9], Louvain [7], InfoMap [14], Spin-
glass [15], Random Walks [16] and Markov Cluster algo-
rithm [17]. Research advances in protein function

associations [18–20] have also led to development of few
clustering approaches designed specifically for protein
interaction networks to detect protein complexes and
functional modules such as Molecular Complex
Detection (MCODE) [10], DPCLUS [11, 13], Clustering
with Overlapping Neighbourhood Expansion (ClusterONE)
[12] and ModuleDiscoverer [21].
Modularity [5] was introduced by Newman et. al. and

has pioneered the works in identifying modules in phys-
ical and biological sciences. Modularity based module
detection is based on rearranging nodes in modules to
maximize the modularity of the resulting partitioning [5,
6, 9, 22]. These algorithms have shown good perfor-
mances in many biological applications [23] but suffer
from a resolution limit as they fail to detect small mod-
ules [24]. The other global quality functions mathemat-
ically similar to modularity, where the quality of a
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partition is given by the sum of the qualities of the indi-
vidual modules, also have a resolution limit because of
the trade-off between the number of modules and the
quality of each module. This combined with the fact that
biologically significant functional modules are smaller
than topological modules detected using such algorithms
requires an approach that is able to detect smaller but
functionally valid modules specific to biological net-
works. A few algorithms have been introduced to ad-
dress this problem like Spinglass [25], Random Walks
[16] and Asymptotical Surprise [26]. Despite the modu-
larity based algorithms outperforming in modularization
[23] and the modularity being the only widely accepted
metric available for evaluating communities, there is lim-
ited research done till date to address the need of
methods for finding functionally significant smaller clus-
ters especially in the applications to molecular networks.
The existing approaches for finding modules are inef-
fective for molecular networks as functional clusters do
not necessarily correspond to the partitions of genes ob-
tained by maximizing the modularity [27]. Biological
complexity results in many interactions within (intra)
and with other (inter) functional modules, resulting in
functional clusters with lower modularity values which is
further compounded by incomplete nature of these
networks.
In the present study, we propose a new module refine-

ment algorithm that refines the modules obtained from
any modularity based community detection method.
Our module refinement method lowers the quality
(modularity) of modularization within the sub-optimal
zone of modularity and incrementally re-invent new
modules from the larger modules having possible sub-
modules. All the while specific constraints are
maintained so that only small modules that fit into the
module definition under the topological constraints are
refined. We show the improvement in topological and
functional quality of modules detected after applying our
refinement method by conducting various experiments
on benchmark synthetic networks and human protein-
protein interaction networks along with the comparison
with six existing module detection algorithms.

Results
First set of experiments were performed on benchmark
synthetic networks and real human protein-protein
interaction networks (PPIN). For real networks, the
modules predicted using our module refinement algo-
rithm (see Methods for details) were compared to the
two modularity optimizing algorithms Louvain [7] (L)
and Clauset-Newman-Moore Greedy [6] (G) algorithm,
one node property based algorithm Label Propagation
[28] (LP), one resolution limit free algorithm Asymptoti-
cal Surprise [29] (ASY) and two seed based clustering

algorithms MCODE [10] and DPCLUS [13]. The algo-
rithms were developed in Python [30] (version 3.6.1) and
import modules from python packages NetworkX [31]
(version 2.2) and Community [7, 32] (version 0.11).

Experiments with synthetic networks
Benchmark synthetic networks
Molecular networks such as PPIN show heterogeneity in
the sizes and degree distributions of modules. We gener-
ated benchmark networks by using the LFR algorithm
(Lancichinetti, Fortunato & Radicchi) [33]. It uses
power-law distributions of node degrees and community
sizes to generate real world like synthetic networks.
PPIN like most real networks are far from complete and
lack ground truth of modules to compare with, so LFR
benchmark networks were used to quantitatively evalu-
ate the performance of our method. LFR networks are
especially suited for evaluating our algorithm as (1) they
can use power-law distributions of node degrees and com-
munity sizes to generate real world like networks; and (2)
they can use different values of mixing parameter to define
the fraction of inter and intra-module edges and thus rep-
resent various degrees of incompleteness and intercon-
nectedness in real biological networks. For present study,
we randomly generated 50 benchmark networks for each
set of parameters (Table 1). The parameters were selected
using prior knowledge of PPIN and hence mimic the char-
acteristics of molecular networks.

Performance evaluation
Benchmark networks were modularized using only Louvain
at resolution parameter, γ = 1 and with module refinement
method. We evaluated the performance of our method
using Normalised Mutual Information (NMI) values (to
measure accuracy w.r.t. ground truths), the modular-
ity, size of the modules and computational complexity
(time) for benchmark networks of different sizes (N =
1000, 5000, 10,000, 15,000) at different values of mix-
ing parameter. Figure 1 shows the mean values of
performance metrics for Louvain and Louvain with
module refinement over 50 benchmark networks. The

Table 1 Parameters used to generate LFR benchmark networks

Parameter LFR Network Values

Number of nodes 1K, 5K, 10K, 15K

Maximum degree 0.1 N

Average degree 20

Minimum module size [30, 40, 50, 60, 70]

Maximum module size 0.1 N

Degree distribution exponent 2

Module size distribution exponent 2

Mixing parameter [0.55, 0.65, 0.75]
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performance metrics for N = 1000 were observed to
be quite low indicating the dependency of modulari-
zation on number of nodes in a network.
As observed in the Fig. 1, after applying refinement in

module detection, we observed accuracies of 76.3, 76.6
and 81% in identifying modules as compared to 72.1,
70.5 and 75.2% accuracies of Louvain algorithm alone
for networks of sizes 5 K, 10 K and 15 K, respectively.
The accuracy of module detection decreased with in-
crease in mixing parameter. After refinement, modules
had sub-optimal modularity values but more accurate
with high NMI values. More importantly, refined mod-
ules are of smaller size of less than 200 as compared to
Louvain alone that produced large modules as big as of
size 1200 which are unlikely to have biological relevance.
Because of the incremental modularization step, refine-
ment method takes thrice as much time as taken by just
Louvain. Overall, with refinement modularization is
found to be more accurate.

Experiments with protein-protein interaction networks
Protein-protein interaction networks (PPIN)
A comprehensive set of Human PPIN was constructed
using protein-protein interactions retrieved from STRING
[18], HPRD [34], BIOGRID [35] and IMEx consortium da-
tabases [36] (DIP, IntAct, MINT, HPIDB, UniProt etc).
High confidence interactions from STRING and IMEx

databases along with curated experimental interactions
from HPRD and BIOGRID were combined to create a
PPIN dataset that contains 78,705 interactions and 12,022
nodes with average (maximum) degree of 13 (496) (see
Additional file 1 for details).

Evaluation on human PPIN
Modules were detected in PPIN by optimizing modularity
using Louvain (L) and Clauset-Newman-Moore Greedy (G)
algorithms. The observed modules were re-modularized
into smaller modules using the refinement algorithm devel-
oped in this study. It shows that our refinement method
can be implemented on a partition obtained from any
modularity based algorithm. Performances of modulariza-
tion were also compared with four non-modularity algo-
rithms such as Label Propagation (LP), Asymptotical
Surprise (ASY), MCODE and DPCLUS. We claim that our
refinement method also addresses the problem of reso-
lution limit which is substantiated by the comparison pro-
vided by ASY method.

Refining modules at different resolution parameters (γ)
Modularity based optimization suffers from a resolution
limit. To address this limitation, a resolution parameter,
γ was introduced by Reichardt and Bornholdt [15] in
order to detect finer modules such that original modu-
larity [5] is kept at γ =1 (eq.(1)). We first show that

Fig. 1 Performance comparison of just Louvain (γ = 1) (left) and Louvain (γ = 1) with refinement (right) on LFR benchmark networks. a NMI values,
b Modularity (Q), c Size of modules, and d Computing time (in μ s). The x-axis represents the mixing parameters, y-axis represents the mean
values of the performance metric, and error bars show standard deviations
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clustering PPIN using just modularity optimization with
Louvain algorithm at different values of γ is less effective
than our refinement procedure in addressing the reso-
lution limit problem in PPIN.
Performance at different γ values is measured using

mean values of pairwise NMI, modularity, number and
size of modules over 25 iterations of the Louvain. As
seen in Fig. 2, For γ values from 0 to 1.5, stability of
module detection is very low, modularity values are high
but that is because of few very large modules detected in
these partitions. From γ values of 2 onwards, high values
of pairwise NMI over iterations show stability in module
detection using our method as compared to those from
Louvain alone. Also, refinement procedure results in
more and smaller modules from PPIN but with lesser
modularity values as expected.

Selecting best resolution parameter
To select the best clustering of PPIN, a value of resolution
parameter is selected for modularity optimization using
Louvain that corresponds to high stability and significance
of modules. Maximizing modularity with Louvain has a sto-
chastic element and thus stability is measured using mean
of pairwise NMI across 25 iterations of algorithm run. Sig-
nificance of modules is calculated by adapting the approach

from [37] where we compared the modularity values from
25 iterations of PPIN with 100 random networks generated
with same degree sequence as the PPIN. Figure 3 shows
that modularity values of partition from Louvain are signifi-
cantly larger for γ in range of 1.5 to 10. But as observed in
Fig. 2, most stable, smaller and more number of modules
are given by γ = 2. For further comparisons and evaluation,
clustering of PPIN performed with Louvain at this best γ
value is considered and the refinement procedure devel-
oped in this study is applied to these clusters. We will refer
to original modularity optimization with just Louvain at
γ = 2 as L(γ = 2) and with our refinement procedure as
L(γ = 2) with refinement.

Effect of module refinement
Sizes of modules obtained from only Louvain at γ =1 and
2, and after refinement were studied to see the effective-
ness of the refinement algorithm on the initial modulari-
zation. As expected, modules after refinement are smaller
for both γ values. Refinable modules from L(γ) (that can
be modularized further) and non-refinable (those that do
not contain sub-modules) modules from L(γ) are shown
in Fig. 4. The refinable modules are processed using re-
finement algorithm to produce new refined modules.
Figure 5 shows size distribution of these three types of

Fig. 2 Performance of just Louvain and Louvain with refinement at different γ values. Red circles depict partition from just Louvain and black
circles depict partition from Louvain with refinement with error bars for NMI, modularity and number of modules
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modules. See Additional file 1: Figure S1 and S2 for size
distribution of modules for L(γ = 2). For L(γ = 1), 58% of
25 modules from initial modularization were refinable and
resulted in 305 modules in final modularization after re-
finement. Whereas for L(γ = 2), 13% of refinable modules
out of 96 resulted in 282 modules in final modularization.

Comparison with other algorithms
Performance of the refinement method was tested
with not only just Louvain (L), but with one more

modularity based algorithm (Clauset-Newman-Moore
greedy optimization (G)) along with a node property
based algorithm (Label propagation (LP)), a resolution
limit free algorithm (asymptotic surprise (ASY)) and
two PPIN clustering algorithms that use weighted ver-
tices as seeds for initial clusters. Figure 6 represents
complementary cumulative distribution function for
size of modules from different algorithms. ASY mod-
ularizes a network by optimizing a probability based
quality function and addresses the resolution limit

Fig. 3 Mean modularity values for partition obtained from Louvain at different values of resolution parameter. Red shows real protein-protein
interaction networks and Blue shows random networks of same degree sequence

Fig. 4 Size distribution of refinable and non-refinable modules obtained from Louvain based modularity optimization, L(γ = 1)
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problem by estimating smaller modules. L, G and LP
all detect many large modules of size more than 500.
MCODE and DPCLUS are designed specifically to de-
tect small and dense protein complexes. MCODE
modules are observed to be of similar size distribu-
tion to our refinement algorithm while DPCLUS re-
ported 88% modules with no more than three protein
nodes and only 4% modules with more than ten pro-
tein nodes (meso-modules). It is clear that if large
modules obtained from G and L are processed using
our refinement step, smaller modules comparable to
resolution limit free algorithms are obtained that are
more likely to be closer to functional modules.
Structural quality of modules was calculated using a

composite performance score that consists of modularity
and partition density (see Methods for details). It mea-
sures the topological quality of the modules in a parti-
tion. Partition density represents edge density of the
resulting clusters. As observed in Fig. 7, modularity and

partition density are higher for ASY, MCODE and
DPCLUS. Modularity optimization methods (L and G)
achieve high partition density only with refinement.
Overall performance and partition density is found to be
better for modules obtained from DPCLUS, ASY and
Louvain with refinement algorithms.

Functional enrichment of modules
In order to evaluate the biological relevance of the
topological modules detected from PPIN we deter-
mine GO-MF terms that are significantly enriched in
the meso-modules (size> 10). Significantly enriched
functions were evaluated at p-value = 0.05 by using
the GOstats [38] package. Figure 8 sheds light on
how the refined modules are highly enriched in mo-
lecular functions despite their smaller sizes as com-
pared to the larger modules detected by the Louvain
algorithm. The average fractions of functionally im-
portant genes in a module, calculated with respect to

Fig. 5 Module size distribution of refinable (from L(γ = 1)), non-refinable (from L(γ = 1)) and refined (L(γ = 1) + refinement) modules

Fig. 6 Complementary cumulative distribution function for size of modules from different algorithms: Louvain (L), Clauset-Newman-Moore greedy
optimization (G), Label propagation (LP), Asymptotic surprise (ASY), MCODE and DPCLUS
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top ten enriched functions, were much higher for re-
fined modules than those detected by the modularity
optimization algorithms (L,G) and other algorithms
(LP, ASY). Though asymptotical surprise produced
smaller modules with high topological quality, their
functional relevance is quite low as compared to re-
fined modules from our method. MCODE modules
showed comparable enrichment of functional genes
and DPCLUS showed twice as much enrichment. On
closer inspection, we found that only 33 out of 774
DPCLUS clusters are meso-modules and contributed
to functional enrichment whereas Louvain with re-
finement produced 283 enriched clusters out of 678

refined modules. Therefore, apart from being topo-
logically valid and smaller in size, the refinement pro-
duces more modules that are clustered with similar
biological functions.

Functional validation using known gene sets
To experimentally validate the modularization algo-
rithms, we employ 186 KEGG [39] pathways and 50
Hallmark gene sets (MSigDB [40]) that are well charac-
terised by their biological processes. We estimated the
overlap between these biological processes and the re-
fined modules from L(γ = 2) by using the functional
coverage (see Methods section). The functional coverage

Fig. 7 Composite performance of modules given by different algorithms- Louvain (L), Clauset-Newman-Moore Greedy optimization (G), Label
propagation (LP), Asymptotic surprise (ASY), MCODE and DPCLUS

Fig. 8 Mean percentage of functionally significant genes in modules from different algorithms: Louvain (L), Clauset-Newman-Moore Greedy
optimization (G), Label propagation (LP), Asymptotic surprise (ASY), MCODE and DPCLUS. Only meso-modules (with size> 10) are considered
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is given by average overlap between the known functions
and predicted clusters. Modules from L(γ = 2) showed
functional coverage of 3.9 and 4% for Hallmark gene sets
and KEGG pathways respectively. Applying refinement
method on these modules drastically increased the
coverage to 8.4 and 15.6% respectively. Thus, the refine-
ment of modules from human PPIN resulted in topo-
logical modules that are more closer to known
functionally characterised gene sets with more than two
fold increase in functional overlap compared to those
detected by using just modularity optimization algo-
rithms. Note that overall low coverage values cannot be
avoided due to the incompleteness of functionally char-
acterised gene sets.

Functional significance of refined modules: a case study
In this section, we attempt to shed light on the biological
properties of the refined modules realized by our algo-
rithm. An in-depth analysis of individual modules con-
firmed that after refinement, the observed modules
become more specific to few biological functions. For
example, we studied a refinable module, X from Louvain
at γ = 2 in detail (see Additional file 1 for gene list). X
can be considered as a supermodule that is re-
modularized into four sub-modules A, B, C and D. Fig-
ure 9 shows the different functional categories of the
supermodule and its submodules after refinement using

PANTHER [41] classification system for protein func-
tions and classes.
The supermodule X is found to be rich in following

protein functions:

1) Binding and catalysis: 37 and 31% of proteins in the
supermodule X bind with other biomolecules and
catalyze reactions, respectively. They include non-
receptor serine/threonine protein kinases (e.g.,
CAMKV, MAPK8, PRKDC, ATR), proteases (e.g.,
PRSS1, DPP3, PSEN2), RNA polymerase, DNA
polymerase and calcium binding proteins (e.g.,
CAB39, PLCG2).

2) Signal transducers: 8% of proteins are involved in
signaling processes such as G-protein coupled re-
ceptors (e.g., MC3R, GPR6, AVPR2, SSTR5,
GALR3, HTR2B, SSTR3, HTR1D) and cytokine re-
ceptors (e.g., IL20RA and IL20RB)

3) Transporter: 7% of proteins (e.g., SLC6A12, FXYD3,
SLC9A3, SLCO1A2, FXYD6, SLC1A5, TRPM6,
SLC10A2, SLC5A7, KCNQ1, KCND2) are involved
in molecular transport.

4) Regulators: 14% of proteins in the module are
responsible for regulation, activation and inhibition
of various biomolecules. They include functional
regulators such as G-protein modulator (e.g., RGS
16, MYO5C, MYO15A, EPS15, ERC2, EV15L,

Fig. 9 Functional categories of genes in the supermodule (X) and its refined submodules (A, B, C, D). The figures for functional classification are
generated using web application of PANTHER classification system [41]
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RGS16), kinase activators (e.g., DBF4B, CCNJL) and
protease inhibitors (e.g., WFDC2, ITIH3, BIRC2);
transcriptional regulators such as transcription fac-
tors (e.g., SIX1, PLAG1, SOX3, MAF, STAT5A,
EGR4, TAF10, MAFG, RUNX1T1, TBP, SMYD1,
FOXI1, SIX2, C1D, MYCL) and translational regu-
lators like RNA binding proteins (e.g., DAZL,
DAZ4) and translation initiation factor (e.g.,
EIF2S2).

5) Structural molecules: 3% of proteins like tubulin
(e.g., TUBA1A, TUBB2B), collagen (e.g.,
COL18A1), actin binding motor proteins (e.g.,
MYO5C, MYO15A), ribosomal proteins (e.g.,
GRSF1, RPL17-C18orf32) belong to class of struc-
tural proteins.

Submodule A is found to be mainly comprised of
heat shock proteins such as HSPA1A, HSPA1B,
HSPA1L, HSPBP1, HSPA2, HSPA5, HSPA6, and
HSPA8, which stabilize proteins when exposed to
heat; and transmembrane transporters like voltage-
gated potassium channel (e.g., KCNE2, KCNH2) pro-
teins, calcium channel (e.g., CACNA1E) proteins and
cotransporters (e.g., SLC5A1 and SLC12A3). Submo-
dule B is enriched more in chaperone proteins (e.g.,
HSP90AB1, HSP90AA1, CDC37L1, CDC37, PGGES3,
FKBPL) responsible for correct folding and transport
of unfolded proteins; kinases that regulate multiple
cellular signalling processes (e.g., CDK15, CDK11A,
MAP3K9, E1F2AK1, IP6K2) and transcription factors
(e.g., SM4D2, SM4D3, ELK4, MAFK, ELFS, HOXD4).
Submodule C is highly enriched in sets of regulator
and signalling proteins such as serine/threonine ki-
nases (e.g., CDK11B, CDK14, CDK16, CDK17, SIK3,
SK1, PAK4, DYRK1A), G-protein coupled receptors
(GPCR) (e.g., ADRA2B, ADRA2C) and G-protein
modulators (e.g., TBC1D4, MPR1P, RAP1GAP2,
RIN1, TBC1D4, RALGPS2, GAPVD1, RASSF1) that
activate and regulate many signalling molecules; it is
also composed of a number of transmembrane trans-
porters and voltage-gated ion channels (e.g., CACNB2,
KCNK15, KCNK9, KCNK3). Module D is a relatively
smaller module with 12 functional mappings to its
gene nodes including G-protein modulators and ca-
sein kinases that are involved in signalling process
and endocytosis involving vesicle formation from
membrane, respectively. In the refined submodules,
proteins from same family and functions are found to
be clustered together.

Discussion
The refinement algorithm developed in this study is based
on re-modularizing the refinable modules generated by a
modularity optimizing algorithm. For the present study,

we chose two state-of-art modularity optimizing algo-
rithms- Louvain and Clauset-Newman-Moore Greedy
optimization because of their recent popularity, especially
in applications of molecular networks. One node property
based algorithm (Label Propagation) and one resolution
limit free algorithm (Asymptotical Surprise) were also se-
lected for comparison. For a comprehensive evaluation,
modularization with two seed based algorithms specific to
protein interaction networks (MCODE and DPCLUS) was
also compared with our method.
We compared the modularization results on bench-

mark synthetic LFR networks and on real human PPIN
to test the accuracy of modularization after applying the
refinement method (Figs. 1 and 2). The refinement
method sub-optimizes the modularity (quality) of the
partition in the pursuit of small modules while maintain-
ing the topological integrity of these modules in order to
overcome the resolution limit of modularity-maximizing
modular detection algorithms. Present study stresses the
fact that the modules with the maximal modularity do
not necessarily yield biologically relevant modules in
molecular networks. This was evident in the applications
to protein-protein interaction networks where a sub-
optimal value of the modularity yields modules that are
closer to functional modules. We validated this with GO
term enrichment as well as with known functionally
characterised gene sets.
The improvement in modularization process was ob-

served at different resolution parameters after refinement
(Fig. 2). To prove that better performance of refined mod-
ules is not solely by chance, comparisons are done with
the most stable and significant value of resolution param-
eter (γ = 2) that is obtained by comparing the modulariza-
tion of real networks with multiple random networks of
same degree sequence (Fig. 3). Refined modules obtained
from our method were found to be 4 to 6% more accurate
in case of synthetic networks, and in case of protein-
protein interaction networks they resulted in better quality
modules that were functionally more enriched (Figs. 7, 8
and 9) when compared to existing algorithms.
A case study of a supermodule, X further substantiated

that the algorithm re-modularizes bigger and refinable
supermodules into smaller submodules composing of
biologically similar proteins (Fig. 9). We found that four
submodules (A, B, C, D) were rich in specific sets of pro-
teins; A having more transporter proteins, B more rich
in transcriptional regulators, C having more transporter,
regulator and signalling molecules and D moderately
rich in signalling molecules given its comparatively
smaller size.
Biological processes especially resemble small sub-

networks and this new refinement method mines sub-
optimal zone of modularity to realize small modules that
are functionally more significant. Thus, it produces
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smaller and refined modules consisting of genes that are
functionally more homogeneous and significantly
enriched in biological functions.

Conclusions
The resolution limit of modularization algorithms is a
major impediment for the search of computational al-
gorithms that are capable of detecting biologically
relevant modules in molecular networks. Our method
showed better accuracy in modularization and dem-
onstrated its ability to find smaller modules on syn-
thetic LFR networks mimicking molecular networks
and real protein-protein interaction networks. The
topological quality and functional significance of the
modules realized after applying our method were
greatly improved over the existing algorithms. The re-
finement algorithm developed here is a simple and in-
cremental approach that can extend to other quality-
maximizing module detection algorithms to improve
the effects of the resolution limit. One could further
investigate the convergence properties of our algo-
rithm, the application in overlapping clusters and the
effect of the quality loss threshold.

Methods
Modularity
Modularity as quality function
The modularity [5] is a quantitative measure rendering
the quality of the partition of a network into modules. It
represents a comparison of edges within a module with
the expected number of edges for the nodes in the mod-
ule for a randomized graph with same size and degree of
nodes. Community detection is thus performed by maxi-
mizing the modularity. Note that we interchangeably use
terms module, community, clusters and sub-graph.
Consider a network G with total L edges and a parti-

tion M ¼ fmg of the network. The quality or modular-
ity of its module m is given by

Qm ¼ lm
L
−γ

θm
2L

� �2
" #

ð1Þ

where lm and θm are the number of edges within the
module and the total degree of the module, respectively.
γ is the resolution parameter with default value of 1.
The quality of the modularization M is given by sum-
ming the qualities of its modules:

Qℳ ¼
X
m∈ℳ

Qm ð2Þ

Sufficient conditions to be a module
While optimizing the modularity, a subgraph can only
be qualified to be a module if total number of intra-

module edges is greater than expected by random
chance [42, 43], that is, the modularity has to be
positive:

lm
L
−

θm
2L

� �2

> 0 ð3Þ

If lm and loutm be the number of edges joining nodes
within the module m and to the rest of the network, re-
spectively, loutm ¼ alm and a ≥ 0 is a constant, the degree
of the subgraph, θm ¼ 2lm þ loutm ¼ ðaþ 2Þlm . For a < 2,

the module has a total internal degree θinm larger than the
external degree θoutm and therefore qualifies to be a mod-
ule. Therefore, from eq. (3) the sufficient conditions for
a subgraph to be module are

lm <
L
4
anda < 2 ð4Þ

Resolution limit of modularity detection
The resolution limit of a module detection algorithm is
the smallest size of a module that the algorithm is able
to detect. Module detection algorithms using the modu-
larity as the cost function has a resolution limit that de-
pends upon the number of edges between the network
modules. From Fortunato and Barthelemy [24], in a
worst case scenario, when intra-module edges (l) are bal-
anced with inter-module edges, even larger modules
can’t be modularized, and gives maximum scale of reso-
lution limit as

l < lmax ¼ L
4

ð5Þ

Whereas in a best case scenario when modules are in-
terconnected with only one link, modules that can’t be
further modularized will be smaller and gives minimum
scale of resolution limit as

l < lmin <

ffiffiffi
L
2

r
ð6Þ

Thus, the modularity has an intrinsic scale of orderffiffiffi
L

p
that limits the number and size of modules.

Module refinement algorithm
Sub-optimal values of modularity for functional modules in
molecular networks
Modularity optimization, in a best case, cannot detect
modules with intra-module edges l < lmin and a net-
work can be partitioned to modules with a positive
modularity value only if l < lmax. Thus ideal limits for
modularity optimization are [lmin, lmax]. However, bio-
logical networks actually have modules with number
of inter-module edges somewhere between two limits,
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so resolution limit ( l
0
min ) is a bit larger than that of

best case. Thus the larger modules will not be de-

tected when l < l
0
min where lmin < l

0
min < lmax.

Therefore, as shown in Fig. 10 optimal zone for real
biological networks i.e. actual limits for modularity

optimization are [ l
0
min , lmax]. Non-refinable zone is de-

fined as the modules with intra-module edges less than
lmin and that cannot be further modularized without dis-
rupting the topological definition of a module. The max-
imum modularity Q max of a real network finds modules

with edges having l
0
min < l < lmax . For our purposes, we

relax the need for maximum modularity to sub-optimal
values Qref and re-modularize the bigger modules until
we get smaller modules while keeping them topologically
relevant untill l > lmin.
In this way, our method of module refinement ex-

plores the suboptimal zone of modularity values within

limits [lmin, l
0
min]. So the sub-optimal modularity Qref for

a real network is able to find modules such that lmin <
l < lmax.

Refinement algorithm
For a given network G with n nodes and L edges, initial
modularization of the network is obtained by modularity
(Q) maximization using existing methods such as Lou-
vain [7] or Clauset-Newman-Moore Greedy [6] algo-
rithm. By modularization we mean, partitioning a
network into modules. In order to find the smaller mod-
ules, larger modules with intra-module edges more thanffiffiffiffiffi
2L

p
are incrementally modularized such that initial

modularization is sub-optimized with the loss of modu-
larity within a user defined specified value (denoted by a
threshold value ρ).
The steps of the refinement algorithm are:

1. Initial modularization: An initial modularization
(M) obtained by maximizing the modularity Q
through an existing modularity based algorithm (for
example, Louvain) serves as an input for further
refinement steps.

2. Incremental modularization: According to
minimum limit of resolution, modules with edges
less than

ffiffi
L
2

q
cannot be resolved further (from

eq. (6)) and we call them non-refinable modules.
A module is refinable if it clubs two or more
sub-modules, thus having at least

ffiffiffiffiffi
2L

p
intra-

module edges. These larger refinable modules
having l >

ffiffiffiffiffi
2L

p
are selected and iteratively re-

modularized as individual graphs using the
chosen Louvain algorithm. Non-refinable modules
are not touched further and added to final mod-
ularization (M).

3. Refinement: The sub-modules detected in the
previous step are filtered using a criteria based on
topological constraints: first, the modularity should
be positive; and second, the sum of internal degrees
θinm of a module m should be greater than the sum
of external degrees θoutm of the module nodes with
respect to the rest of the modules. The sub-
modules that satisfy these criteria are chosen as it is
and those do not satisfy this criteria are grouped in
a single subgraph. Both sub-modules are then sub-
mitted again for incremental modularization step.

4. Convergence: The algorithm converges if there are
no more refinable modules left or if the loss of
modularity drops below the threshold loss ρ (user
defined loss of modularity).

Figure 11 gives our module refinement algorithm. The
notation M←G defines a modularization M given a
graph G and G←M refers to de-modularization of M
into a graph G.

Performance evaluation
Normalized mutual information
For synthetic networks, the accuracy of module detec-
tion is estimated using the Normalised Mutual Infor-
mation (NMI) [33, 44] between a modularization
M ¼ fmg (predicted clusters) and the ground truth
T = {t} (real clusters). NMI is also used to estimate
stability of partitions obtained over many iterations of
module detection.

Composite score
In present study, quality of modules is calculated using a
composite score which consists of modularity and parti-
tion density. Modularity is a global property and mea-
sures quality of the partition (eq.(2)). Partition density is
a local quality measure adapted from [37] and does not
suffer from resolution limit. It is defined as the sum of
normalized link density of modules, weighted by the
fraction of present edges in the modules. For a network

Fig. 10 Schematic representation of sub-optimal zone explored for
module refinement algorithm
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with L edges and modules {m} with intra-module edges l
and module linked edges lm, partition density

PD ¼ 1
L

X
m
l

lm− nm−1ð Þ
nm nm−1ð Þ

2
− nm−1ð Þ

ð7Þ

Both Q and PD have values lower than 1. Higher the
composite score, better the quality of the partition.

Biological validation
Functional enrichment
The biological significance of predicted modules of PPIN
was estimated by evaluating the functional enrichment
[38] of the modules, using Gene Ontology (GO) terms
[45] of molecular function (GO-MF). For each module,
we focused on the top ten enriched functions for calcu-
lating the functional significance of the module. The
fraction of genes enriched in significant molecular func-
tions is used as the measure of functional enrichment of
the modules.

Functional coverage
The functional relevance of modules after refinement
was also evaluated by comparing with functionally char-
acterised gene sets given by the Hallmark gene sets [40]
and the KEGG [39] pathways. The overlap between
known functional modules from Hallmark gene sets and
KEGG pathways and predicted modules was calculated
using Jaccard coefficient. The average overlap between

known and predicted modules over various functions
gives a measure of functional coverage by the modules
of the partition.

Other algorithms
Louvain [7]
It finds the modules in a network by optimizing the
modularity Q (the quality function). Modularization is
achieved in two steps. First, all nodes are assigned to in-
dividual communities, which are then progressively
merged with one of its neighbour’s community that re-
sult in best increase in modularity. Secondly, the merged
communities are grouped as nodes with edge weight as
sum of the edge weights between nodes of each commu-
nity and first step is repeated. The algorithm is imple-
mented using the python package Community [32].

Clauset-Newman-Moore greedy optimization [6]
It also finds modules in a network by optimizing modu-
larity Q in a similar fashion to Louvain. Only difference
is that it merges communities that causes the largest in-
crease in the modularity. The algorithm is implemented
using NetworkX [31].

Label propagation [28]
It assigns communities to a node on the basis of mem-
bership of the neighbouring nodes. Initially, each node is
assigned a unique community label and then it itera-
tively updates its community to the most frequent com-
munity label among neighbours. The process continues

Fig. 11 Refinement algorithm
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until there is no change in module structure. The algo-
rithm is implemented using NetworkX [31].

Asymptotical surprise [29]
It optimizes a probability based measure called surprise
to find a good partition in the network. The quality
function (surprise), Q =mD(q ∣ |<q>) where m is the
number of edges, q is the fraction of internal edges, <q>
is the expected fraction of internal edges and D is the
binary Kullback-Leibler divergence. The quality function
is optimised using the Louvain algorithm implemented
using the python package Louvain-igraph [46].

MCODE [10]
It detects dense protein complexes in PPIN. It seeds the
initial cluster with highest weighted node and then ex-
pands these clusters by including neighbour nodes with
weights above certain cut-off. The code is implemented
to detect non overlapping clusters using the python
package Python-graph-clustering [47].

DPCLUS [13]
It also detects protein complexes in PPIN by adding
neighbour nodes to the initial cluster that is seeded by the
highest weighted node. Clusters are expanded until there
is a drop in cluster density and cluster property. The code
is implemented to find non overlapping clusters using the
python package python-graph-clustering [47].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-019-6294-9.

Additional file 1. The file contains supplementary information on
dataset pre-processing and analyses supporting the manuscript. Figure S1.
Size distribution of refinable and non-refinable modules obtained from
Louvain based modularity optimization, L(γ=2). Figure S2. Module size
distribution of refinable (from L(γ=2)), non-refinable(from L(γ=2)) and refined
(after L(γ=2) +refinement).

Abbreviations
ASY: Asymptotical surprise; G: Greedy optimization algorithm; GO: Gene
ontology; GPCR: G-protein coupled receptor; L: Louvain; LFR: Lancichinetti,
Fortunato & Radicchi Benchmark networks; LP: Label propagation;
MCODE: Molecular Complex Detection; NMI: Normalized mutual information;
PD: Partition Density; PPIN: Protein-protein interaction networks;
Q: Modularity; TF: Transcription factors

Acknowledgements
Not applicable.

About this supplement
This article has been published as part of BMC Genomics, Volume 20
Supplement 9, 2019: 18th International Conference on Bioinformatics. The
full contents of the supplement are available at https://bmcgenomics.
biomedcentral.com/articles/supplements/volume-20-supplement-9

Authors’ contributions
RK performed the analysis, interpreted the results and wrote the manuscript.
JR supervised the analysis and interpretation of results. All authors have read
and approved the final manuscript.

Funding
Publication of this supplement was funded by Tier-2 MOE2016-T2–1-029
grant by the Ministry of Education, Singapore.

Availability of data and materials
The source code for algorithm, its usage and data used during the current
study is publicly available at https://github.com/ramakaalia/
ModuleRefinement.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 7 November 2019 Accepted: 15 November 2019
Published: 24 December 2019

References
1. Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Müller T. Identifying

functional modules in protein–protein interaction networks: an integrated
exact approach. Bioinformatics. 2008;24(13):i223–31.

2. Spirin V, Mirny LA. Protein complexes and functional modules in molecular
networks. Proc Natl Acad Sci. 2003;100(21):12123–8.

3. Barabási AL, Oltvai ZN. Network biology: understanding the cell’s functional
organization. Nat Rev Genet. 2004;5(2):101–13.

4. Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based
approach to human disease. Nat Rev Genet. 2011;12(1):56–68.

5. Newman ME, Girvan M. Finding and evaluating community structure in
networks. Phys Rev E. 2004;69(2):26113.

6. Clauset A, Newman ME, Moore C. Finding community structure in very
large networks. Phys Rev E. 2004;70(6):66111.

7. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of
communities in large networks. J Stat Mech Theory Exp. 2008;2008(10):
P10008.

8. Valles-Catala T, Massucci FA, Guimera R, Sales-Pardo M. Multilayer stochastic
block models reveal the multilayer structure of complex networks. Phys Rev
X. 2016;6(1):11036.

9. Newman ME. Fast algorithm for detecting community structure in networks.
Phys Rev E. 2004;69(6):66133.

10. Bader GD, Hogue CW. An automated method for finding molecular
complexes in large protein interaction networks. BMC Bioinformatics.
2003;4(1):2.

11. Li M, Chen J, Wang J, Hu B, Chen G. Modifying the DPClus algorithm for
identifying protein complexes based on new topological structures. BMC
Bioinformatics. 2008;9(1):398.

12. Nepusz T, Yu H, Paccanaro A. Detecting overlapping protein complexes in
protein-protein interaction networks. Nat Methods. 2012;9(5):471.

13. Altaf-Ul-Amin M, Shinbo Y, Mihara K, Kurokawa K, Kanaya S. Development
and implementation of an algorithm for detection of protein complexes in
large interaction networks. BMC Bioinformatics. 2006;7(1):207.

14. Rosvall M, Bergstrom CT. An information-theoretic framework for resolving
community structure in complex networks. Proc Natl Acad Sci. 2007;104(18):
7327–31.

15. Reichardt J, Bornholdt S. Statistical mechanics of community detection. Phys
Rev E. 2006;74(1):16110.

16. Pons P, Latapy M. Computing Communities in Large Networks Using
Random Walks. In: Yolum, Güngör T, Gürgen F, Özturan C, editors.
Computer and Information Sciences - ISCIS 2005. ISCIS 2005. Berlin,
Heidelberg: Springer; 2005. p. 284–93.

17. Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-
scale detection of protein families. Nucleic Acids Res. 2002;30(7):1575–84.

Kaalia and Rajapakse BMC Genomics 2019, 20(Suppl 9):901 Page 13 of 14

https://doi.org/10.1186/s12864-019-6294-9
https://doi.org/10.1186/s12864-019-6294-9
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-20-supplement-9
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-20-supplement-9
https://github.com/ramakaalia/ModuleRefinement
https://github.com/ramakaalia/ModuleRefinement


18. Mering CV, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a
database of predicted functional associations between proteins. Nucleic
Acids Res. 2003;31(1):258–61.

19. Kotaru AR, Shameer K, Sundaramurthy P, Joshi RC. An improved
hypergeometric probability method for identification of functionally linked
proteins using phylogenetic profiles. Bioinformation. 2013;9(7):368.

20. Lehtinen S, Lees J, Bähler J, Shawe-Taylor J, Orengo C. Gene function
prediction from functional association networks using kernel partial least
squares regression. PLoS One. 2015;10(8):e0134668.

21. Vlaic S, Conrad T, Tokarski-Schnelle C, Gustafsson M, Dahmen U, Guthke R,
et al. ModuleDiscoverer: identification of regulatory modules in protein-
protein interaction networks. Sci Rep. 2018;8(1):433.

22. Girvan M, Newman ME. Community structure in social and biological
networks. Proc Natl Acad Sci U S A. 2002;99(12):7821–6.

23. Yang Z, Algesheimer R, Tessone CJ. A comparative analysis of community
detection algorithms on artificial networks. Sci Rep. 2016;6:30750.

24. Fortunato S, Barthélemy M. Resolution limit in community detection. Proc
Natl Acad Sci U S A. 2007;104(1):36–41.

25. Ronhovde P, Nussinov Z. Local resolution-limit-free Potts model for
community detection. Phys Rev E. 2010;81(4):46114.

26. Nicolini C, Bordier C, Bifone A. Community detection in weighted brain
connectivity networks beyond the resolution limit. Neuroimage. 2017;146:
28–39.

27. Steinhaeuser K, Chawla NV. Is modularity the answer to evaluating
community structure in networks? In: International conference on network
science (NetSci), Norwich, UK. 2008. https://www-users.cs.umn.edu/~
ksteinha/papers/NETSCI08.pdf. Accessed 18 Mar 2019.

28. Cordasco G, Gargano L. Community detection via semi-synchronous label
propagation algorithms. In: 2010 IEEE International Workshop on: Business
Applications of Social Network Analysis (BASNA): IEEE; 2010. p. 1–8. https://
doi.org/10.1109/BASNA.2010.5730298.

29. Traag VA, Aldecoa R, Delvenne JC. Detecting communities using
asymptotical surprise. Phys Rev E. 2015;92(2):022816.

30. Python Software Foundation. Python. https://www.python.org/. Accessed
on 15 Feb 2018.

31. Hagberg AA, Schult D, A Swart PJ. Exploring Network Structure, Dynamics,
and Function using NetworkX. In: Varoquaux G, Vaught T, Millman J, editors.
Proceedings of the 7th Python in Science conference (SciPy); 2008. p. 11–5.

32. Thomas Aynaud. Louvain community detection. 2009. https://github.com/
taynaud/python-louvain. Accessed 1 Feb 2019.

33. Lancichinetti A, Fortunato S, Radicchi F. Benchmark graphs for testing
community detection algorithms. Phys Rev E. 2008;78(4):46110.

34. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S,
Mathivanan S, et al. Human protein reference database—2009 update.
Nucleic Acids Res. 2008;37(Suppl 1):D767–72.

35. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a
general repository for interaction datasets. Nucleic Acids Res. 2006;34(Suppl
1):D535–9.

36. Calderone A, Castagnoli L, Cesareni G. Mentha: a resource for browsing
integrated protein-interaction networks. Nat Methods. 2013;10(8):690.

37. Ahn YY, Bagrow JP, Lehmann S. Link communities reveal multiscale
complexity in networks. Nature. 2010;466(7307):761.

38. Falcon S, Gentleman R. Using GOstats to test gene lists for GO term
association. Bioinformatics. 2006;23(2):257–8.

39. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes.
Nucleic Acids Res. 2000;28(1):27–30.

40. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P.
The molecular signatures database (MSigDB) hallmark gene set collection.
Cell Syst. 2015;1(6):417–25.

41. Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14:
more genomes, a new PANTHER GO-slim and improvements in enrichment
analysis tools. Nucleic Acids Res. 2018;47(D1):D419–26.

42. Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining and
identifying communities in networks. Proc Natl Acad Sci U S A. 2004;101(9):
2658–63.

43. Hu Y, Chen H, Zhang P, Li M, Di Z, Fan Y. Comparative definition of
community and corresponding identifying algorithm. Phys Rev E. 2008;78(2):
26121.

44. Vinh NX, Epps J, Bailey J. Information theoretic measures for clusterings
comparison: variants, properties, normalization and correction for chance. J
Mach Learn Res. 2010;11(Oct):2837–54.

45. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene
ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25.

46. Traag VA. Louvain-igraph. 2016. https://github.com/vtraag/louvain-igraph.
Accessed on 15 Feb 2019.

47. Price T. Graph clustering in python. 2016. https://github.com/trueprice/
python-graph-clustering. Accessed on 20 Mar 2019.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Kaalia and Rajapakse BMC Genomics 2019, 20(Suppl 9):901 Page 14 of 14

https://www-users.cs.umn.edu/~ksteinha/papers/NETSCI08.pdf
https://www-users.cs.umn.edu/~ksteinha/papers/NETSCI08.pdf
https://doi.org/10.1109/BASNA.2010.5730298
https://doi.org/10.1109/BASNA.2010.5730298
https://www.python.org/
https://github.com/taynaud/python-louvain
https://github.com/taynaud/python-louvain
https://github.com/vtraag/louvain-igraph
https://github.com/trueprice/python-graph-clustering
https://github.com/trueprice/python-graph-clustering

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Experiments with synthetic networks
	Benchmark synthetic networks
	Performance evaluation

	Experiments with protein-protein interaction networks
	Protein-protein interaction networks (PPIN)
	Evaluation on human PPIN
	Refining modules at different resolution parameters (γ)
	Selecting best resolution parameter
	Effect of module refinement
	Comparison with other algorithms
	Functional enrichment of modules
	Functional validation using known gene sets
	Functional significance of refined modules: a case study


	Discussion
	Conclusions
	Methods
	Modularity
	Modularity as quality function
	Sufficient conditions to be a module
	Resolution limit of modularity detection

	Module refinement algorithm
	Sub-optimal values of modularity for functional modules in molecular networks
	Refinement algorithm

	Performance evaluation
	Normalized mutual information
	Composite score

	Biological validation
	Functional enrichment
	Functional coverage

	Other algorithms
	Louvain [7]
	Clauset-Newman-Moore greedy optimization [6]
	Label propagation [28]
	Asymptotical surprise [29]
	MCODE [10]
	DPCLUS [13]


	Supplementary information
	Abbreviations
	Acknowledgements
	About this supplement
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

