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ABSTRACT
Objective To develop a model using patient- specific 
computational fluid dynamics (CFD) to predict the required 
anastomotic size for total anomalous pulmonary venous 
connection (TAPVC) surgery and to forecast surgical 
outcomes.
Methods Based on clinical data from patients, a CFD 
model was used to simulate the anastomosis between 
pulmonary venous confluence and the left atrium. Blood 
flow velocity, wall shear stress, power loss, and pressure 
were calculated using numerical algorithms within the 
model. Various sizes of anastomosis were applied during 
the simulation. The energy dissipation at the anastomosis 
was computed from the results and compared with real- 
world data.
Results As the simulated anastomotic size increased, 
blood flow velocity, pulmonary venous pressure, and 
energy loss decreased. However, when the anastomotic 
size exceeded 18 mm, the efficiency of energy conversion 
no longer improved. The realistic and simulated velocities 
matched well for anastomosis sizes ranging from 15 to 
20 mm.
Conclusion The model can assist surgeons in 
preoperative planning for determining the anastomotic size 
in TAPVC surgical treatment.

INTRODUCTION
Total anomalous pulmonary venous connec-
tion (TAPVC) is a complex cardiac malfor-
mation with low incidence. In TAPVC, all 
pulmonary veins (PVs) remain connected to 
systemic veins or are abnormally connected 
to the right atrium.1 Despite advancements 
in surgical techniques and preoperative/
postoperative care, surgical correction of 
TAPVC has remained challenging over the 
past decades. The main complication for 
TAPVC patients is postoperative PV obstruc-
tion (PVO), which is also the primary reason 
for reoperation and a critical factor affecting 
long- term survival.2 3 The recurrence of PVO 
is related to the proliferation of endothelial 
fibroblasts, primary PV stenosis,4 and the 
size of the anastomosis during surgery. Thus, 
surgeons tend to make the anastomosis as 
large as possible.5 6 However, the optimal size 

of the anastomosis for TAPVC patients preop-
eratively remains unclear.

To the best of our knowledge, no studies 
have addressed the prediction of the size 
of anastomosis for TAPVC patients preop-
eratively. Additionally, establishing animal 
models for TAPVC proves to be challenging. 
Given the high risk and difficulty associ-
ated with reoperations in TAPVC patients, 
designing a prospective research study on 
this issue would pose ethical concerns. Conse-
quently, conducting research in this area 
remains challenging.

Computational fluid dynamics (CFD) is a 
technique that uses algorithms to simulate 
fluids and analyze fluid dynamics processes. 
Previous studies have demonstrated the 
potential of CFD in hemodynamic research, 
enabling the creation of numerical models of 
the cardiovascular system. CFD can be used 
in investigating both adult acquired heart 
diseases7–9 and congenital heart diseases.10–12 
In our previous study,13 we established a CFD 
model of TAPVC, specifically simulating the 
anastomosis between the pulmonary common 
vein (CV) and the left atrium (LA). This 
model calculates physical parameters, such as 
blood flow velocity, pressure distribution, wall 
shear stress (WSS) of vessels, and energy loss. 
Our study highlights a new surgical method 
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using this CFD model that may offer advantages over 
traditional approaches in the treatment of TAPVC.

In this study, we used our previous model to simulate 
surgical outcomes and physical parameters using an array 
of anastomosis sizes. The geometry of the model is based 
on preoperative patient- specific imaging data. It is well- 
established that larger anastomoses typically yield better 
surgical outcomes. Here, we designed incremental varia-
tions in anastomosis sizes for specific patients.

METHODS
Patient and public involvement
Patients or the public were not involved in the design, 
conduct, reporting or dissemination plans of our 
research.

Clinic data and geometry building
The three- dimensional (3D) model of TAPVC was 
constructed based on computer tomography angiog-
raphy images from patient- specific sources and summa-
rized data from references,14 including the PV, LA, CV, 
and part of the vertical vein (figure 1). It was constructed 
in the computer aided design software of SolidWorks.

In this study, we used clinical data from a 6- year- old boy 
in our department who was diagnosed with supracardiac 

type TAPVC accompanied by an atrial septal defect. The 
child weighed 16.4 kg when enrolled in our center.

In order to evaluate and predict the optimal anasto-
mosis size for surgical treatment of TAPVC, incremental 
anastomosis sizes were designed to connect the common 
PV and the LA. The anastomosis was window shaped as 
described in our previous study.13 Ten incremental sizes 
of anastomosis were ranged from 5.5 mm to 28.0 mm, as 
shown in figure 2. These sizes correspond to the length 
of incisions which were made by surgeons during surgery.

These 3D models were reconstructed using Solid-
Works for further processing. The mesh was generated 
with HyperMesh software, and the density was increased 
in regions of interest. The optimal mesh size was deter-
mined by performing a mesh independence analysis. 
The element size on the wall was ranged from 0.2 to 
0.8 mm. Additionally, a mesh in the boundary layer was 
created with the following boundaries: the thickness of 
the first layer was 0.07 mm, the growth ratio was 1.1 and 
the number of mesh layers was five.

Materials and boundary conditions
The left atrial wall and blood vessels are assumed to be 
rigid and non- slip. It is assumed that blood is an incom-
pressible Newtonian fluid with a density of 1050 kg/m3 
and a viscosity of 0.0035  Pa · s .15 16 The LA is the pathway 
of blood from the PVs to the left ventricle. The purpose 
of this study was to evaluate and predict the optimal 
anastomosis size for surgery, meanwhile comparing the 
results with real- life clinical data to validate the model. 
Therefore, a pulsatile- state flow can be used to simulate 
this function. The velocity of blood flow at the PVs is 
defined as the boundary condition at the inlet. The time- 
dependent flow velocities were derived from echocardio-
gram measurements of four PVs in pulsatile- state flow.17 
Our data of time- dependent flow velocities derived from 
the echo- cardiogram which shows in supplementary 
file (online supplemental figure 1). In addition, the 
mitral valve orifice was defined as the outlet, with time- 
dependent left atrial pressure set as the boundary condi-
tion using a trigonometric equation. The equation, as 
followed, representing normal physiological pressure 

Figure 1 Original three- dimensional geometry, this study 
includes two components: left atrium and pulmonary veins. 
CV, common vein; LA, left atrium; LIPV, left inferior pulmonary 
vein; LSPV, left superior pulmonary vein; RIPV, right inferior 
pulmonary vein; RSPV, right superior pulmonary vein; VV, 
vertical vein.

Figure 2 10 models with increment size of anastomosis (mm).
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Figure 3 Comparison of Doppler echocardiogram signals and computational fluid dynamics (CFD) velocity plots at 
anastomosis. (A) Doppler echocardiogram signal at the total anomalous pulmonary venous connection anastomosis, 
demonstrating the real- time blood flow velocity. (B) CFD- derived blood flow velocity curve for a 15.5 mm anastomosis size, 
plotted at the simulative anastomosis. (C) CFD- derived blood flow velocity curve for a 20.5 mm anastomosis size, plotted at the 
simulative anastomosis.
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ranging from 4 to 12 mm Hg, as typically observed in 
healthy individuals.18

 
p
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  (1)

where p is the left atrial pressure, t is the latest time at 
each time step, f is the heart rate, and a=133 is the trans-
formation constant of mm Hg to Pa.

In clinical surgery, vertical veins are usually ligated. 
Therefore, they are neither the entrance nor the outlet 
of the computational fluid model.

Computational simulation and calculation
Based on the aforementioned models and boundary 
conditions, the flow field was computed using Fluent 
(Ansys, USA). Analysis type was set to transient state. In 
the solver control panel, the advection scheme was set 
to high resolution, and the maximum number of itera-
tion steps was 20, with a time step of 0.05 s. Furthermore, 
the residual tolerance was set to 1.0e−6 to ensure the 
calculated results were within an acceptable range. The 
velocity of blood flow and the area of four PVs were set 
as inlets.

In clinical practice, the patients underwent surgical 
repair with an anastomosis size of 20 mm. We obtained 
the blood flow velocity passing the anastomosis using 
echocardiography after surgery. This value was compared 
with the calculated pulsatile- state results.

Energy loss is an important indicator in the evaluation 
of hemodynamic performance. In this study, energy loss 
was calculated through power loss and power conversion 
efficiency.19 20

The power loss was defined as:

 
W = Q

(
P + 1

2ρv2
)
  (2)

 Wl =
∑

Win −
∑

Wout   (3)

where W, Q, P, ρ, and ν represent the power, mass flow, 
pressure, blood density, and blood velocity, respectively. 
 Wl   is the power loss, with ∑W

in
 and ∑W

out
 representing 

the total power at the inlet and outlet, respectively.
In this study, we calculate the WSS, pressure distribu-

tion, and power loss using time- averaged methods.

RESULTS
Hemodynamic parameters such as blood flow velocity, 
WSS, pressure distribution, and power loss were obtained.

As the anastomotic size increased, the blood flow 
velocity maps, as shown in online supplemental figure 2, 
clearly illustrated the streamlines for the 10 models. The 
regions with higher blood flow velocity were consistently 
located near the PV–LA anastomosis, with smaller anasto-
moses resulting in higher velocities.

Figure 3 displayed the actual postoperative blood flow 
velocity measured by Doppler ultrasound. It also showed 
the time- related velocity graphs across the PV–LA anasto-
mosis. These graphs depicted the time- variant blood flow 
velocities calculated by transient CFD simulations, which 

were then compared with postoperative Doppler data. 
The comparison revealed that when the anastomotic size 
was around 15–20 mm, the actual velocities matched well 
with the simulated velocities.

WSS is a crucial parameter in hemodynamic analysis 
and is associated with vascular remodeling. The WSS 
distribution maps, shown in online supplemental figure 
3, indicated that the highest WSS regions were near the 
anastomosis in all models, with smaller anastomoses 
exhibiting higher WSS.

The pressure distribution contour of 10 models 
obtained from CFD analysis is shown in online supple-
mental figure 4. The pressure on the walls of smaller 
anastomoses was higher compared with larger anasto-
mosis. High- pressure areas were mainly around the CVs 
and PVs. Conversely, in the model with larger anasto-
moses, the pressures in the CV and PV were almost the 
same as that in the LA.

Power loss visually reflects the work of blood flow and is 
important in evaluating the expected therapeutic effects 
of different surgical procedures for TAPVC. The results of 
power loss and power conversion efficiency of 10 models 
are presented in table 1. As the size of the anastomosis 
gradually increases, the pressure in the PVs decreased 
accordingly, leading to reduced energy loss. However, 
when the size of the anastomosis exceeded 18 mm, the 
energy conversion efficiency no longer improved further.

DISCUSSION
It is well known that the size of the anastomosis plays 
a crucial role in the surgical management of TAPVC. 
Surgeons are typically encouraged to make the anasto-
mosis as large as possible.1 5 6 For patients with supracar-
diac and infracardiac TAPVC, the anastomosis is the only 
passage for PV blood to reenter the LA after surgery for 
supracardiac and infracardiac TAPVC patients. However, 
determining the optimal size of the anastomosis among 
TAPVC patients remains unclear, and there are few studies 
focusing on this issue. Jin et al.21 previously reported a 
numerical model for TAPVC surgery using a fluid–struc-
ture interaction model. They designed simulated anasto-
moses to compare with actual anastomosis after surgery, 
but did not compare various sizes of anastomoses within 
a single case. Other studies have explored numerical 
models for arteriovenous fistula,22 23 which involve an 
anastomosis between an artery and vein. Van Canneyt 
et al. found that larger anastomoses resulted in lower 
pressure drops and higher proximal arterial inflow.22 In 
our model, the mass of blood flow was the same across 
all models. Therefore, blood flows more slowly through 
larger anastomoses and venous confluences, whereas the 
same volume of blood needs to rush out from smaller 
anastomoses and venous confluence.

Several studies have reported the risk factors for 
PVO,3 24 25 but these studies mainly focus on clinical 
measurements, such as age, weight, cardiopulmonary 
bypass time, and the type of TAPVC, rather than the size 
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of pulmonary anastomosis. Our study shows that this 
measurement significantly impacts the simulated results.

Emerging evidence suggests a significant correla-
tion between WSS and the risk of PV stenosis, which is 
a concerning complication of TAPVC repair. One study 
highlighted the potential clinical relevance of WSS thresh-
olds.26 In our analysis, we observed a wide range of WSS 
values across different anastomosis sizes, with specific 
patterns indicating how anastomosis shape might impact 
WSS and subsequent clinical outcomes. These observa-
tions support the premise that lower WSS values may 
reduce the risk of stenosis, advocating for careful consid-
eration of anastomosis geometry in surgical planning to 
optimize flow dynamics and mitigate adverse outcomes.

In our models, the PVs and LA were assumed to be 
rigid walls, and the interaction between blood flow and 
the wall was not considered, which may have influenced 
the calculated results. Future works should consider using 
fluid–solid coupling methods to better simulate the treat-
ment of TAPVC in different surgical procedures. Due 
to lack of precise measurements of anastomoses during 
surgery and the complexities in designing prospective 
research, there are ethical concerns in designing small 
anastomoses for patients with TAPVC. Therefore, our 
study solely focused on the analysis of a singular case.

In conclusion, the models in this study can determine 
the optimal size of anastomosis, which is necessary to 
achieve favorable results, and have significant potential 
to guide surgical treatment in clinical practice.
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