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Abstract

Background: With the rise of single-cell RNA sequencing new bioinformatic tools have been developed to handle specific demands,
such as quantifying unique molecular identifiers and correcting cell barcodes. Here, we benchmarked several datasets with the most
common alignment tools for single-cell RNA sequencing data. We evaluated differences in the whitelisting, gene quantification, overall
performance, and potential variations in clustering or detection of differentially expressed genes. We compared the tools Cell Ranger
version 6, STARsolo, Kallisto, Alevin, and Alevin-fry on 3 published datasets for human and mouse, sequenced with different versions
of the 10X sequencing protocol.

Results: Striking differences were observed in the overall runtime of the mappers. Besides that, Kallisto and Alevin showed variances
in the number of valid cells and detected genes per cell. Kallisto reported the highest number of cells; however, we observed an
overrepresentation of cells with low gene content and unknown cell type. Conversely, Alevin rarely reported such low-content cells.
Further variations were detected in the set of expressed genes. While STARsolo, Cell Ranger 6, Alevin-fry, and Alevin produced similar
gene sets, Kallisto detected additional genes from the Vmn and Olfr gene family, which are likely mapping artefacts. We also observed
differences in the mitochondrial content of the resulting cells when comparing a prefiltered annotation set to the full annotation set
that includes pseudogenes and other biotypes.

Conclusion: Overall, this study provides a detailed comparison of common single-cell RNA sequencing mappers and shows their
specific properties on 10X Genomics data.
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Background
Major advances could be achieved in the transcriptomics field by
using single-cell RNA sequencing (scRNA-seq) to conduct differ-
ential expression analysis, clustering, cell type annotation, and
pseudotime analysis on a single-cell level [1]. Analysis of scRNA-
seq data helped to reveal new insights into cellular heterogene-
ity, e.g., the altered phenotypes in circulating immune cells of
patients with chronic ischemic heart disease [2] or the tran-
scriptional diversity of aging fibroblasts [3]. However, the analy-
sis of scRNA-seq data is resource intensive and requires deeper
knowledge of specific characteristics of each analysis tool. The
most resource-intensive step during single-cell next-generation
sequencing data analysis is the alignment of reads to a refer-
ence genome and/or transcriptome. Therefore, a common ques-
tion relates to the choice of the best scRNA-seq alignment tool
that can be incorporated into a fast, reliable, and reproductive
analysis pipeline. Here we evaluated 5 popular alignment tools:
Cell Ranger 6 and STARsolo, as well as the pseudo-alignment tools
Alevin, Alevin-fry, and Kallisto.

The technological properties of these mappers are summarized
in Supplementary Table S1. In general, the Cell Ranger 6 software
suite developed for 10X Genomics Chromium platform [4] data
uses STAR [5] as the standard alignment tool. STAR, originally de-

signed for bulk-seq data, takes a classical alignment approach by
using a maximal mappable seed search; thereby all possible po-
sitions of the reads can be determined. In contrast, Kallisto [6],
Alevin-fry [7], and Alevin [8] take an alignment-free approach, so-
called pseudo-alignment.

The idea of alignment-free RNA-Seq quantification was intro-
duced by Patro et al. [9] with Salfish and promised much faster
alignments. Here, k-mers of reads and the transcriptome are com-
pared, and no complete alignment between read and reference is
computed, which leads to huge speed-ups. Two years later, the
Patcher lab introduced Kallisto, a pseudo-alignment algorithm
that achieved similar improvements in runtime but with higher
alignment accuracy compared to Salfish. In response, Patro et al.
published Salmon [10], a reimplementation of their initial Salfish
tool that implements a sample-specific bias model that accounts
for various biases that prevent high false-positive rates and over-
all refined expression estimates. With the advent of scRNA-seq,
Kallisto introduced the Kalisto-bustools pipeline and Alevin was
released as an extension of Salmon to process scRNA-seq data.

Alevin makes use of an improved pseudo-alignment called se-
lective alignment that promises a higher specificity but an in-
crease in runtime compared to its previous implementation. With
the release of Alevin-fry, Alevin introduced a custom version of
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pseudo-alignment that can use a memory-efficient sketch data
structure to improve processing speed of large datasets. However,
it has been shown that pseudo-alignment tools have limitations
in the quantification of genes that have a low level of expression
[11].

In contrast to bulk-RNA-seq, preprocessing of scRNA-seq re-
quires specific features. Essential features are cell calling, remov-
ing PCR duplicates, and assigning reads to individual genes and
cells. These features can be achieved through barcode and UMI
sequences, which are sequenced along with the reads. Therefore,
the correct handling of barcode and UMI sequences are crucial
steps in the processing of scRNA-seq data. Each alignment tool
applies different strategies to handle these errors.

The most important step for cell calling is the correction of se-
quencing errors within the barcodes. Cell Ranger 6, STARsolo, and
Kallisto correct barcodes by comparing the sequenced barcodes to
a set of all barcodes that are included in the library preparation
kit, the so-called whitelist. This whitelist is provided by 10X Ge-
nomics. If no exact match for a sequenced barcode can be found
in the whitelist, this barcode is replaced with the closest barcode
from the whitelist, if the Hamming distance is not >1. Alevin, how-
ever, generates a putative whitelist of highly abundant barcodes
that exceed a previously defined knee point. Afterwards Alevin
assigns error-prone barcodes to the closest barcode from the pu-
tative whitelist, while allowing an edit distance of 1.

To remove biases from PCR duplicates (reads with the same
mapping position, the same cell barcode) an identical unique
molecular identifier (UMI) sequence is required for pooling these
PCR duplicates. To correct errors in UMI sequences, Cell Ranger
6 and STARsolo group reads according to their barcode, UMI, and
gene annotation, while allowing 1 mismatch (MM) in the UMI se-
quence. Because error-prone UMIs are rare, they will be replaced
by the higher abundant (supposedly correct) UMI. Afterwards a
second round is done by grouping the barcode, corrected UMI, and
gene annotation. When groups differ only by their gene annota-
tion, the group with the highest read count is kept for UMI count-
ing. The other groups are discarded because these reads origi-
nate from the same RNA construct but were mapped to differ-
ent genes. A detailed description of the whitelisting and UMI cor-
rection methods, which are unique for Cell Ranger, can be found
on the 10X website [12]. Alevin builds a UMI graph and tries to
find a minimal set of transcripts for UMI deduplication [8]. In this
process, similar UMIs are corrected. Kallisto applies a naive col-
lapsing method, which removes reads that originate from differ-
ent molecules but contain the same UMI [6].

The third important preprocessing step of scRNA-seq data is
the assignment of reads to individual genes and cells. Here, the
alignment tools have striking differences handling these multi-
mapped reads. In STARsolo, Cell Ranger 6 and Kallisto multi-
mapped reads are discarded when no unique mapping posi-
tion can be found within the genome/transcriptome. In contrast,
Alevin equally divides the counts of a multi-mapped read to all po-
tential mapping positions. The order of necessary steps for quan-
tification, i.e., the alignment and barcode and UMI correction, can
vary for each tool. Therefore, Supplementary Table S2 shows this
order. Kallisto has the most different order, in which the barcode
correction is executed after the alignment and a UMI correction
is not performed. The other tools perform the barcode correction
before the alignment and the UMI correction afterwards.

Apart from the choice of the mapper, other decisions can influ-
ence the mapping results. One aspect is the choice of an appro-
priate annotation, which was shown to influence gene quantifica-
tions [13]. 10X Genomics recommends a filtered gene annotation

that contains only a small subset that includes the biotypes pro-
tein coding, long non-coding RNA (lncRNA), and immunoglobulin
and T-cell receptor genes. Other biotypes, e.g., pseudogenes are
not included. Therefore, we were interested in whether a full an-
notation set affects the gene composition and the results of sec-
ondary analysis steps of scRNA-seq. Thus, we compared the map-
ping statistics of the filtered annotations to the complete (unfil-
tered) Ensembl annotation.

Specifically for scRNA-seq tools, comprehensive benchmark-
ing articles are sparse [14]. Until now, only a limited number of
benchmarking articles for scRNA-seq mappers have been pub-
lished. Du et al. [15] conducted a benchmark between STAR and
Kallisto on different scRNA-seq platforms and showed a higher
accuracy and read mapping number with the STAR alignment.
However, STAR has ∼4 times higher computation time and a 7-
fold increase in memory consumption compared with Kallisto.
Chen et al. and Vieth et al. performed a pipeline comparison with
human and mouse in vitro and simulated datasets with a vast
combination of tools concentrating on imputation, normalization,
and calculation of differential expressions [16, 17]. Very recently,
Booeshaghi and Pachter [18] published a preprint paper compar-
ing Alevin and Kallisto on 10X datasets and stated that Alevin
is significantly slower and requires more memory than Kallisto.
As a direct answer to this preprint Zakeri et al. [19] showed op-
posing results by using identical reference genomes and adjust-
ing the parameters to establish an equal configuration of the
tools. In their preprint, they showed that Alevin is faster and re-
quires less memory than Kallisto. In a third preprint the group
from STARsolo performed a benchmark of STARsolo, Alevin, and
Kallisto and claimed that STARsolo is more precise and outper-
forms the pseudo-alignment tools Alevin and Kallisto with sim-
ulated data. With a real dataset STARsolo replicated the results
from Cell Ranger significantly faster while consuming much less
memory [20].

These contradictory results show that an independent evalua-
tion of all 5 alignment tools is needed. Therefore, we performed
an in-depth and combined comparison of the 5 most common
alignment tools (Cell Ranger 6, STARsolo, Alevin, Alevin-fry, and
Kallisto) on different 10X datasets.

We used different scRNA-seq datasets of mouse and human to
highlight specific differences and effects on downstream analysis
with a focus on clustering, cell annotation, and differential gene
expression analysis as prominent goals of droplet-based sequenc-
ing. Hereby, we followed the guidelines for reproducible, transpar-
ent, rigorous, and systematic benchmarking studies by Mangul et
al. [21].

We are convinced that this benchmark of commonly used map-
pers is a valuable resource for other researchers to help them to
choose the most appropriate mapper in their scRNA-seq analysis.

Methods
Datasets and reference genomes
10X Drop-Seq data
We used 4 publicly available datasets.

Peripheral blood mononuclear cells
The first dataset is human peripheral blood mononuclear cells
(PBMCs) from a healthy donor provided by 10X. It was downloaded
from the 10X website [22]. It was sequenced with the v3 chemistry
of the Chromium system from 10X.
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Cardiac
The second dataset consists of 7 samples of mouse heart cells at
individual time points (homeostasis and 1, 3, 5, 7, 14, or 28 days)
after myocardial infarction [23]. Data were downloaded from the
ArrayExpress database under the accession E-MTAB-7895. This
dataset was sequenced with the v2 chemistry of the Chromium
system from 10X.

Endothelial
The third dataset is from the mouse single-cell transcriptome at-
las of murine endothelial cells from 11 tissues (n = 1) [24]. Data
were downloaded from the ArrayExpress database under the ac-
cession E-MTAB-8077. This dataset was sequenced with the v2
chemistry of the Chromium system from 10X. The dataset can-
not be mapped with Cell Ranger 4 and higher because the UMI
sequence is 1 base shorter than is expected in the v2 chemistry (9
rather than 10 bases). To be able to map this dataset we added an
A to all UMI sequences (R1 files) in the fastq file.

Heart failure
The fourth dataset contains 5 samples of patients with aor-
tic stenosis. Single-nucleus sequencing was performed on tissue
from the septum of the heart. The v3 chemistry from 10x Ge-
nomics was applied.

A technical summary of all datasets can be found in Supple-
mentary Table S3 that contains the read composition and quality
of each sample.

Gene annotation databases
Mouse and human genome and transcriptome sequences, as well
as gene annotations, were downloaded from the Ensembl FTP
server (Genome assembly GRCm38.p6 release 97 for mouse and
GRCh38.p6 release 97 for human) [25]. The annotation for Cell
Ranger 6 is the GENCODE version M22 for mouse and version 31
for human that match the Ensembl release 97 [26].

In this study, we compare 2 annotations (filtered and unfil-
tered). The filtered annotation file was generated applying the
mkgtf and mkref function for Cell Ranger 6.0.2 according to the
manual from 10X [27]. Therefore, the filtered annotation file con-
tains the following features: protein coding, lncRNA, and the im-
munoglobulin and thyroid hormone receptor genes. For the unfil-
tered annotation, the complete Ensembl GTF file was used with-
out any alterations.

Software
Source Code
An index of the reference genome has been built for each tool in-
dividually, using the default parameters according to the manual
pages of the individual tools. The exact commands for the cre-
ation of the indices and the mapping of the data are published at
[28].

Cell filtering
Cells were filtered with the R package DropletUtils v1.6.1 [29]. All
raw gene-count matrices were processed with the emptyDrops
method [30]. The emptyDrops function applies the emptyDrops
method, and 50,000 iterations of the Monte Carlo simulation were
chosen to avoid low-resolution P-values due to a limited number
of sampling rounds.

Downstream clustering analysis
Seurat v3.1.5 (SEURAT, RRID:SCR_007322) [31] was used for the
downstream analysis. For all secondary analysis steps, we re-
tained cells with a number of genes between 200 and 2,500 and a
mitochondrial content <10%.

To compare the clustering we integrated the expression matri-
ces of the samples from each mapper to remove technical noise
and compare all combined samples. This was done for the Car-
diac and PBMC datasets. The datasets were first normalized with
the SCTransform function. We then ranked the features with the
function SelectIntegrationFeatures and controlled the resulting
features with the function PrepSCTIntegration. Anchors were de-
termined by FindIntegrationAnchors and afterwards used with
the IntegrateData function. The UMAP algorithm was run on the
first 20 principal components of a PCA. To determine clusters, the
FindClusters function was used with the parameter resolution =
0.15 to receive a number of clusters that is similar to the expected
major cell types in the dataset. The Endothelial matrices were
only merged and not integrated because the resulting clustering
would not yield appropriate tissue clusters owing to the lack of
different cell types. Yet, after merging the matrices we could ob-
tain a similar clustering to the original study.

SCINA cluster comparison
To evaluate the effects of the different alignment and pseudo-
alignment algorithms on clustering analysis, we created an artifi-
cial “ground truth,” where we assigned each barcode to a cell type.
For this task we choose SCINA v1.2 [32] as an external classifi-
cation tool. The semi-supervised classification method in SCINA
requires a set of known marker genes for each cell type to be clas-
sified. Marker gene sets were obtained from Skelly et al. [33] and
combined with other marker gene sets, as suggested by Tombor et
al. [34] (Supplementary Table S4). An expectation–maximization
(EM) algorithm uses the marker genes to obtain a probability for
each provided cell type. After the classification each cell will be as-
signed a cell type that shows the highest probability based on the
provided marker genes. Alignments with different mappers might
result in different cell classifications for each barcode. Therefore,
a consensus scheme is applied to each sample to create a cell type
agreement for each barcode. Consensus of a cell classification for
each barcode is achieved if ≥2 mappers agree on a cell type.

The remaining barcodes were used as a global barcode set for
SCINA. Sankey plots were generated with the R package ggalluvial
0.12.3 [35] to illustrate the representation of cell types in each Seu-
rat cluster (Supplementary Fig. S5). In addition, to convey the dif-
ferences between SCINA and the Seurat clusters from each map-
per, we calculated F1-score for the Cardiac dataset in Fig. 4A, as
well as the precision, recall and F1-Score for the other datasets in
Supplementary Fig. S6 .

DEG analysis
For the differentially expressed genes (DEG) analysis each clus-
ter from the integration in Seurat was assigned to a cell type by
known marker genes for the PBMC dataset. The marker genes
were obtained by the Seurat workflow for a similar 10X dataset
[36]. DEGs were then calculated by using the FindAllMarkers func-
tion with the Wilcoxon-Rank-Sum test in Seurat and all DEGs
above an adjusted P-value of 0.05 were removed. Upset plots were
then created with the remaining DEGs (Fig. 4).

https://scicrunch.org/resolver/RRID:SCR_007322
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Figure 1: Summary of major measurements including runtime in hours (A), Genes per cell (B), cell count (C), and the mapping rate in percent (D). Bars
and error bars indicate mean and SE, respectively

Additional software
The R-package ComplexHeatmap 2.6.2 (ComplexHeatmap, RRID:
SCR_017270) [37] was used to create the Upset-plots (Figs 2, 4; Sup-
plementary Fig. S2).

Hardware
All computations were executed on a workstation with In-
tel Xeon E5-2667 CPU and 128 GB RAM. The OS was Ubuntu
18.04 LTS.

Results
For the comparison of the 5 different alignment tools Cell Ranger
6, STARsolo, Alevin, Alevin-fry, and Kallisto, we analysed 4 repre-
sentative datasets, which are denoted as PBMCs, Endothelial, Car-
diac (Endothelial), and HF (see Methods section for a detailed de-
scription of the datasets) in the following.

General statistics
The overall performance and basic parameters such as runtime,
genes per cell, cell number, and mapping rate are summarized in

Fig. 1. In terms of runtime STARsolo, Alevin and Kallisto clearly
outperformed Cell Ranger 6 and were ≥3 times faster. Kallisto
showed the shortest runtimes and was on average 4–6 times faster
than Cell Ranger 6. Additionally, Kallisto and Alevin-fry showed
the highest transcriptome mapping rate whereas Alevin showed
a slightly decreased mapping rate across all datasets. The cell
count and the mean number of genes per cell were similar for
Cell Ranger 6 and STARsolo across all datasets. Overall Cell Ranger
and STARsolo had almost identical results regarding the cell count
and the genes per cell, which is expected from the similarity of
both tools. In contrast, Alevin and Kallisto showed different be-
havior for the genes per cell across the datasets. Compared to the
other tools, Alevin detected more cells with fewer genes per cell
in the PBMC and Endothelial datasets. However, it detected fewer
cells with more genes per cell in the Cardiac, Endothelial, and HF
datasets. This is caused by the initial whitelisting in Alevin. It cal-
culates a knee point in which all barcodes above the knee point are
considered as a putative whitelist. Barcodes below the knee point
are then considered as erroneous barcodes. To correct these bar-
codes the algorithm tries to find a barcode in the putative whitelist
by a substitution, insertion, or deletion. If this approach fails, the
barcode is considered a noisy barcode and will be removed.

https://scicrunch.org/resolver/RRID:SCR_017270
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The percentage of noisy barcodes for Alevin is especially high
for the HF and the Cardiac datasets. One possible explanation
for this could be the library preparation protocol because these
datasets are single-nucleus RNA-sequencing (snRNA-seq). The
single-nucleus isolation protocol requires the extracellular matrix
to be broken in order to release the nuclei. This leads to a higher
amount of debris, which results in a higher percentage of back-
ground RNA contamination [38]. The percentage of barcodes that
were discarded as “noisy barcodes” by Alevin are summarized for
each sample in Supplementary Table S5.

We think that the knee point is higher than expected in the
Cardiac and HF datasets and the correction fails on many bar-
codes, which, therefore, are removed prior to the mapping. More
details with respect to these differences can be found in Supple-
mentary Fig. S1. In the PBMC and the Endothelial datasets, Alevin
shows small peaks in the lower left corner of the density plots for
UMI counts and genes per cell. These peaks represent cells that
have low UMI counts. For the Cardiac dataset Alevin did not de-
tect these cells with low UMI content, which might explain the
lower cell count for this dataset. However, in the Cardiac dataset,
we observed more low-content cells for Kallisto. This is consis-
tent with the finding that Kallisto detects most cells in the Cardiac
dataset.

Cell and gene identification
In 10X droplet-based single-cell sequencing, the individual cells
are usually identified via the randomized cell barcodes, which are
predefined by the whitelist. To determine whether the different
mapping tools detected identical cells, we merged the resulting
cells based on their barcodes (Fig. 2A). The majority of barcodes
were identified by all alignment tools. However, Cell Ranger 6,
STARsolo, and Kallisto detected more barcodes as compared to
Alevin and Alevin-fry in the Cardiac and HF datasets. These cells
had far fewer reads per cell compared to the cells that were de-
tected in all mappers, as shown in Panels 1 and 2 of Supplemen-
tary Fig. S2A and B. Alevin-fry and Kallisto also detected a set of
barcodes. Their gene content is lower than the total dataset as
can be seen in Panel 3 of Supplementary Fig. S2A and B. Similarly,
Alevin detected unique barcodes for the PBMC and Endothelial
datasets, which also had less gene content compared to the other
cells detected by Alevin (Panel 4 of Supplementary Fig. S2A and
B). Additionally, we recognized that the majority of these barcodes
are not included in the whitelist from 10X (Supplementary Table
S6). Panel 5 of Supplementary Fig. S2B shows the unique barcodes
for Kallisto in the HF dataset, which also have less gene content
than the other cells. Overall, we saw a reduced number of genes
per cell for the barcodes that were only detected by 1 or 2 of the 5
alignment tools.

By comparing the expressed genes, we could show that all
alignment tools detect a similar set of genes (Fig. 2B). Only Kallisto
detected additional genes leading to a higher number of protein
coding and lncRNA genes compared to the other tools (Supple-
mentary Figure 3). In the HF dataset a small number of genes were
not detected by Alevin-fry and Alevin.

One gene family that occurred more frequently in Kallisto is
the Olfr (Olfactory receptor) gene family, which exhibits dramat-
ically enriched UMI counts (Fig. 3A). Another Kallisto-enriched
gene family is the Vmn (Vomeronasal receptors) family, which is
detected with lower UMI counts compared to the Olfr family but is
still elevated compared to the other tools (Fig. 3B). This leads to an
increase in total gene counts for Kallisto (red line in Fig. 3) and an
increase of the respective biotypes (Supplementary Fig. S3). The

increased expression of genes from the Olfr gene family is exem-
plified in Supplementary Fig. 3. The HF dataset shows an increased
UMI count of Vmn genes in only 2 or 3 samples. Vomeronasal
genes are non-functional in humans because they were deacti-
vated by mutations and therefore should not be expressed in hu-
man tissue [39].

Effects on downstream analysis
To evaluate downstream effects of the different alignment tools,
we performed a semi-supervised cell type assignment with
SCINA. Therefore, we used all cells that were found by >2 map-
pers and assigned them to a corresponding cell type on the ba-
sis of the marker genes documented in Supplementary Table S2.
Thereby, the majority of barcodes could be assigned to a specific
cell type. Then we compared the clusters from each alignment
tool to the assigned cell types from SCINA. Using the barcodes to
identify each cell, we traced the cells from their respective clus-
ters to the assigned cell type.

The fate from the predicted cell types to the clusters for each
mapper can be observed in the sankey plots in Supplementary Fig.
S5. Supplementary Fig. S6 provides metrics to further evaluate the
detection of barcodes in each tool and cell type. Here, we used a
greedy assignment of Seurat clusters with the cell type classifi-
cation from SCINA. The cluster will be assigned with its highest
abundance cell type. Then, precision, recall, and F1-scores were
calculated.

In general, the clustering was similar when comparing the
alignment tools. Minor differences were observed for Kallisto and
Alevin. In the PBMC dataset, Kallisto showed a higher number of
missing barcodes (M.b.), predominantly from monocytes. Missing
barcodes are barcodes that were found in ≥2 of the other mappers
but not in the present one, which means that these monocytes
were not present or filtered out in Kallisto. This results in a lower
recall in Supplementary Fig. S6B.

In the Cardiac dataset, the lower cell count found by Alevin
leads to more barcodes associated with M.b.s, demonstrating that
these cells are not detected in Alevin. The majority of these miss-
ing cells were assigned as endothelial cells, which means that in
the Cardiac dataset Alevin detected only ∼50% of the endothe-
lial cells that were found with the other tools. Also the number of
B cells and granulocytes were decreased owing to the lower cell
counts. This decrease is reflected in a lower recall in Supplemen-
tary Fig. S6D and a lower F1-score in Fig. 4A. However, the decrease
in the latter cell types could not be confirmed in the PBMC dataset.

In summary, Cell Ranger 6 and STARsolo showed the highest
agreement with the predicted cell types from SCINA, which is
not surprising because they use the same internal algorithm. The
overlaps of Alevin and Kallisto were lower owing to varying cell
counts.

Analysis of the DEGs for the cell types of the PBMC dataset
did show the highest agreement of STARsolo, Alevin-fry, and Cell
Ranger. Major differences among the alignment tools are summa-
rized in Fig. 4.

The accuracy of the barcode detection per tool in each cell
type can be seen Fig. 4A. The highest accuracy can be seen in
Cell Ranger, STARsolo, and Alevin. Lower accuracies are present
in Alevin and Alevin-fry. Overall, cell types with a low amount
of cells present in the dataset are difficult to detect in all tools.
Comparing significant DEGs (P < 0.05) in PBMC, we see in Fig. 4A
and B that STARsolo or Alevin has the highest overlap and cor-
relation with Cell Ranger, respectively. Overall, Kallisto shows the
lowest overlap and Alevin has intermediate overlaps. For the cor-
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increases from right to left—frst the barcodes or genes that have only been detected by 1 mapper up to the barcodes or genes that have been detected
in all tools.

relation (Fig. 4C) this ranking is not as clear because it highly de-
pends on the cell type. Despite the differences most DEGs were
detected by all tools in the PBMC dataset (Fig. 4D). Small groups
of DEGs were detected by a single tool or when 1 or 2 tools have
not detected DEGs. This is often the case in Alevin, Alevin-fry,
and Kallisto. In Fig. 4E–H we compare significant DEGs (P < 0.05)
from the T-cells CD4+ cell type of Cell Ranger against the other
tools, similar to Kaminow et al. [20]. The highest correlation can
be observed in STARsolo and Alevin-fry. Kallisto shows the low-
est correlation against Cell Ranger and Alevin and intermediate
correlation. These results are largely consistent with the results
from Kaminow et al. [20]. The uniquely overrepresented genes in
Kallisto are likely the OLFR and VMN genes that we showed in
Fig. 3.

Comparing filtered with unfiltered annotations
The default transcriptome annotation dataset, which is recom-
mended for Cell Ranger 6 by 10X Genomics, misses some impor-
tant biotypes like pseudogenes and TECs (sequences that indicate
protein-coding genes that need to be experimentally confirmed).
These differences in gene model compositions can have profound
effects on the read mapping and the gene quantification as re-
ported by Zhao and Zhang [13]. To evaluate the effects of different
annotation sets on 10x scRNA-seq data, we compared the map-
ping statistics of the filtered annotations to the complete (unfil-
tered) Ensembl annotation.

Besides the increase of processed pseudogenes (Supplementary
Fig. S3), the use of the unfiltered annotation led to a decrease in
mitochondrial (MT) content across all alignment tools as shown in
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Figure 3: UMI counts of all detected (A) Vmn (Vomeronasal receptor genes) and (B) Olfr (Olfactory receptor genes) genes per mapper in each sample.
The red line indicates the total number of expressed genes in the gene families. Boxes indicate the 25th and 75th percentiles and whiskers indicate
maximal and minimal values.

Supplementary Fig. S7A. Especially the 2 mouse datasets showed a
strong reduction of MT content in the unfiltered annotation. Sup-
plementary Fig. S7B shows the amount of reads per mitochondrial
gene, which are not mapped. Further investigation revealed that
the unfiltered annotation includes pseudogenes that are identi-
cal to MT genes (Supplementary Fig. S7E). A potential explana-
tion for the reduced MT content with the unfiltered annotation
is that the mapping algorithms cannot uniquely assign a read to
the MT gene because the read can simultaneously map to the MT
gene and the identical pseudogene (Supplementary Fig. S7D and
E). Therefore, this read is discarded. Because high MT content is a
sign of damaged or broken cells, cells with an MT content above a
certain threshold are usually filtered out. However owing to the re-
duced MT content fewer cells surpassed the MT content threshold
and we could retrieve more cells. These additional cells clustered
along with the other cell types, indicating that the cell quality is

good and that these additional cells are not broken or damaged
cells as exemplified in Supplementary Fig. S7C. Using the unfil-
tered annotation yielded up to 10% more cells per sample. How-
ever deeper research is required to ensure the quality of these ad-
ditional cells.

Discussion
Because handling of scRNA-seq data is a moving target, the con-
stant revision of new tools is important to ensure reliable results.
Therefore, independent benchmarking and evaluation of uncer-
tainties of analysis tools is of central importance [40].

Our study of real 10X Genomics datasets demonstrated advan-
tages and disadvantages of 5 popular scRNA-seq mappers for gene
quantification in single cells and adds to the growing number of
benchmarks. The tools benchmarked in this study are widely used
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Figure 4: Accuracy of cell annotation in Seurat compared with the barcode consensus scheme from SCINA (A). Differential gene expression (DEGs)
between Cell Ranger and the other tools as overlap (B) and correlation (C). Intersection that shows the detection of DEGs by a varying number of tools.
The number of tools increases from right (DEGs that were detected by 1 tool) to left (DEGs that were detected by all tools) (D). The log2 fold change
(log2FC) of DEGs CD4+ T cells between Cell Ranger and each of the other tools (E–H). The adjusted R2 is the sample correlation of a linear model.

in many laboratories; thus, our results are relevant for many sci-
entists working with scRNA-seq data. All mappers have been eval-
uated on in vivo datasets because these data might reveal unex-
pected differences or characteristics that probably could not have
been found with simulated data as is highlighted by Srivastava et
al. [41]. From our perspective, the only advantage of using simu-
lated datasets is that it allows the assessment of read accuracy,
which has already been done for the mappers we used in this
study [21, 42, 43].

The runtime is one of the most important factors when choos-
ing a tool, but the quality of the results is of equal importance. In
our detailed analysis, we show that Cell Ranger 6 could be eas-
ily replaced with STARsolo because they show almost identical
results but STARsolo is up to 5× faster in comparison with Cell
Ranger 6. The low variance in the PBMC dataset for the cell counts
and genes per cell for Cell Ranger 6 and STARsolo can be explained
by the predefined sample size by 10X. With the option for selective
alignment, which was used throughout this article, Alevin-fry had
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a similar runtime to STARsolo. However Kaminow et al. showed
that the runtime decreases when using the pseudo-alignment al-
gorithm (sketch mode) for Alevin-fry, yet this leads to a reduction
in accuracy [20] as mapping positions are not validated via align-
ment scoring [7].

Du et al. 2020 [15] reported that Kallisto was even faster than
STARsolo, a finding that is consistent with our results because
Kallisto had overall the shortest runtime across all mappers. How-
ever, the number of cells and the genes per cell varied across
datasets for Alevin and Kallisto.

Additionally, Kallisto seems to detect genes of the Vmn and
Olfr family as highly expressed in several single-cell datasets, al-
though these genes are typically not expressed in these tissues.
Because these gene families belong to the group of sense and
smell receptors, they are expected to be expressed at lower lev-
els or be absent in PBMCs and heart tissue and likely represent
artefacts. We consistently show that these genes are overrepre-
sented in the Kallisto results (Fig. 3 and Supplementary Fig. S4).
Because Kallisto does not perform quality filtering for UMIs, this
might have influenced the reported number of genes per cell as is
indicated by Parekh et al. [44].

Another major difference of the tested mapping tools is the
handling of errors in the barcodes. We could show that Alevin
often detects unique barcodes, which were not identified by the
other tools. These barcodes had very low UMI content and were
not listed in the 10X whitelist. Therefore, It can be assumed that
these barcodes were poorly assigned (Section 4 of Supplementary
Fig. S2). A possible explanation might be the use of a putative
whitelist in Alevin that was calculated prior to the mapping, in-
stead of using the one provided by 10X. In Alevin-fry the barcode
correction seems to be improved because there is no severe en-
richment of cells that are unique to Alevin-fry.

While comparing the resulting cell clusters generated by each
tool, we recognized only minor differences between the tools. Es-
pecially the clusters from Cell Rranger and STARsolo were similar.
However, Kallisto detected fewer monocytes in the PBMC dataset
and Alevin detected fewer endothelial cells in the Cardiac dataset.
Overall, we saw a much higher variance in the clustering in the
Cardiac dataset. This could be due to the use of an older version
of the library extraction protocol (10X v2), which has short barcode
and UMI sequences, or a lower sequencing quality of the Cardiac
dataset.

The comparison of the complete annotation from Ensembl and
the filtered annotation, as suggested by 10X, revealed that multi-
mapped reads play an important role in scRNA-seq analysis. In
this study, we showed that using an unfiltered annotation re-
duces the MT content of cells compared to the filtered annotation.
Therefore, the MT content as a way to distinguish valid cells and
dead or damaged cells has to be carefully conducted because it
depends on the annotation. The recommended annotation from
10X, which only contains genes with the biotypes protein-coding
gene and long non-coding gene, might lead to an overestimation
of MT gene expression. However, on the other side all of these ge-
nomic loci that are identical to MT genes, so-called nuclear mi-
tochondrial DNA (NUMT), are unprocessed pseudogenes and are
not yet experimentally validated and could well be artefacts from
the genome assembly. For human samples we could not see major
differences in the downstream results while using the complete
annotation; therefore it might well be used instead of the filtered
annotation. However for mouse samples a clear recommendation
of whether to use the filtered or the complete annotation can-
not be made because more research into this issue is required.
These results suggest that there is still a need to improve the han-

dling of multi-mapped reads in scRNA-seq data. In datasets with
a high percentage of multi-mapped reads, EM-like algorithms, as
suggested by Srivastava et al. [45], can be advantageous and im-
prove gene quantification in scRNA-Seq datasets. Future mapping
tools might, e.g., consider the likelihood of a gene to be expressed
in a certain cell type. This might enhance the quantification of
cell type–specific genes and prevent multi-mapped reads for cell
types, where a certain gene is rarely expressed. Inclusion of map-
ping uncertainties may be another fruitful direction.

Srivastava et al. [41] observed that there are significant dif-
ferences between methods that align against the transcriptome
with quasi-mapping (e.g., Alevin) and methods that do full spliced
alignments against the genome (e.g., STAR) [41]. The observed
discrepancies, when using the filtered annotation in our experi-
ments, often result from genes that share the same sequences,
and therefore, the true alignment origin cannot be determined.
The reported positions of reads contained annotated transcripts,
e.g., from the mitochondria and a few unprocessed pseudogenes.

In conclusion, our analysis shows that Alevin, Kallisto, and
STARsolo are fast and reliable alternatives to Cell Ranger 6. They
also scale to large datasets. A summary of advantages and disad-
vantages of each individual tool is provided in Fig. 5.

In general, we could show that STARsolo is an ideal substi-
tute for Cell Ranger 6 because it is faster but otherwise performs
similarly. If high-quality cell counts need to be obtained, Alevin-
fry appears to be the most suitable method because mean gene
counts are high and poor-quality barcodes are seldom reported.
Kallisto, while reporting the highest number of barcodes, also con-
tains many barcodes that could not be assigned to cells expected
in the heart on the basis of known marker genes. Therefore, we
generally recommend STARsolo or Alevin-fry for most end-users
as an alternative to Cell Ranger because these tools’ performance
was very stable over all datasets. For very large projects with a
high number of samples, pseudo-alignment tools such as Kallisto
can be advantageous in terms of runtime and storage efficiency,
at the cost of a slight reduction in accuracy.

Data Availability
All supporting data and materials are available in the GigaScience
GigaDB database [46].
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DropletUtils 1.6.1, SCINA v1.2, ggalluvial 0.12.3, ComplexHeatmap
2.6.2, reshape2 1.4.4, ggplot 3.3.5, ggpubr 0.4.0, dplyr 1.0.7, svglite
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License: MIT
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Supplementary Figure S1: Distribution of UMI-counts and genes
per cell for the individual datasets. Distribution is a kernel density

https://github.com/rahmsen/BenchmarkAlignment
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Figure 5: Summary of the results for each evaluated section of interest and mapper. Good results are coloured in green, intermediate in yellow, and
poor results in red.

estimate with a Gaussian kernel of all samples for the PBMC, En-
dothelial, and Cardiac datasets. The left column displays the UMI
counts per cell, and the right column, the number of genes per
cell.
Supplementary Figure S2: (A) Amount of common and unique
barcodes (mean ± s.e.m.) detected by the individual alignment
tools. Intersections of interest are marked by numbers. (B) Gaus-
sian distribution of genes per cells for the interesting intersection
and dataset from A. The distributions of the tools from the in-
tersection (non-transparent) are compared with all detected bar-
codes of each tool (transparent lines [in the background]; denoted
with asterisk in the legend).
Supplementary Figure S3: Number (mean + s.e.m.) of biotypes
per dataset with ≥1 UMI count after mapping with a filtered (solid
dots) or unfiltered annotation (triangles in squares). IG = Im-
munoglobulin genes, TR = T-cell receptor genes, TEC = sequences
that need to be experimentally confirmed.
Supplementary Figure S4: Expression of the OLFR gene family per
cell in the PBMC dataset for (A) Cell Ranger, (B) Cell Ranger 6, (C)
STARsolo, (D) Alevin, and (E) Kallisto. Cells are sorted by clusters
that are denoted by the colour code above each heat map.
Supplementary Figure S5: Sankey plots demonstrating the fate of
each cell from SCINA cell types to the clusters obtained by Seurat.
Cells were kept only if >2 mappers detected a barcode. (A) PBMC
dataset; (B) Cardiac dataset. M.b.: missing barcodes. These are bar-
codes that were found in ≥2 of the other mappers but not in the
present one.
Supplementary Figure S6: Consistency of cells detected by each
mapper (“ground truth”) by greedy assignment of the barcodes to

the SCINA classification. (A) F1-Score, (B) recall, and (C) precision
for the PBMC dataset. The recall (D) and precision (E) for the Car-
diac dataset.
Supplementary Figure S7: Difference in mitochondrial content
(MT content) of cells due to use of a filtered and unfiltered an-
notation. (A) MT content of cells separated by filtered and unfil-
tered annotation. (B) Reads mapped to the mitochondrial genes
for the PBMC and Rosenthal dataset with unfiltered annotation.
Orange indicates the amount of reads that are removed due to
multimapping when an unfiltered annotation is used. (C) UMAP
showing cells in green that are retained because the MT content
is below the filtering threshold when the unfiltered annotation
was used in the mapping. (D) Mitochondrial genes and its closest
pseudogene when the mappers reported the secondary mapping
position along with the sequence similarity to the MT gene. (E)
Example of the mapping process of a read from an MT gene with
a filtered/unfiltered annotation. Because the filtered annotation
does not include potential NUMTs, the read is uniquely mapped
to the MT gene. Whereas the complete set contains NUMTs and
therefore the read cannot be uniquely mapped to the MT genes
(multi-mapped) and therefore is discarded.
Supplementary Table S1: Distribution of UMI-counts and genes.
Supplementary Table S2: Common and unique barcodes detected
per mapper.
Supplementary Table S3: Expressed biotypes per mapper.
Supplementary Table S4: Heatmap of OLFR genes.
Supplementary Table S5: Sankey plot comparisson for each map-
per to SCINA annotation.
Supplementary Table S6: Heatmap of recall and precission rate.
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