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Abstract: The aim of this work was to compare the methods of malondialdehyde detection,
as the main secondary product of the lipid peroxidation process, in meat and meat products.
Malondialdehyde measurements were performed by two modified methods, the 2-thiobarbituric
acid spectrophotometric method and the reverse-phase high-performance liquid chromatography in
raw, mechanically-deboned chicken meat and in manufactured frankfurters. The malondialdehyde
concentrations measured by the 2-thiobarbituric acid spectrophotometric method were found to be
overestimated by more than 25% in raw meat and more than 27% in frankfurters in comparison to
the results of reverse-phase high-performance liquid chromatography (p < 0.05). The achieved results
showed that the presented modified reverse-phase high-performance liquid chromatography method
was more applicable and more accurate for the quantification of malondialdehyde in samples of meat
and meat products.

Keywords: high-performance liquid chromatography; derivatization; thiobarbituric acid;
spectrophotometry; malondialdehyde; lipid oxidation; meat; meat products

1. Introduction

Meat is considered to be a very nutritive food and has been rated highly, and associated with
good health, by contributing quality protein, B vitamins, iron, and zinc. Meat fat is important in
human nutrition with n-3 polyunsaturated fatty acid (PUFA) and conjugated linoleic acids (CLAs)
playing a beneficial role [1]. Mechanically-deboned meat (MDM), mechanically-recovered meat
(MRM), and mechanically-separated meat (MSM) are synonyms used to specify the material obtained
by using mechanical force (pressure and/or shear) on animal bones or poultry carcasses from which
the bulk of meat has been manually removed [2]. Mechanically-deboned chicken meat (MDCM) is
very susceptible to oxidative reactions due to the high lipid content in its composition. These reactions
occur from the metabolic transformations of fatty acids in the meat [3]. Mechanical deboning of
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meat affects the lipid composition of the resulting meat, which normally has a higher lipid content
than manually-deboned meats. These extra lipids may originate from subcutaneous fat, the skin,
or abdominal fat (depending on the animal species and the method used) but, mainly, it comes from
bone marrow and bone tissue [4].

Malondialdehyde (MDA) is one of the most abundant aldehydes generated during secondary
lipid oxidation and also probably the most commonly used as an oxidation marker [5]. The presence of
oxidized lipids in the diet of humans and animals resulted in an increase of thiobarbituric acid reactive
substances (TBARS) in plasma and tissue [1]. MDA is in many instances the most abundant individual
aldehyde that results from lipid peroxidation in foods. Its concentration in meat and fish products
could reach 300 µM or more [6].

It has also been shown that the initial products of fatty acid oxidation (hydroperoxides) are
more toxic to human fibroblasts than the end products MDA or 4-hydroxynonenal [7]. The ability
of MDA to alter/cross-link a variety of biological macromolecules may contribute to its toxicity,
and its mutagenic/carcinogenic properties could reflect adduct formation with nucleic acid bases.
Covalent modification of lipoproteins with MDA may play a pathogenic role in atherosclerosis [8].

Lipid primary oxidation products can generate, if exposed to further oxidation conditions,
secondary oxidation products, including aldehydes, ketones, epoxides, hydroxy compounds,
oligomers, and polymers. These compounds show a wide variety of physicochemical properties,
mainly differing in volatility, polarity, and molecular weight. The most relevant groups of compounds
will be commented (aldehydes, volatiles, and polymers), as well as a particular molecule very
frequently used as an oxidation marker (malondialdehyde).

Deleterious effects of MDA: induced intracellular oxidative stress, leading to membrane lesions
in erythrocytes, and MDA are also genotoxic, reacting with DNA to form highly-mutagenic adducts
in human cells [9]. MDA is a highly toxic molecule and is able to disturb many physiological
processes in animals and humans. Therefore, MDA should be considered to be more important
than a lipid peroxidation byproduct. Moreover, levels of MDA in living organisms have been found
to be significantly modified in many pathological situations (e.g., gastric, lung, or breast cancer,
and atherosclerotic or cardiovascular diseases) [10]. Among various carbonyl compounds produced
as secondary lipid oxidation products, malondialdehyde has received particular attention due to its
potential health risk [11], for mutagenic and carcinogenic effects of MDA [12].

A great variety of methodologies have been developed and implemented so far, for determining
both primary and secondary oxidation products. The most common methods and classical procedures
are described, including peroxide value, TBARS analysis and chromatography [3]. The most widely
used method for the determination of MDA is the spectrophotometric determination of pink fluorescent
MDA-thiobarbituric acid (MDA-TBA) complex produced after reaction with 2-thiobarbituric acid (TBA)
at low pH and high temperature [13,14]. There are several variations of the MDA-TBA method with
different conditions of extracting MDA from food samples for example: direct heating of the samples
with TBA, sample distillation, lipid extraction with organic solvents, or acid extraction of MDA. In spite
of these improving modifications, methods based on the derivatization MDA with TBA are criticized
for their lack of sensitivity and their high inaccuracy, since TBA reacts not only with MDA, but also
with many other compounds interfering in the TBA assay and resulting in considerable overestimation
as well as variability of the results [13,15]. To overcome the biases from the derivatization of MDA
with TBA, new derivatising agents were tested. Well-marked improvement of MDA determination
accuracy in biological samples were achieved by using 2,4-dinitrophenylhydrazine (DNPH) as a
derivative reagent [10,15]. In spite of the stated facts of TBA determination methods, especially
spectrophotometric TBA-MDA methods, are still preferable for their simplicity.

The aim of the study was to improve the procedure involving extraction and derivatization
of MDA with DNPH and compare the determination methods of malondialdehyde by presenting
modified reverse-phase high-performance liquid chromatography (RP-HPLC) and the modified
2-thiobarbituric acid (TBA) spectrophotometric method, and in raw, mechanically-deboned chicken
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meat and in manufactured frankfurters. The observation of lipid peroxidation process was
supplemented by fat content and fatty acid analysis of samples by gas chromatography.

2. Results and Discussion

2.1. Fatty Acid Composition of Samples

In the presented comparison study of malondialdehyde determination by modified RP-HPLC
(MDA-DNPH) and TBA spectrophotometric methods (MDA-TBA) samples of mechanically-deboned
chicken meat with high and low pressure, and meat product samples made from these meats were
chosen. The examined samples were selected because of the high content of lipids and high content of
PUFA, which could result in different MDA concentrations measured by both the TBA and RP-HPLC
method. MDCM contains a verifiably higher lipid and PUFA content than manually-deboned meat [2].
Fatty acid (FA) composition in mechanically-deboned chicken meat, and in experimentally-made
samples of frankfurters is shown in Table 1.

Table 1. Fatty acid composition (% of total fatty acid) in raw materials for meat production (low- and
high-pressure MDCM and meat products—frankfurters (means ± SD).

Mechanically Deboned Chicken Meat Frankfurter Samples

Fatty Acid
(% of Total Fatty Acid)

Low
Pressure

High
Pressure p-Value Low Pressure

Deboned
High Pressure

Deboned p-Value

C12:0 4.36 ± 0.49 1.36 ± 0.22 <0.001 0.74 ± 0.04 0.32 ± 0.00 <0.001
C14:0 1.82 ± 0.08 1.09 ± 0.07 <0.001 1.49 ± 0.03 1.39 ± 0.01 <0.001
C16:0 22.53 ± 0.60 23.56 ± 0.10 0.004 21.80 ± 0.32 23.00 ± 0.11 <0.001

C16:1–7c 4.95 ± 0.45 6.08 ± 0.12 <0.001 2.69 ± 0.05 2.77 ± 0.03 0.013
C18:0 6.92 ± 0.44 6.68 ± 0.16 0.290 11.03 ± 0.12 11.72 ± 0.05 <0.001

C18:1–9c 36.11 ± 0.40 37.35 ± 0.26 <0.001 40.82 ± 0.11 41.14 ± 0.33 0.069
C18:1–11c 2.72 ± 0.12 2.73 ± 0.02 0.815 3.09 ± 0.09 2.78 ± 0.25 0.026

C18:2–9c.12c 15.63 ± 0.62 16.47 ± 0.20 0.016 14.03 ± 0.08 12.90 ± 0.07 <0.001
C18:3–6c.9c.12c 0.16 ± 0.00 0.16 ± 0.01 0.813 0.05 ± 0.00 0.05 ± 0.00 0.013

C18:3–9c.12c.15c 1.20 ± 0.03 1.17 ± 0.03 0.188 1.03 ± 0.01 0.97 ± 0.01 <0.001
C20:0 0.08 ± 0.01 0.08 ± 0.01 0.183 0.22 ± 0.01 0.21 ± 0.01 0.049

C20:1–11c 0.40 ± 0.02 0.42 ± 0.00 0.051 0.86 ± 0.01 0.88 ± 0.01 0.001
C20:2–11c.14c 0.23 ± 0.05 0.22 ± 0.01 0.695 0.54 ± 0.01 0.52 ± 0.01 <0.001

C20:3–8c.11c.14c 0.32 ± 0.09 0.25 ± 0.03 0.119 0.15 ± 0.01 0.12 ± 0.00 <0.001
C20:4–5c.8c.11c.14c 1.39 ± 0.44 1.27 ± 0.20 0.596 0.56 ± 0.07 0.42 ± 0.02 0.001
C20:3–11c.14c.17c 0.04 ± 0.01 0.03 ± 0.00 0.073 0.14 ± 0.00 0.14 ± 0.00 1.000

C22:0 0.04 ± 0.01 0.04 ± 0.01 0.646 0.02 ± 0.00 0.02 ± 0.00 0.009
C20:5–5c.8c.11c.14c.17c 0.11 ± 0.03 0.08 ± 0.01 0.040 0.04 ± 0.01 0.02 ± 0.00 <0.001

C22:5–7c.10c.13c.16c.19c 0.33 ± 0.09 0.25 ± 0.05 0.113 0.18 ± 0.02 0.16 ± 0.01 0.072
C22:6–4c.7c.10c.13c.16c.19c 0.21 ± 0.07 0.18 ± 0.03 0.397 0.10 ± 0.02 0.08 ± 0.01 0.216

Σ SFA 35.71 ± 1.63 32.77 ± 0.55 0.003 35.27 ± 0.52 36.64 ± 0.18 <0.001
Σ MUFA 44.66 ± 1.00 47.11 ± 0.42 <0.001 47.89 ± 0.27 47.97 ± 0.62 0.809
Σ PUFA 19.61 ± 1.43 20.08 ± 0.56 0.507 16.82 ± 0.22 15.38 ± 0.13 <0.001

Σ PUFAn-3 1.52 ± 0.13 1.43 ± 0.07 0.204 1.16 ± 0.03 1.08 ± 0.02 0.001
Σ PUFAn-6 17.02 ± 1.07 17.74 ± 0.40 0.158 14.60 ± 0.15 13.32 ± 0.09 <0.001

p-values with statistically significant differences were highlighted in bold.

PUFA is highly susceptible to lipid oxidation [16]. The higher content of PUFA in meat and meat
product samples could influence MDA values in samples. PUFA in MDCM samples were around 20%.
Low-pressure MDCM contained high concentrations of monounsaturated fatty acid (MUFA) 44.66%
and high-pressure MDCM 47.11%. The difference between samples of low- and high-pressure MDCM
was observed in parameters of MUFA (p < 0.001) and saturated fatty acids (SFA) (p < 0.01). In both
frankfurter sample groups manufactured from low- and high-pressure MDCM considerably lower
PUFA content of 16.82% and 15.38%, respectively, was observed, which was probably caused by the
addition of pork back fat in manufactured frankfurter samples.
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Total lipids in samples of MDCM were similar—around 16.5%. On the other hand, in manufactured
frankfurter samples a noticeably higher content of total lipids was observed (Table 2). For monitoring
lipid oxidation processes and MDA concentrations in samples the content of free fatty acids is also
important (Table 2). Free fatty acids (FFA) content in MDCM meat samples was lower than in examined
frankfurter samples.

Table 2. Total lipids and free fatty acids content in samples (means ± SD).

Parameters
Mechanically Deboned Chicken Meat Frankfurter Samples

Low Pressure High Pressure p-Value Low Pressure High Pressure p-Value

Total lipids (%) 16.08 ± 0.26 16.65 ± 0.28 0.008 38.07 ± 0.68 42.73 ± 0.57 <0.001
FFA (%) 8.58 ± 0.59 12.52 ± 1.32 <0.001 18.42 ± 1.46 16.34 ± 0.76 <0.001

FFA: free fatty acids; p-values with statistically significant differences were highlighted in bold.

2.2. Results of Malondialdehyde Determinations

The MDA content analyzed by both the spectrophotometric and HPLC method in raw,
mechanically-deboned meat was 0.090, 0.112, 0.071 and 0.090 mg/kg meat, respectively (Table 3).
MDA concentrations in meat measured by the TBA method were more than 25% of the HPLC detected
values (p < 0.05). Similar differences in MDA values between both methods were also observed in
tested meat products. The results of the TBA method established overestimating of MDA values by
more than 27% in comparison with RP-HPLC method (Table 3).

Table 3. Malondialdehyde concentration in experimental samples determined by modified TBA
spectrophotometric method and RP-HPLC (means ± SD).

Samples
Methods of MDA Determination (mg/kg)

p-Value
Spectrophotometric Method RP-HPLC

Raw material for meat production:
Low-pressure MDCM 0.090 ± 0.012 0.071 ± 0.011 0.017
High-pressure MDCM 0.112 ± 0.011 0.090 ± 0.010 0.004

Frankfurters:
Low-pressure MDCM 0.161 ± 0.022 0.126 ± 0.015 0.006
High-pressure MDCM 0.156 ± 0.013 0.124 ± 0.011 0.001

MDCM: mechanically deboned chicken meat; p-values with statistically significant differences were highlighted
in bold.

The higher values obtained with the TBA test have been attributed to several other lipid oxidation
products such as alkenals, alkadienals, other aldehydes, and ketones [17–19]. The reaction of TBA
with these compounds decreases MDA detection specificity and overestimates the results. Because
of this distinctive TBA reaction with MDA and the reaction of TBA with other substances, the MDA
is not directly determined by TBA spectrophotometric method. The determined products of this
reaction are labelled as thiobarbituric reactive substances (TBARS), which was previously reported by
authors [20–22]. Ross and Smith [23] observed that the TBARS procedure may be used to assess the
extent of lipid oxidation in general, rather than to quantify MDA.

On the other hand the HPLC method of MDA determination after derivatization with DNPH
does not produce another complex of DNPH with other substances and produces evident peaks,
which are easily detectable and separable. In this work the moderately modified HPLC method
by Marcinčák et al. [24] was used. Modifying the method by the adjustment of sample quantity
(increased to 5 g), decreasing the amount of used solution for the extraction of and increasing the
trichloracetic acid (TCA) concentration to 20% (due to effective sample deproteinization and releasing
the MDA), we have increased the utilization and reduced the limit of detection in this method.
Typical chromatograms at 307 nm for MDA standard and frankfurter samples are shown in Figure 1.
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A detailed analysis of chromatograms revealed that the analytical conditions used,
the homogenate centrifugation and derivatization yielded clear reaction solutions and, therefore,
no further extractions were necessary [10]. The employment of the elution program and a C18-A
column with an inner diameter of 5 µm and photodiode detection at the maximum absorbance
wavelength of the MDA-DNPH adduct (at 307 nm) allows for very good chromatographic separation
of a MDA-DNPH adduct from other endogenous species present in MDCM and frankfurter samples.Molecules 2017, 22, 1988 5 of 12 
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Figure 1. Chromatograms for derivatized MDA-DNPH (A) in standard at a concentration of 430 ng/mL
and frankfurters (high-pressure MDCM) B (B).

We detected MDA content in MDCM samples on 0.07 mg/kg level after low pressure separation
and 0.09 mg/kg after high pressure separation using the HPLC method. The results were relatively
low, which gave evidence that the material was weakly oxidized. There is not any legislative limit of
MDA concentration in meat samples, but MDA over 0.5 mg/kg indicated some oxidation and values
above 1.0 mg/kg as possibly unacceptable levels in several studies [25]. Heat treatment (70 ◦C, 10 min)
used in frankfurters processing caused more significantly increased values of MDA of final products
than in raw meat used in manufacture (p < 0.01; Table 2). The increase of MDA was caused by meat
processing and heat treatment. These factors influence the lipid oxidation processes and formation of
MDA in meat products [26].

MDA values obtained by the spectrophotometric method were higher in comparison with
HPLC method in both MDCM and frankfurter samples. We could conclude that in methods
based on MDA-TBA derivatization also formed TBA complexes with other substances, which in
spectrophotometric methods overestimated the results. Frankel [26] concluded that the TBA test
evidently measures many other decomposition products than malondialdehyde because MDA levels
determined in muscle tissues by the TBA test were four to five times higher than HPLC analyses of
MDA. These discrepancies may be explained by the reaction of MDA with TBA, which still requires
treatment at temperatures of (70–100 ◦C) for extended incubation times (up to 150 min) in strong acidic
conditions (pH 1.5–3.5), which may result in an artifactual peroxidation of sample constituents even
in the presence of added antioxidants (i.e., BHT) [15,18]. The results obtained by the modified TBA
method overestimated the MDA in MDCM over 25% and in heat treated frankfurter samples over 27%
in comparison with the HPLC method. These low differences could be caused by sample preparations,
when a low temperature of sample extraction was used. The sample preparation was adapted to
eliminate the overestimated results of the final MDA concentration in samples.

A significant finding of this study is observation of positive correlation between MDA
determinations by the TBA spectrophotometric and RP-HPLC methods (p < 0.001). The discrepancy
between the two used methods is low. The Bland-Altman and regression analysis were performed
on the results of MDA determinations by the TBA spectrophotometric and RP-HPLC method.
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The correlation in MDA values obtained by the TBA spectrophotometric and RP-HPLC method
(Figure 2). Scatter plot of the data revealed a linear relationship between the methods (Figure 2A).
The bias of two used modified methods was 0.026 ± 0.010 mg/kg (lower limit of agreement = 0.005
and upper limit of agreement = 0.046), what indicated that the spectrophotometric method produces
overestimated MDA values compared to the RP-HPLC method (Figure 2B). The 95% confidence
interval (CI) for the bias was from 0.021 to 0.030. The 95% CI ranged from −0.002 to 0.013 for the
lower limit of agreement, and 0.039 to 0.053 for the upper limit of agreement. The TBA method is
not very exact and partially overestimate the results [26], but in our study the results correlated in all
samples with the results of the HPLC method. We could conclude that the used modified TBA method
is suitable, if we want to analyze the lipid oxidation level. If there is not stated legislative limit for
assessment of the maximum MDA amount in meat and meat products, this method is convenient.
In the case of the implementation of the MDA limits, it will be necessary to use a specific HPLC method
for MDA determination after derivatization with DNPH, which precisely determines MDA in the
sample. The specificity of the MDA determination by the presented modified TBA spectrophotometric
method in meat and meat product samples could be increased by using the correction factor 0.78,
based on the Bland-Altman analysis. The implementation of this correction factor, could significantly
prevent the overestimated results of MDA and the results of TBA-MDA spectrophotometric method
will be much more accurate.

The MDA concentration depended on lipid content in samples. PUFA perceptiveness for oxidation
is well-known [27,28]. The PUFA value in grams is more important than fatty acid profile in meat
samples, which was confirmed by the results of our study. The participation of PUFA on fatty acids
profile was higher in MDCM samples (average 20%) than in frankfurter samples (average 15%),
although the MDA content was higher in frankfurters. MDA in both MDCM and frankfurter samples
significantly correlated (p < 0.044) with fat content (r = 0.956). The increase of MDA value is correlates
with lipid content. Our results agreed with those previously reported by Fuentes et al. [29], who found
that lipid oxidation in meat products was significantly affected by lipid content in products. Increasing
the lipid content (from 4% to 15%) enhanced lipid oxidation and TBARS increased to a significant extent.
MDA values in samples were significantly influenced by free fatty acids (FFA) content. The increase of
FFA in samples correlated with an increase of MDA (r = 0.983). The release of FA from triacylglycerols
(hydrolysis), is the first step of lipid oxidation, which results in the accumulation of FFA in meat.
An important factor in FFA production are the processes in meat products manufacturing (grinding,
stirring, separation). Due to this, it is essential to assume higher oxidative damage and higher MDA
content in meat products than in unprocessed meat.
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We can conclude that the presented modified method for the determination of malondialdehyde
by the reverse-phase high-performance liquid chromatography was more precise and accurate than
the 2-thiobarbituric acid spectrophotometric method.

The TBA spectrophotometry test overestimates the content of MDA in analyzed samples because
of interference with carbohydrates, amino acids, pigments, etc. However, it could be used for the
determinations of lipid oxidation processes in meat and meat products during the storage period,
different storage conditions, heat treatment, etc.

3. Materials and Methods

3.1. Fatty Acid Composition

Fatty acids were determined as their methyl esters by gas chromatography according to
Čertík et al. [30]. The gas chromatograph (GC-6890 N, Agilent Technologies, Santa Clara, CA,
USA) was equipped with a capillary column DB-23 (60 m × 0.25 mm, film thickness 0.25 µm,
Agilent Technologies, Santa Clara, CA, USA) and a FID detector (constant flow, hydrogen 35 mL/min,
air 350 mL/min, 250 ◦C). The analysis was performed under temperature gradient (130 ◦C-1 min;
130–170 ◦C-6.5 ◦C/min; 170–215 ◦C-2.7 ◦C/min; 215 ◦C-7 min; 220–240 ◦C-2 ◦C/min; 240 ◦C-2 min)
with hydrogen as a carrier gas (flow 2.1 mL/min, velocity 49 cm/s, pressure 174 kPa) and a split ratio
of 1/50 (inlets: heater 230 ◦C, total hydrogen flow 114 mL/min, pressure 174 kPa).

The fatty acid methyl ester peaks were identified by authentic standards for a C4–C24 fatty
acid methyl ester mixture (Supelco, Bellefonte, PA, USA) and quantified by an internal standard of
heptadecanoic acid (C17:0, Supelco, Bellefonte, PA, USA). The fatty acid concentration was evaluated
with ChemStation software B0103 (Agilent Technologies, Santa Clara, CA, USA). All the values were
the results of triplicate determination.

3.2. Chemicals

All reagents were of analytical grade and purchased from the indicated sources: 35% hydrochloric
acid, HCl (Mikrochem, Pezinok, Slovak), trichloroacetic acid, TCA (Fisher Chemical, Loughborough,
UK), Ethylenediaminetetraacetic acid disodium salt dihydrate, EDTA (Lach-ner, Neratovice,
Czech Republic), 2,6-di-tert-butyl-4-methylphenol, BHT and 2-thiobarbituric acid (Sigma-Aldrich,
Steinheim, Germany), and n-Hexene for spectroscopy (Merck, Darmstadt, Germany). BHT was
prepared as a 0.8% (w/v) solution in hexane. 2,4-Dinitrophenylhydrazine (DNPH, contains min.
30% water) and 1,1,3,3-tetramethoxypropane, (TMP, 99%) were purchased from Acros Organics
(Morris Plains, NJ, USA). Analytical grade acetic acid (glacial) was supplied by Merck (Darmstadt,
Germany). Gradient-grade acetonitrile for HPLC (Sigma-Aldrich, St. Louis, MO, USA) was used for
analysis. Water for chromatography (Merck, Darmstadt, Germany) WAS used for the preparation of a
mobile phase and all solutions.

3.3. Meat and Meat Product Samples

The meat samples were obtained from VIJOFEL s.r.o., Slovak Republic and HYDINA Slovensko s.r.o.,
Slovak Republic. Two experimental groups of frankfurters were made from mechanically-deboned
chicken meat (MDCM), such as low-pressure MDCM and high-pressure MDCM.

The experimentally made samples of frankfurters were prepared with the following ingredients:
60% MDCM: low-pressure MDCM (group A) or high-pressure MDCM (group B), 30% pork back fat,
20.0 g/kg nitrite salt mixture, 1.0 g/kg polyphosphate, 200.0 g/kg ice, 24.4 g/kg starch, 4.4 g/kg dried
garlic, 4.0 g/kg ground black pepper, 3.6 g/kg ground sweet red pepper, 0.2 g/kg ground nutmeg.
The MDCM, nitrite salt, polyphosphate and half of the amount of ice was mixed in the meat cutter
(MAINCA CM-21, Barcelona, Spain) for 5 min.

Subsequently, other ingredients were added and mixed to a homogeneous mass, until the
temperature of 12 ◦C was reached. The mixture was stuffed into 30 mm diameter hog casings.
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The frankfurters were heat-treated at 70 ◦C for 10 min and smoked by cold smoking (EL SPECTRUM,
UK 01 EM, Zvolen, Slovak Republic). The experimentally-made samples of frankfurters were packed
and stored in a refrigerator at 4 ◦C.

3.4. Determination of Malondialdehyde by the 2-Thiobarbituric Spectrophotometric Method

The extent of lipid oxidation was evaluated as thiobarbituric acid reactive substances (TBARS) by
the method of Marcinčák et al. [17] with some modifications. Thiobarbituric acid (TBA) reacted with
malondialdehyde, which resulted in a color compound. The thiobarbituric value determination was
used to determine the oxidative lipid changes of the samples.

3.4.1. Preparation of Stock Solution and Calibration Curve

MDA was prepared by acid hydrolysis of 1,1,3,3-tetramethoxypropane solution. The amount of
10 µL of tetramethoxypropane (standard solution) was transferred into a 10 mL volumetric flask and
10 mL of 0.1 M HCl was added. The bank was immersed in a water bath for 5 min. Then, the flask was
rapidly cooled under running water. Working stock MDA solution was prepared by pipetting 1 mL of
the hydrolyzed acetal (solution Y) into a 100 mL homogenous flask and completed with 0.1 mol/L HCl
(H2O). The MDA stock solution was transferred to a 25 mL volumetric flask and completed with 0.1 M
HCl. A MDA working solution at a concentration of 0.1748 µg/mL was used to prepare the calibration
curve. Final MDA concentrations for calibration curve were 0.1398, 0.1049, 0.0699, and 0.0346 µg/mL.

Calibration equation for TBA spectrophotometric method was: y = 0.9119x + 0.0067.

3.4.2. Sample Preparation and Measurement

For TBARS determinations 5.00 g of mixed sample in a 50 mL centrifuge tube was weighed.
Subsequently 0.5 mL of EDTA was added and stirred, then 2.5 mL of 0.8% BHT, and stirred again.
Before homogenization was added 4 mL of 5% TCA was added and homogenized with Ultra-Turrax
T18 basic (IKA, Staufen, Germany) at 10,000 rpm for 1 min. After homogenization, the sample was
left for 10 min at room temperature and then centrifuged at 4 ◦C and 3500 rpm for 5 min (Jouan BR4
centrifuge (Jouan Technology for Life, Winchester, VA, USA). Next, the top hexane layer was removed
with a pipette and the sample was filtered using filter paper (Whatman No. 4, GE Healthcare, Freiburg,
Germany). The filtered sample was transferred to 10 mL volumetric flask and completed with 10%
TCA. From the volumetric flask was transferred 4 mL was transferred into the tube and 1 mL of TBA
was added, and closed with aluminum foil.

A blank sample was prepared in a separate tube using 4 mL of 10% TCA and 1 mL of TBA.
We incubated the tubes in a water bath at 70 ◦C for 90 min. After that time, the tubes were cooled in an
ice bath and after reaching a laboratory temperature the rest of the samples was measured opposite
to the blank sample. The calibration curve was set on the UV-VIS spectrophotometer (Helios γ,
Thermo spectronic, Cambridge, UK) and TBARS values were measured at 532 nm. The results were
quantified as malondialdehyde equivalents (mg/MDA/kg sample).

3.5. Determination of Malondialdehyde by Reverse-Phase High-Performance Liquid Chromatography

3.5.1. Standard Preparation

MDA is not commercially available. MDA is an unstable compound and the only possibility to
obtain it is by hydrolysis of its stable derivative, bisdiethyl acetal (TMP).

MDA standard was prepared as a hydrolyzed product of TMP (Figure 3A). A volume of 10 µL of
TMP was diluted in 10 mL of 0.1 M HCl and incubated in a 100 ◦C water bath for 5 min, then quickly
cooled with tap water (solution X). After hydrolysis, a working solution of MDA was prepared by
diluting 1.0 mL of obtained solution X with 0.1 M HCl up to 100 mL in a volumetric flask. The resulting
MDA standard of 4.37 µg/mL was then diluted with 0.1 M HCl to yield the final concentration of
21.5, 215, 430, 860, 1290 and 1720 ng/mL to obtain the calibration curve. The MDA standard working
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solution was stored at 5 ◦C in a dark place and was freshly prepared on a weekly basis. Calibration
standards were prepared at the beginning of each analytical run.Molecules 2017, 22, 1988 9 of 12 
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Figure 3. (A) The preparation of MDA by acidic hydrolysis of TMP; (B) the proposed structure of TBA
pigment as a colored adduct between TBA and malondialdehyde, MDA-TBA; and (C) the formation of
the DNPH derivate of MDA, MDA-DNPH.

3.5.2. Derivatization Reagent Preparation

The DNPH reagent was prepared by dissolving 31 mg of DNPH in 10 mL of 2.0 M HCl and
incubated for 30 min at room temperature in the dark. This solution of the derivatising reagent of
DNPH was freshly prepared on the day of use. The derivatising procedure for the standards of MDA
was the same as for the derivatization of meat sample. A volume of 20.0 µL of derivatized standard
solution of MDA-DNPH was injected into the column for HPLC analysis. The formation of the DNPH
derivate of MDA, 1-(2,4-dinitrophenyl) pyrazole and its chemical structure are shown in Figure 3.

3.5.3. Sample Preparation

Sample (5.0 g ground meat or meat products) was weighed in a 50 mL centrifuge tube, and 0.5 mL
0.3% EDTA was added immediately. After gently stirring, 2.5 mL 0.8% BHT in hexane was added,
and the tube was gently blended again. Before homogenization, 4.0 mL ice-cold 20% TCA was added
to the tube and homogenization was performed at 10,000 rpm for 1 min. After the centrifugation
(5 min at 3500 rpm, 4 ◦C), the top hexane layer was removed, and the bottom layer was filtered through
Whatman filter paper no. 4. For derivatization, aliquots of the filtrate (500 µL) were transferred into a
vial and 50 µL DNPH reagent was added and mixed. Samples were stirred and incubated at room
temperature for 30 min in the dark. Finally, sample aliquots (20 µL) of a resulting solution was injected
into to column for chromatographic analysis.
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3.5.4. Determination of MDA-DNPH by RP-HPLC

Separation and HPLC analysis of MDA as well MDA-DNPH adduct were performed using
high-performance liquid chromatography (HPLC). The HPLC system Dionex UltiMate 3000 RS
(Thermo Fisher Scientific, Braunschweig, Germany) consisted of a quaternary pump, degasser,
automated injector, column oven, and diode array detector (DAD). The DAD detector was set to
collect signals within the spectral range of 190–800 nm. Chromatographic separation was achieved on
the chromatographic column Polaris C18-A (particle size, 5 µm; column size 250 mm × 4.6 mm;
Varian, Santa Clara, CA, USA). Samples were isocratically eluted with a mixture of 0.2% (v/v)
glacial acetic acid in deionized water, and acetonitrile (61:39, v/v) at a flow rate of 1 mL/min at
25 ◦C. The injection volume was 20 µL, and the DAD detector was set at 307 nm. Analyses were
performed with Chromeleon Chromatography Data System, Version 7.2 (Thermo Fisher Scientific,
Braunschweig, Germany) for collecting and processing data. Each analysis was performed in three
replicates. All solvents were filtered through a Whatman filter paper no. 4 before use. A calibration
curve was prepared mixing a 500.0 µL volume of each of the above mentioned concentrations of
standard of MDA and 50 µL of DNPH was added into a vial, and the resulting solution was incubated
at room temperature for 30 min in the dark. The clear solution was transferred into a vial and then 20 µL
of the resulting solution was injected onto to a column for chromatographic analysis. Triplicate 20 µL
injections were made for each standard solution to see the reproducibility of the detector response
at each concentration level. The peak area of MDA-DNPH was plotted against the concentration to
obtain the calibration graph. The six concentrations of MDA were subjected to regression analysis to
calculate the calibration equation and correlation coefficients.

3.5.5. Chromatographic Analysis

The HPLC-DAD system proved to be a good option for the determination of MDA in real meat
samples, allowing analysis with good sensitivity and in a total time of 20 min. We used an even
higher DNPH solution of 15.6 mM in this study for derivatization to complete the derivatization
reaction. The MDA-DNPH peak was identified by the elution profile of the authentic standard.
Typical chromatograms for derivatized MDA (MDA-DNPH) in meat products and standard are
demonstrated in Figure 3, where it is possible to see that no interferences are present in the region of
the retention time of MDA. Peak identification in meat samples was performed by comparison of the
retention time. Under the chosen chromatographic conditions, MDA-DNPH showed a retention time of
13.6 ± 0.1 min. For the purpose of peak identification, a 430 ng/mL MDA standard was analyzed and
its chromatogram was overlaid with that of the sample chromatograms matched perfectly, indicating
that the major peak from MDA was at 13.58 min.

Six calibration standards were analyzed, and their peak areas were plotted against concentration.
The equation of linear regression obtained for the six concentration levels, each one injected three
times, was: y = 0.0027x − 0.0004, where y is the peak area, and x is the MDA concentration
(ng/mL). The regression coefficient R2 was 0.9979, indicating good linearity. From the analytical
curve, the linearity of the method was evaluated, demonstrating a linear interval in the range of 21.5 to
1720 ng/mL.

3.6. Statistical Evaluation

Statistical analysis was conducted using the IBM SPSS Statistics version 23 program for Windows
(SPSS, Chicago, IL, USA). The MDA content was statistically investigated in samples of meat
(low- and high-pressure MDCM) and meat products (frankfurter samples made with low- and
high-pressure MDCM during storage). Student’s t-test (p < 0.05) was used to analyze the results of
MDA determinations based on different methods (RP-HPLC and the TBA spectrophotometric method).
The Bland-Altman and regression analysis were performed on the results of MDA determinations by
two modified methods of the MDA determination. Pearson’s correlation was used to evaluate the
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relation between MDA determinations, total lipids, and free fatty acid content. It was expressed by the
correlation coefficient (r) and significance of the correlations (p-value).

4. Conclusions

Oxidation of lipids is an important quality indicator of fats, meat, and meat products because
oxidized lipids not only change the color, aroma, flavor, texture (sensory properties), and even the
nutritive value of the foods, but also generate a lot of harmful biological effects on human health.
Products of oxidation are harmful to health due to carcinogenic and atherosclerotic effects, alteration
in the composition of cell membranes, or the reduction in high-density lipoproteins.

The results achieved in this study showed that malondialdehyde concentrations measured by
the 2-thiobarbituric acid spectrophotometric method were higher than the results of reverse-phase
high-performance liquid chromatography. The difference between malondialdehyde concentrations
measured by two methods was statistically significant in all samples (p < 0.05). However, the results
obtained by the TBA spectrophotometric method, which is not very exact and partially overestimates
the results, correlated with the results of the HPLC method. For this reason, we can conclude that the
presented modified TBA spectrophotometric method is suitable for monitoring the lipid oxidation
processes in meat and meat samples. The presented modified determination methods showed that
reverse-phase high-performance liquid chromatography was more applicable and accurate for the
quantification of secondary lipid oxidation product, malondialdehyde, in meat and meat products.
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21. Marcinčák, S.; Sokol, J.; Turek, P.; Popelka, P.; Nagy, J. Stanovenie malóndialdehydu v bravčovom mase s
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