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Abstract: During embryonic development in mammals, the testicles generally descend into the
scrotum, making the testicular temperature 2–4 ◦C lower than the core temperature via heat ex-
change and clearance, and thus more beneficial for normal spermatogenesis. Failure to descend,
known as cryptorchidism, carries a series of risks such as infertility and testicular cancer. How-
ever, some mammals have evolved abdominal testes while maintaining healthy reproduction. To
explore the underlying molecular mechanism, we conducted comparative genomic analyses and
functional assays on the spermatogenesis-related ubiquitin–proteasome system (UPS) genes essential
to sperm formation in representative laurasiatherians. Here, positive selection and rapid evolution
of spermatogenesis-related UPS genes were identified in the abdominal testicular laurasiatherians.
Moreover, potential convergent amino acids were found between distantly related species with
similar abdominal testicles and functional analyses showed RNF8 (V437I) in abdominal testicular
species (437I) has a stronger ubiquitination ability, which suggests that the mammals with abdominal
testes might exhibit enhanced sperm cell histone clearance to maintain sperm formation. This evi-
dence implies that, in response to “cryptorchidism injury”, spermatogenesis-related UPS genes in the
abdominal testicular species might have undergone adaptive evolution to stabilize sperm formation.
Thus, our study could provide some novel insights into the reproductive adaptation in abdominal
testicular mammals.

Keywords: laurasiatherian; spermatogenesis; ubiquitin–proteasome system gene; positive selection;
rapid evolution; molecular convergence; functional convergence

1. Introduction

The testis, the organ in which spermatogenesis begins, is important for male repro-
duction. During the embryonic development of mammals, the testes usually descend from
the urogenital ridge through the abdomen and into the scrotum [1]. Two main processes
of the scrotum make the testicular temperature 2–4 ◦C lower than the core temperature:
heat exchange with the environment through the scrotum skin and heat clearance by
blood flow through the pampiniform plexus [2]. In addition, spermatogenesis, the most
basic biological process of male reproduction, is vulnerable to temperature [3]. Thus,
cryptorchidism—the process in which the testes do not descend into the scrotum and
instead remain in the abdominal cavity during development—exposes the testes to the
higher temperature of the abdominal cavity; this can hamper spermatogenesis, causing
male infertility and other severe secondary testicular diseases [4,5].

Most mammals, such as primates, have testes located in the scrotum outside the
abdominal cavity, i.e., scrotal testicular mammals [6]. For them, the testes failing to fall
leads to cryptorchidism [7]. However, not all mammals have the structure of the scrotum, so
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the testicles do not descend to the scrotum. The abdominal testicular mammals have testes
remaining in the urogenital ridge near the kidneys, showing no testicular descent (e.g., most
afrotherians) or just descending into the lower abdomen, like dolphins and seals [6,8,9].
However, these abdominal testicular mammals can undergo normal spermatogenesis
and maintain healthy reproduction functions, unlike scrotal testicular mammals that
suffer from “cryptorchidism injury”. Some mammals with “healthy cryptorchidism” have
been reported to have anatomical adaptations that maintain healthy reproduction, e.g.,
seals can use the cooled surface blood to directly cool their reproductive organs [10].
The molecular mechanism underlying this, however, is still unclear. Interestingly, in
laurasiatherians, many closely related species have different testicular phenotypes. For
example, in Cetartiodactyla, Ruminantia and Camelidae are scrotal testicular mammals,
but cetaceans and Hippopotamidae are abdominal testicular mammals; in Perissodactyla,
Equidae are scrotal testicular mammals, while Rhinocerotidae and Tapiridae are abdominal
testicular mammals [6]. For this reason, laurasiatherians are an ideal model for studying
the mechanism driving the evolution of this so called “healthy cryptorchidism”.

Spermatogenesis is a complex process of cell division and differentiation. It requires
precise expressions of structural proteins and enzymes, which are affected not only by the
regulation of gene transcription and translation, but also by the degradation of various
proteins. The ubiquitin–proteasome system (UPS), a proteolytic system, is necessary
for various steps of mammalian spermatogenesis and fertilization [11,12]. Ubiquitin-
mediated proteolysis is involved in the establishment of both spermatogonial stem cells
and differentiating spermatogonia from gonocytes [13]. For instance, ubiquitination of
histones in the testes leads to histones being replaced by protamines, which are essential for
the condensation of chromatin and spermatogenesis [14]. Moreover, ubiquitination plays
important roles in several key processes during meiosis such as genetic recombination and
sex chromosome silencing [15,16].

UPS components include ubiquitin, ubiquitin priming enzyme, proteasome and deu-
biquitinated protease. Ubiquitin promoter enzymes include ubiquitin activating enzyme
(E1), ubiquitin conjugating enzyme (E2), and ubiquitin ligase (E3), which are responsible
for activating ubiquitin and binding it to the substrate protein to be degraded, adding to the
target protein on the ubiquitin label, that is, ubiquitination [17]; proteasomes can recognize
and degrade target proteins that have been ubiquitinated [18]; deubiquitinating enzymes
(DUBs) are responsible for dissociating the ubiquitin chain from the target protein so that
the ubiquitin can be recycled into the cytoplasm [19]. Numerous functions of the UPS
genes—including E1, E2, E3, proteases and DUBs in mammalian spermiogenesis—have
been proposed. For instance, UBA1/UBE1, an E1, initiates the cascade of UPS and is in-
volved in male reproduction via spermatogenesis [20]; UBE2A/HR6A, an E2, is required for
the maintenance of X chromosome silencing in spermatocytes and spermatids [21]; RNF8,
an E3, participates in sperm cell nucleosome remodeling through the ubiquitination of his-
tones [22,23]; PSMA8, a testis-specific 20S core proteasome subunit, degrades pro-meiotic I
protein during spermatogenesis [24]; UCHL3, a DUB, plays a role in regulating germ cell
apoptosis and the differentiation of spermatocytes into sperm cells [25,26]. However, the
functions of these genes in abdominal testicular species are poorly understood.

In the present study, we performed comparative genomic analyses of spermatogenesis-
related UPS genes in representative laurasiatherians and further functional analyses on
RNF8. Positive selection, accelerated evolution and convergent evolution of spermatogenesis-
related UPS genes, together with functional evidence of RNF8, provided some new insights
into the reproductive adaptation in abdominal testicular mammals.

2. Materials and Methods
2.1. Selected Species

A total of 26 laurasiatherians representing two phenotypic classifications (2 eulippoty-
phla, 6 carnivora, 2 perissodactyla, 11 cetartiodactyla, and 5 chiroptera) of abdominal testic-
ular and scrotal testicular were selected in our study. This included 12 abdominal testicular



Genes 2021, 12, 1780 3 of 14

species—Tursiops truncatus, Orcinus orca, Delphinapterus leucas, Physeter catodon, Balaenoptera
acutorostrata, Ceratotherium simum, Neomonachus schauinslandi, Odobenus rosmarus, Pteropus
alecto, Pteropus vampyrus, Condylura cristata Erinaceus europaeus— and 14 scrotal testicular
species—Bos taurus, Ovis aries, Capra hircus, Sus scrofa, Vicugna pacos, Camelus ferus, Equus
caballus, Canis lupus, Mustela putorius, Ailuropoda melanoleuca, Felis catus, Myotis davidii,
Myotis lucifugus and Eptesicus fuscus. There were 10 non-laurasiatherian mammals: five
abdominal testicular species—Loxodonta africana (Proboscidea), Trichechus manatus (Sirenia),
Orycteropus afer (Tubulidentata), Dasypus novemcinctus (Cingulata) and Ornithorhynchus
anatinus (Monotremata)—and five scrotal testicular species—Homo sapiens (Primates), Rat-
tus norvegicus (Rodentia), Oryctolagus cuniculus (Lagomorpha), Tupaia chinensis (Scandentia)
and Monodelphis domestica (Ameridelphia).

2.2. Candidate Genes and Sequence Acquisition

We screened a total of 25 spermatogenesis-associated UPS candidate genes (Table
S1). The whole coding regions of these genes were mostly downloaded from the National
Center for Biotechnology Information (NCBI https://www.ncbi.nlm.nih.gov/ (accessed
on 1 Octorber 2021)), the accession numbers of which are listed in the Supplementary
Materials (Table S2). For the sequences that were not available from the online database,
we used our laboratory’s script to extract each exon of the candidate gene from the genome
downloaded by NCBI with the well-annotated gene sequences of kinship as queries. Then,
we connected the exons into the whole coding sequences according to the known coding
sequences of species. The nucleotide and amino acid sequences of each gene were aligned
using Muscle in MEGA 6.0 [27] and trimmed manually.

2.3. Selective Pressure Analysis

For the molecular evolution analysis, selective pressure and evolution rate were
calculated by comparing the ratio of nonsynonymous substitution (dN) to synonymous
substitution (dS), known as ω, based on phylogenetic methods. ω > 1, ω = 1 and ω < 1
represent genes subject to positive selection, neutral selection and purifying selection,
respectively. The codon-based maximum likelihood models implemented in the CODEML
program in PAML 4.7a [28] were employed to estimate the rates of synonymous (dS) and
nonsynonymous substitutions (dN), as well as the dN/dS ratio (ω).

To detect whether the abdominal testicular lineages are subject to positive selection,
we used branch models including the free-ratio model and two-ratio model [29,30], and
the branch-site model implemented in CODEML [28]. The free-ratio model allowed each
evolutionary branch to have its own ω. The two-ratio model and branch-site model
required the foreground branches (lineages tested to be under positive selection) and
background branches (rest of the lineages) to be defined a priori. For each gene, each
branch of the abdominal testicular lineages was treated as a foreground branch, whereas
the remaining branches were treated as a background branch. The two-ratio model was
used as an alternative hypothesis for the branch model, which allowed for different ω
values between the foreground and background branches. As the corresponding null
hypothesis, the one-ratio model showed all evolutionary branches to have the same ω
value. The alternative hypothesis of the branch-site model in this study allowed each codon
of the foreground branch (non-scrotal testicular species) to have its own ω value, and it
allowed its ω to be greater than 1 (positive selection model: 0 <ω0 < 1, ω1 =1 and ω2 ≥ 1);
the null hypothesis (neutral model: 0 <ω0 < 1,ω1 = 1 andω2 = 1) did not allow positive
selection to occur. Then, the likelihood ratio test (LRT) with a χ2 distribution was used
to determine which models were statistically different from the null model at a threshold
of p < 0.05. Moreover, the p-values of all genes were multiple-calibrated by FDR (false
discovery rate) using the method of Benjamini–Hochberg [31]. For positive selection sites,
Bayes empirical Bayes (BEB) analysis was used to determine sites under positive selection
with posterior probabilities ≥ 0.8 [32].

https://www.ncbi.nlm.nih.gov/
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To explore whether there was a significant difference in the selection pressure of
spermatogenesis-associated UPS genes between abdominal testicular and scrotal testicular
species, and to detect rapid evolution genes in abdominal testicular species, the nested
branch model (two-ratio model) was used to calculate the selection pressure. We defined
rapid evolution genes in abdominal testicular species to be genes for which the evolution
rate of the foreground branch (abdominal testicular species) was greater than that of the
foreground branches (scrotal testicular species), after LRT test and FDR correction, and the
p-adjusted value was <0.05.

2.4. Labeling Positive Selection Sites on the Three-Dimensional Structure of Proteins

To highlight the importance of positively selected sites in terms of protein function,
we mapped the sites onto the 3D structure of proteins. First, UCHL3 and PSMA8 se-
quences from the bottlenose dolphin were used to predict the 3D structure by I-TASSER
(https://zhanglab.ccmb.med.umich.edu/services/ (accessed on 1 Octorber 2021)). Then,
we used the UniProt website (http://www.UniProt.org/ (accessed on 1 Octorber 2021)).
to view the important functional domains of each gene. Finally, the positively selective
sites and functional domains were annotated in the obtained 3D structure using EzMol
(http://www.sbg.bio.ic.ac.uk/ezmol/ (accessed on 1 Octorber 2021)). and Adobe illustrator.

2.5. Identification of Convergent Amino Acids among Abdominal Testicular Laurasiatherians

To explore whether molecular convergence occurred among the abdominal testicular
species, we used the MEGA and Fasparser softwares [33] to compare the amino acid se-
quences of spermatogenesis-related UPS genes. We used amino acid sites that were shared
among multiple abdominal testicular species but differed from most scrotal testicular
species; such amino acids were defined as convergent in abdominal testicular laurasiatheri-
ans. Moreover, we selected some genes and expanded the laurasiatherians dataset to all
mammals to further verify these putatively convergent amino acids.

2.6. Functional Assays of RNF8
2.6.1. Plasmid Construction and Transient Transfection

The RNF8 gene of the bottlenose dolphin and H2A gene of H. sapiens were optimized
and synthesized by Shanghai Generay Biotech Co., Ltd. (Shanghai, China). Then, we
cloned RNF8 from the bottlenose dolphin into a Myc-tagged pcDNA3.1 V5-His C plas-
mid and cloned H2A of H. sapiens into a Flag-tagged pcDNA3.1 V5-His C plasmid. In
addition, we constructed a mutant RNF8 plasmid by changing Ile into Val at position
437 in RNF8 of the bottlenose dolphin. Mutant RNF8 of the bottlenose dolphin (RNF8
I437V) was generated by a Q5 Site-Directed Mutagenesis Kit. The primers are as follows:
forward primer: CTGCATTTCTGAGTGGATGAAGCGGAAGGTGGAGTGCCCTATTTGC-
CGCAAGGACATTA; reverse primer: TAATGTCCTTGCGGCAAATAGGGCACTCCAC-
CTTCCGCTTCATCCACTCAGAAATGCAG. All genes were verified by sequencing. RNF8,
mutant RNF8 and H2A recombinant plasmids were each transfected into a different set of
HEK293T cells with Lipofectamine 3000 transfection reagent (Life Technology).

2.6.2. Cell Culture, Protein Extraction and Western Blot Analysis

HEK293T cell lines were cultured in DMEM medium containing 10% fetal bovine
serum (FBS, WISENT) and 1% penicillin/streptomycin (P/S) at 37 ◦C and 5% CO2. Nucle-
oproteins were extracted through Boster’s subcellular structure nuclear and cytoplasmic
protein extraction kit. This kit used a low osmotic pressure condition to fully expand the
cells and then destroy their cell membrane to release the cytoplasmic protein; the cells
were then centrifuged to obtain the nucleus precipitation. Finally, the nucleoprotein was
extracted with a high-salt nucleoprotein extraction reagent. The prepared nucleoprotein
samples were boiled at 95 ◦C for 5 min and then separated by SDS/PAGE. Then, they
were transferred to nitrocellulose membrane and s-blocked with 5% skimmed milk pow-
der. Proteins were detected with the following antibodies: mouse anti-Flag (Affinity),

https://zhanglab.ccmb.med.umich.edu/services/
http://www.UniProt.org/
http://www.sbg.bio.ic.ac.uk/ezmol/
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1:3000; rabbit C-MYC-tag (Affinity), 1:3000; rabbit anti-H4 (Proteintech), 1:800; and goat
anti-rabbit/mouse IgG (H + L) HRP (Proteintech), 1:2000. The blots for detecting proteins
were semi-quantified by NIH Image J software (National Institutes of Health, Bethesda,
MD, USA).

2.6.3. Statistical Analysis

All the experiments in the functional assays of RNF8 were performed with at least
three replicates. All the data were expressed as the mean ± SEM. The differences between
groups were examined by a two-tailed Student t-test.

3. Results
3.1. Positive Selection in Abdominal Testicular Mammals

Twenty-five instances of positive selection were identified in 15 genes from the
laurasiatherian dataset using the free-ratio model. Of these, 13 signs of positive selec-
tion were found in the abdominal testicular lineages, while only four were found in the
scrotal testicular lineages; five signs of positive selection were identified in three laurasiathe-
rian genes using the two-ratio model, all of which were found in the abdominal testicular
lineages (Tables S3 and S4). This suggests that there were far more positive selection
signals detected in the abdominal testicular lineages than in the scrotal testicular lineages.
Moreover, we specifically detected positive selection in six genes (UCHL3, PSMA8, USP14,
MARCH7, USP2 and USP14) in the abdominal testicular branches using the free-ratio
model, three of which (UCHL3, PSMA8 and USP14) underwent positive selection accord-
ing to the two-ratio model with the adjusted p value corrected by FDR < 0.05 (Figure 1;
Tables S3 and S4). In other words, ω (the ratio of nonsynonymous substitution to syn-
onymous substitution) > 1 was restricted to the abdominal testicular branches for these
genes, e.g., the terminal branch of the sperm whale (P. catodon) for UCHL3; the LCA branch
of the killer whale (O. orca) and bottlenose dolphin (T. truncatus), and LCA branch of the
killer whale (O. orca) and white whale (D. leucas) for PSMA8 (Figure 1; Tables S3 and S4).
Notably, when p value was tested by LRT (the likelihood ratio test) < 0.05, UCHL3 and
PSMA8 were specifically detected positive selection on the abdominal testicular branches
by the branch-site model; MARCH7 was also specifically detected positive selection on the
abdominal testicular branches by the two-ratio model; more positive selection signals were
specifically detected on the abdominal testicular branches (Figure S1; Tables S3, S4 and S6).

3.2. Rapid Evolution Rates in the Abdominal Testicular Lineages

Using the branch model (two-ratio model) in PAML, six genes were identified as
having significantly higherω values in the abdominal testicular species than the scrotal
species, p value tested by LRT < 0.05 (Figure S2; Table S5). After FDR correction, there were
still four genes (UBE2A, UCHL3, HERC4 and PSME4) identified in the abdominal testicular
species with a higherω value than the scrotal species. Theω values of UBE2A and UCHL3
were up to over four-fold higher in the abdominal testicular species than in the scrotal
testicular species (Figure 2; Table S5). Only one gene (RFP) had a significantly higher ω
value in the scrotal species than in the abdominal testicular species (Table S5). No gene had
the sameω value in the two testicular phenotypic species.

3.3. Potential Molecular Convergence between Abdominal Testicular Species

We identified eight potential convergent amino acids for eight genes (RNF8 V437I,
MARCH7 V314I, UBA7 Q/K713R/E, UCHL3 V64I, PSMA8 N187S, MARCH10 P132S,
UBA1 Y323F and RAD18 S440P). For three convergent amino acids (RNF8 V437I, MARCH7
V314I and UCHL3 V64I), most abdominal testicular species were Ile and most scrotal testic-
ular species were Val (Figure 3A). Then, for RNF8 and MARCH7, we verified representative,
non-laurasiatherian mammals and found that, at position 437 of RNF8 and position 314 of
MARCH7, most abdominal testicular species still converged to Ile (Figure 3B,C).
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Figure 2. Rapidly evolving genes in abdominal testicular lineages. The nested branch model (two-
ratio model) was used to calculate the selection pressure of the foreground branch (abdominal
testicular species) and the background branches (scrotal testicular species). The left side shows the ω
values of the four accelerated genes for the abdominal testicular and the scrotal testicular species.
Theω values of all the genes for the abdominal testicular species are greater than those of the scrotal
testicular species. The right side shows the difference between theω values of the abdominal and
the scrotal testicular species for the four genes, sorted according to the difference from high to low.
Adjusted p value corrected by FDR < 0.05.
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(RNF8 V437I, MARCH7 V314I, UBA7 Q/K713R/E, UCHL3 V64I, PSMA8 N187S, MARCH10 P132S, UBA1 Y323F and
RAD18 S440P) in eight genes identified. (B) Amino acid of representative mammalian species besides laurasiatherians
at position 437 of RNF8. (C) Amino acid of representative mammalian species besides laurasiatherians at position 314 of
MARCH7. The mammals with abdominal and scrotal testes are in red and blue, respectively. Yellow: V(Val); Orange:
E(Glu)/R(Arg); Green: Q(Gln); Grey: K(Lys)/-; Blue: N(Asn); Pink: P(Pro); Fluorescent green: Y(Tyr); Purple: S(Ser).

3.4. Functional Convergence of the RNF8 among Abdominal Testicular Species

The RNF8 V437I convergence amino acid was identified in laurasiatherians with
abdominal testicles and verified by representative, non-laurasiatherian mammals. The
amino acid residue at location 437 of RNF8 in the abdominal testicular species was Ile
in all the studied species, except for seals (N. schauinslandi), walruses (O. rosmarus) and
duckmoles (O. anatinus) (Figures 3A,B and 4A). Moreover, the V437I convergence amino
acid was located at the RING domain (Zinc finger domain) of RNF8 (Figure 4B). As an E3
ligase, RNF8 is responsible for transferring ubiquitin bound with E2 to the substrates in
the ubiquitin–proteasome system, and the RING domain of RNF8 plays a very important
role in it (Figure 4C).
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to ubiquitinate H2A. We found that the level of substrate H2A protein in the nucleus was 

significantly reduced 48 h after transfection of the wt-RNF8 and H2A; this meant that H2A 

was degraded by ubiquitination (Figure 5A,B). Then, the ubiquitination abilities of RNF8 
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Figure 4. The RNF8 V437I convergence amino acid was identified in species with abdominal testes. (A) The convergent
amino acid of RNF8 was located at the 437th amino acid of RNF8. (B) The V437I convergence amino acid was localized
to the RING domain (Zinc finger domain) of RNF8. (C) Function schematic of RNF8/RING domain containing V437I
convergence amino acid. The mammals with abdominal and scrotal testes are in red and blue, respectively.

To determine the role of the RNF8 convergent amino acid (V437I) in the functional
convergence of abdominal testicular species, we constructed a mutant RNF8 plasmid
by changing Ile into Val at position 437 in RNF8 of the bottlenose dolphin. As RNF8
participates in the regulation of spermatogenesis through the ubiquitination of histones
(H2A and H2B), we analyzed the ability of wild-type and mutant RNF8 in bottlenose
dolphin to ubiquitinate H2A. We found that the level of substrate H2A protein in the
nucleus was significantly reduced 48 h after transfection of the wt-RNF8 and H2A; this
meant that H2A was degraded by ubiquitination (Figure 5A,B). Then, the ubiquitination
abilities of RNF8 in three groups were compared. Each of the three groups was transfected
with Flag-tagged H2A (substrate). At the same time, the control group was transfected with
an empty vector (pcDNA3.1); one other group was transfected with wt-RNF8 and another
with mut-RNF8. It was found that H2A protein levels in the nucleus of the wt-RNF8 and
mut-RNF8 groups were both lower than the control group, and the level of H2A protein
in the nucleus of the wt-RNF8 group was significantly lower than that of the mut-RNF8
group (Figure 5C,D). The above showed that the ubiquitination ability of the wt-RNF8
(437I) was stronger than that of the mut-RNF8 (437V).
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Figure 5. Functional convergence of the RNF8 among abdominal testicular species. (A) H2A was clearly ubiquitinated and
degraded 48 h after RNF8 was transfected. H2A, RNF8 and H4 proteins were subjected to Western blotting. The blots were
probed for H4 as a loading control. (B) The blots for H2A proteins. H2A protein level at 24 h was set to 1, and relative H2A
protein levels were plotted. (C) Bottlenose dolphins of RNF8 ubiquitinated and degraded H2A at a higher level than its
mutant. H2A, RNF8 and H4 proteins were subjected to Western blotting. The blots were probed for H4 as a loading control.
(D) The blots for H2A proteins. When transfected with pcDNA3.1-myc-wt-RNF8 and pcDNA3.1-flag-H2A, H2A protein
level was set to 1, and relative H2A protein levels were plotted. Wt-RNF8 stands for RNF8 of bottlenose dolphin (RNF8
437I) and mut-RNF8 stands for mutant RNF8 of bottlenose dolphin (RNF8 437V). Error bars show mean ± SEM (n ≥ 3).
p values were from two-tailed Student’s t tests. * p < 0.05; *** p <0.001.

4. Discussion

During embryonic development, if one or both testicles do not fall into the scrotum,
known as cryptorchidism, series of risks such as male sterility will arise. According to
reports, family inheritance factors, molecular genetic factors and environmental factors
may cause cryptorchidism. Analysis of the history of cryptorchidism patients found that
about 22.7% of patients had a family history of cryptorchidism [34]; recessive mutation
of RXFP2 (c.1496G>A. p. Gly499Glu) can cause familial bilateral cryptorchidism [35];
the G178A polymorphic variant of INSL3 may be linked to cryptorchidism among an
Egyptian pediatric cohort [36]. In addition, studies have shown that prenatal exposure to
endocrine disruptors (EDCs) may be causally related to congenital cryptorchidism [37];
direct exposure to insecticides in pregnant women has also been shown to have an impact
on the prevalence of cryptorchidism [38]. At present, surgical treatment and hormone
therapy are the most common treatments for cryptorchidism [39,40].

However, not all mammals have testes that descend into the scrotum, and the testes
of many mammals actually remain in the abdominal cavity. It has been reported that
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testicular descent-related genes (RXFP2 and INSL3) are lost or nonfunctional exclusively
in four afrotherians (tenrec, cape golden mole, cape elephant shrew and manatee) that do
not undergo testicular descent at all [8]. Thus, we hypothesized that abdominal testicular
mammals must have evolved some molecular mechanisms by which the testes adapted to
the inner body environment.

Spermatogenesis is a complex process of cell division and differentiation in the sem-
iniferous tubules of the testes. It requires precise expression of structural proteins and
enzymes. Our previous studies showed that structural protein genes related to spermato-
genesis might have undergone adaptive evolution, and that mammals, mainly laurasiathe-
rians, contain positive selection signals [41]. Recent studies reported that the ubiquitin–
proteasome system (UPS) is necessary for various steps of mammalian spermatogenesis,
and functions of the spermatogenesis-related UPS genes have been continuously pro-
posed [12,42]. Moreover, evolutionary studies of UPS genes have also been reported,
especially in plants and nematodes. For example, it was reported that the ubiquitin-26S
proteasome system in Brassicaceae and Poaceae has undergone diversifying evolution [43];
in addition, two large families of ubiquitin-ligase adapters in nematodes and plants have
undergone adaptive evolution [44]. However, in mammals, especially abdominal testicular
mammals, the evolutionary studies of the spermatogenesis-related UPS genes are unclear.

In this study, we conducted comparative genomic analyses and functional analyses of
the spermatogenesis-related UPS genes involved in regulating the degradation of various
proteins in the steps of spermatogenesis using a laurasiatherian dataset, aiming to further
explore the molecules mechanisms that abdominal testicular mammals use to maintain
healthy reproduction.

We used three different models (free-ratio, two-ratio and branch-site) in PAML to
analyze the positive selection of the spermatogenesis-related UPS genes and found that pos-
itive selection signals were detected in both the abdominal testicular and scrotal testicular
laurasiatherians lineages. However, the positive selection signal detected on the abdominal
testicular lineages was far stronger than that detected in the scrotal testicular branches
(Tables S3 and S4). Moreover, positive selection was specifically detected in six genes
(UCHL3, PSMA8, USP14, MARCH7, USP2 and USP14) in the abdominal testicular branches
(Figures 1 and S1; Tables S3 and S4). Notably, when p value was corrected by FDR < 0.05,
some “signals” showed no statistical significance—e.g., the positive selection signals of
UCHL3 and PSMA8 specifically detected in the abdominal testicular branches through the
branch-site model and positive selection signal of MARCH7 specifically detected in the
abdominal testicular branches through the two-ratio model. This might be because FDR
becomes inaccurate due to insufficient sample size [45,46]. In addition, after FDR correction,
there were four genes (UBE2A, UCHL3, HERC4 and PSME4) identified in the abdominal
testicular species with a higher ω value than the scrotal species (Figure 2; Table S5). The
six genes in which positive selection was specifically detected on the abdominal testicular
branches and four rapid evolution genes all play an important role in spermatogenesis.
For example, UCHL3, a deubiquitinating enzyme, participates in regulating germ cell
apoptosis and differentiating spermatocytes into sperm cells. UCHL3 knockout mice
showed severe testicular atrophy and increased apoptotic germ cells after cryptorchidism
injury [25]. In our study, positive selection in UCHL3 was detected in cetacean lineages
(abdominal testicular lineages). Moreover, possible positive selection sites (p value tested
by LRT < 0.05, posterior probabilities ≥ 0.8) were located in the active center domain of
the UCHL3 enzyme (Figure S3). Thus, cetaceans with abdominal testicles might control
the loss of sperm cells by strengthening the inhibition of sperm cell apoptosis to deal with
“cryptorchidism injury”.

Convergent evolution has always been a hot spot in the field of evolutionary biol-
ogy. Different abdominal testicular mammals, although distantly related to one another,
have independently evolved similar phenotypes for undescended testes, which could be a
typical morphological convergence. To explore whether there is molecular convergence
driving this morphological convergence, we performed molecular convergence analysis
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on 25 spermatogenesis-related UPS genes of laurasiatherians. Eight potential convergent
amino acids for eight genes (RNF8 V437I, MARCH7 V314I, UBA7 Q/K713R/E, UCHL3
V64I, PSMA8 N187S, MARCH10 P132S, UBA1 Y323F and RAD18 S440P) were identified.
Moreover, convergent amino acids of RNF8 and MARCH7 were verified by representative
mammals other than laurasiatherians (Figure 3A–C). For example, for RNF8, most abdomi-
nal testicular species were Ile and most scrotal testicular species were Val at position 437
(Figure 3A). However, there were still some abdominal testicular species with the same
amino acids as the scrotal testicular species but different from the abdominal testicular
species. For instance, at position 437 of RNF8 and position 314 of MARCH7, seals and
walruses were not Ile but Val. Studies also reported that seals can use cooled surface blood
to directly cool the reproductive organs and protect them from high temperature [10].
This is supported by measurements of testicular temperatures, which have been shown
to be lower than “core” temperatures by 6–7 ◦C in elephant seals [47] and 1–4 ◦C in harp
seals [48]. This anatomical adaptation might explain why the seals did not undergo the
above molecular convergence.

Histone ubiquitination is important for nucleosome removal during spermatogenesis
and regulating sperm formation. Notably, histone-protamine replacement is affected by
temperature. It has reported that histone-protamine replacement and chromatin conden-
sation displayed a significant impairment after 3 months of sauna sessions [49]. Recent
studies showed that H2A and H2B ubiquitination regulated by RNF8 was a key step
in histone removal [22,50]. RNF8 knockout mice fail to generate mature sperm during
spermatogenesis, leading to male sterility [47,51]. Up-regulation of RNF8 can predict
the presence of sperm in individuals with azoospermia [52]. The RNF8 is an E3 ligase
that contains an N-terminal forkhead-associated (FHA) domain and a C-terminal RING
domain [53]. The RING domain of RNF8 can interact with E2 transferring ubiquitin to
the substrates (e.g., H2A and HAB) and ubiquitin-tagged substrates can be degraded by
the proteasome [54]. Considering that the RNF8 V437I convergent amino acid found in
this study was located in the RING domain, RNF8 of abdominal testicular species were
expected to display functional convergence. To test this hypothesis, we examined RNF8
function by comparing the ubiquitination ability of two variants and found that the ability
of the wild type bottlenose dolphin RNF8 (437I) was stronger than that of the mutant
bottlenose dolphin RNF8 (437V), which showed that the RNF8 of abdominal testicular
mammals exhibit functional convergence in ubiquitination. This evidence suggests that
the mammals with abdominal testes might undergo enhanced histone removal to maintain
sperm formation under “cryptorchidism injury” conditions. However, further in vivo
experiments, such as site directed mutation of RNF8 in cryptorchidism mouse model, may
be needed to support this assertion.

Overall, the above evidence suggests that spermatogenesis-related UPS genes of
abdominal testicular species might have undergone adaptive evolution to stabilize sperm
formation in response to “cryptorchidism injury”.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12111780/s1, Table S1: 25 spermatogenesis-associated UPS candidate genes; Table S2:
Information of genes sequences in this study; Table S3: Positive selection analyses of spermatogenesis-
related UPS genes by free-ratio model; Table S4: Positive selection analyses of spermatogenesis-related
UPS genes by two-ratio model; Table S5: Rapid evolution analyses of spermatogenesis-related UPS
genes by two-ratio model; Table S6: Positive selection analyses of spermatogenesis-related UPS genes
by branch-site model; Figure S1: All abdominal testicular branches-specific positively selected genes;
Figure S2: All rapidly evolving genes in abdominal testicular lineages; Figure S3: Distribution of
positively selected sites on the 3D structure of proteins.

Author Contributions: Conceptualization, X.D.; formal analysis, X.D. and L.C.; methodology, X.D.,
L.C. and X.Z.; software, X.D., Y.Z. and X.H.; writing—original draft preparation, X.D.; writing—
review and editing, W.R. and S.X.; project administration, W.R.; resources, W.R.; funding acquisition,
W.R. and S.X.; All authors have read and agreed to the published version of the manuscript.

https://www.mdpi.com/article/10.3390/genes12111780/s1
https://www.mdpi.com/article/10.3390/genes12111780/s1


Genes 2021, 12, 1780 12 of 14

Funding: This research was financially supported by the National Natural Science Foundation of
China (grant nos. 31872219, 31370401, 32030011, 31630071, 31772448), National Key Programme of
Research and Development, Ministry of Science and Technology (grant no. 2016YFC0503200), and
the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Most of the data supporting the findings of this study can be found
within the Supplementary Files; some other data are available from the corresponding author upon
reasonable request.

Conflicts of Interest: All authors declare no conflict of interest.

References
1. Mamoulakis, C.; Antypas, S.; Sofras, F.; Takenaka, A.; Sofikitis, N. Testicular Descent. Hormones 2015, 14, 515–530.

[CrossRef] [PubMed]
2. Mariotti, A.; Di Carlo, L.; Orlando, G.; Corradini, M.L.; Di Donato, L.; Pompa, P.; Iezzi, R.; Cotroneo, A.R.; Romani, G.L.; Merla, A.

Scrotal Thermoregulatory Model and Assessment of the Impairment of Scrotal Temperature Control in Varicocele. Ann. Biomed.
Eng. 2011, 39, 664–673. [CrossRef] [PubMed]

3. Thonneau, P.; Bujan, L.; Multigner, L.; Mieusset, R. Occupational heat exposure and male fertility: A review. Hum. Reprod. 1998,
13, 2122–2125. [CrossRef]

4. Cobellis, G.; Noviello, C.; Nino, F.; Romano, M.; Mariscoli, F.; Martino, A.; Parmeggiani, P.; Papparella, A. Spermatogenesis and
Cryptorchidism. Front. Endocrinol. 2014, 5, 63. [CrossRef] [PubMed]

5. Durairajanayagam, D.; Agarwal, A.; Ong, C. Causes, effects and molecular mechanisms of testicular heat stress. Reprod.
BioMedicine Online 2015, 30, 14–27. [CrossRef] [PubMed]

6. Kleisner, K.; Ivell, R.; Flegr, J. The evolutionary history of testicular externalization and the origin of the scrotum. J. Biosci. 2010,
35, 27–37. [CrossRef]

7. Gurney, J.K.; McGlynn, K.A.; Stanley, J.; Merriman, T.; Signal, V.; Shaw, C.; Edwards, R.; Richiardi, L.; Hutson, J.; Sarfati, D. Risk
factors for cryptorchidism. Nat. Rev. Urol. 2017, 14, 534–548. [CrossRef]

8. Sharma, V.; Lehmann, T.; Stuckas, H.; Funke, L.; Hiller, M. Loss of RXFP2 and INSL3 genes in Afrotheria shows that testicular
descent is the ancestral condition in placental mammals. PLoS Biol. 2018, 16, e2005293. [CrossRef]

9. Werdelin, L.; Nilsonne, Å. The Evolution of the Scrotum and Testicular Descent in Mammals: A Phylogenetic View. J. Theor. Biol.
1999, 196, 61–72. [CrossRef]

10. Rommel, S.A.; Early, G.A.; Matassa, K.A.; Pabst, D.A.; Mclellan, W.A. Venous structures associated with thermoregulation of
phocid seal reproductive organs. Anat. Rec. 1995, 243, 390–402. [CrossRef]

11. Baarends, W.M.; van der Laan, R.; Grootegoed, J.A. Specific aspects of the ubiquitin system in spermatogenesis. J. Endocrinol.
Investig. 2000, 23, 597–604. [CrossRef] [PubMed]

12. Sutovsky, P.; Aarabi, M.; Miranda-Vizuete, A.; Oko, R. Negative biomarker based male fertility evaluation: Sperm phenotypes
associated with molecular-level anomalies. Asian J. Androl. 2015, 17, 554–560. [CrossRef] [PubMed]

13. de Rooij, D.G. Proliferation and differentiation of spermatogonial stem cells. Reproduction 2001, 121, 347–354. [CrossRef]
14. Meistrich, M.L.; Mohapatra, B.; Shirley, C.R.; Zhao, M. Roles of transition nuclear proteins in spermiogenesis. Chromosoma 2003,

111, 483–488. [CrossRef] [PubMed]
15. Baarends, W.M.; Hoogerbrugge, J.W.; Roest, H.P.; Ooms, M.; Vreeburg, J.; Hoeijmakers, J.H.J.; Grootegoed, J.A. Histone

Ubiquitination and Chromatin Remodeling in Mouse Spermatogenesis. Dev. Biol. 1999, 207, 322–333. [CrossRef] [PubMed]
16. Ryu, K.Y.; Sinnar, S.A.; Reinholdt, L.G.; Vaccari, S.; Hall, S.; Garcia, M.A.; Zaitseva, T.S.; Bouley, D.M.; Boekelheide, K.;

Handel, M.A. The mouse polyubiquitin gene Ubb is essential for meiotic progression. Mol. Cell. Biol. 2008, 28, 1136–1146.
[CrossRef] [PubMed]

17. Pickart, C.M. Mechanisms Underlying Ubiquitination. Annu. Rev. Biochem. 2001, 70, 503–533. [CrossRef]
18. Nandi, D.; Tahiliani, P.; Kumar, A.; Chandu, D. The ubiquitin-proteasome system. J. Biosci. 2006, 31, 137–155. [CrossRef] [PubMed]
19. Eletr, Z.M.; Wilkinson, K.D. Regulation of proteolysis by human deubiquitinating enzymes. Biochim. Biophys. Acta (BBA)-Mol.

Cell Res. 2014, 1843, 114–128. [CrossRef]
20. Ying, D.; Liu, M.L.; Jia, M.C. Identification and characterization of a spermatogenesis-related gene Ube1 in rat testis. Sheng LI Xue

Bao 2008, 60, 382–390.
21. Mulugeta Achame, E.; Wassenaar, E.; Hoogerbrugge, J.W.; Sleddens-Linkels, E.; Ooms, M.; Sun, Z.-W.; van Ijcken, W.F.J.;

Grootegoed, J.A.; Baarends, W.M. The ubiquitin-conjugating enzyme HR6B is required for maintenance of X chromosome
silencing in mouse spermatocytes and spermatids. BMC Genom. 2010, 11, 367. [CrossRef]

22. Lu, L.-Y.; Wu, J.; Ye, L.; Gavrilina, G.B.; Saunders, T.L.; Yu, X. RNF8-dependent histone modifications regulate nucleosome
removal during spermatogenesis. Dev. Cell 2010, 18, 371–384. [CrossRef] [PubMed]

http://doi.org/10.14310/horm.2002.1634
http://www.ncbi.nlm.nih.gov/pubmed/26732154
http://doi.org/10.1007/s10439-010-0191-3
http://www.ncbi.nlm.nih.gov/pubmed/20976556
http://doi.org/10.1093/humrep/13.8.2122
http://doi.org/10.3389/fendo.2014.00063
http://www.ncbi.nlm.nih.gov/pubmed/24829558
http://doi.org/10.1016/j.rbmo.2014.09.018
http://www.ncbi.nlm.nih.gov/pubmed/25456164
http://doi.org/10.1007/s12038-010-0005-7
http://doi.org/10.1038/nrurol.2017.90
http://doi.org/10.1371/journal.pbio.2005293
http://doi.org/10.1006/jtbi.1998.0821
http://doi.org/10.1002/ar.1092430314
http://doi.org/10.1007/BF03343782
http://www.ncbi.nlm.nih.gov/pubmed/11079455
http://doi.org/10.4103/1008-682X.153847
http://www.ncbi.nlm.nih.gov/pubmed/25999356
http://doi.org/10.1530/rep.0.1210347
http://doi.org/10.1007/s00412-002-0227-z
http://www.ncbi.nlm.nih.gov/pubmed/12743712
http://doi.org/10.1006/dbio.1998.9155
http://www.ncbi.nlm.nih.gov/pubmed/10068466
http://doi.org/10.1128/MCB.01566-07
http://www.ncbi.nlm.nih.gov/pubmed/18070917
http://doi.org/10.1146/annurev.biochem.70.1.503
http://doi.org/10.1007/BF02705243
http://www.ncbi.nlm.nih.gov/pubmed/16595883
http://doi.org/10.1016/j.bbamcr.2013.06.027
http://doi.org/10.1186/1471-2164-11-367
http://doi.org/10.1016/j.devcel.2010.01.010
http://www.ncbi.nlm.nih.gov/pubmed/20153262


Genes 2021, 12, 1780 13 of 14

23. Guo, Y.; Song, Y.; Guo, Z.; Hu, M.; Liu, B.; Duan, H.; Wang, L.; Yuan, T.; Wang, D. Function of RAD6B and RNF8 in spermatogenesis.
Cell Cycle 2018, 17, 162–173. [CrossRef] [PubMed]

24. Zhang, Q.; Ji, S.-Y.; Busayavalasa, K.; Shao, J.; Yu, C. Meiosis I progression in spermatogenesis requires a type of testis-specific 20S
core proteasome. Nat. Commun. 2019, 10, 3387. [CrossRef] [PubMed]

25. Kwon, J.; Wang, Y.-L.; Setsuie, R.; Sekiguchi, S.; Sakurai, M.; Sato, Y.; Lee, W.-W.; Ishii, Y.; Kyuwa, S.; Noda, M.; et al.
Developmental Regulation of Ubiquitin C-terminal Hydrolase Isozyme Expression During Spermatogenesis in Mice. Biol. Reprod.
2004, 71, 515–521. [CrossRef]

26. Kwon, J. The New Function of Two Ubiquitin C-terminal Hydrolase Isozymes as Reciprocal Modulators of Germ Cell Apoptosis.
Exp. Anim. 2007, 56, 71–77. [CrossRef]

27. Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol.
Biol. Evol. 2013, 30, 2725–2729. [CrossRef]

28. Yang, Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [CrossRef]
29. Yang, Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol. Biol. Evol.

1998, 15, 568–573. [CrossRef]
30. Yang, Z.; Nielsen, R. Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J. Mol. Evol. 1998, 46,

409–418. [CrossRef]
31. Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R.

Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [CrossRef]
32. Yang, Z.; Wong, W.S.W.; Nielsen, R. Bayes Empirical Bayes Inference of Amino Acid Sites Under Positive Selection. Mol. Biol.

Evol. 2005, 22, 1107–1118. [CrossRef]
33. Sun, Y.B. FasParser: A package for manipulating sequence data. Zool. Res. 2017, 38, 110–112. [PubMed]
34. Elert, A.; Jahn, K.; Heidenreich, A.; Hofmann, R. The familial undescended testis. Klin. Pädiatrie 2002, 215, 40–45.

[CrossRef] [PubMed]
35. Ayers, K.; Kumar, R.; Robevska, G.; Bruell, S.; Bell, K.; Malik, M.A.; Bathgate, R.A.; Sinclair, A. Original research: Familial bilateral

cryptorchidism is caused by recessive variants in RXFP2. BMJ Open Access 2019, 56, 727–733.
36. Abou El-Ella, S.S.; Tawfik, M.A.; Abd El-Aziz, T.F.; Shalaby, A.M.A.; Barseem, N.F. The G178A polymorphic variant of INSL3 may

be linked to cryptorchidism among Egyptian pediatric cohort. Pediatric Surg. Int. 2020, 36, 1387–1393. [CrossRef]
37. Panu, R.; Main, K.M.; Christine, W.V.; Hannu, K.; Riikka, A.; Terttu, V.; Skakkebæk, N.; Jorma, T.; Virtanen, H.E. Association of

placenta organotin concentrations with congenital cryptorchidism and reproductive hormone levels in 280 newborn boys from
Denmark and Finland. Hum. Reprod. 2013, 6, 1647–1660.

38. García-Rodríguez, J.; García-Martín, M.; Nogueras-Ocaña, M.; de Dios Luna-del-Castillo, J.; Espigares García, M.; Olea, N.;
Lardelli-Claret, P. Exposure to pesticides and cryptorchidism: Geographical evidence of a possible association. Environ. Health
Perspect. 1996, 104, 1090–1095.

39. Kolon Thomas, F.; Herndon, C.D.A.; Baker Linda, A.; Baskin Laurence, S.; Baxter Cheryl, G.; Cheng Earl, Y.; Diaz, M.; Lee Peter,
A.; Seashore Carl, J.; Tasian Gregory, E.; et al. Evaluation and Treatment of Cryptorchidism: AUA Guideline. J. Urol. 2014, 192,
337–345. [CrossRef]

40. Schrder, A. Ist die Hormontherapie bei Hodenhochstand noch zeitgem? Aktuelle Urol. 2020, 51, 183–185.
41. Ding, X.; Wei, H.; Zhou, X.; Gu, L.; Yu, F.; Zheng, Y.; Ren, W.; Xu, S.; Yang, G. Molecular evolution of spermatogenesis-related

genes in abdominal testicular mammals supports the cooling hypothesis. J. Genet. Genom. 2021. [CrossRef]
42. Manku, G.; Wing, S.S.; Culty, M. Expression of the Ubiquitin Proteasome System in Neonatal Rat Gonocytes and Spermatogonia:

Role in Gonocyte Differentiation1. Biol. Reprod. 2012, 87, 44. [CrossRef] [PubMed]
43. Hua, Z.; Yu, P. Diversifying Evolution of the Ubiquitin-26S Proteasome System in Brassicaceae and Poaceae. Int. J. Mol. Sci. 2019,

20, 3226. [CrossRef]
44. Thomas, J.H. Adaptive evolution in two large families of ubiquitin-ligase adapters in nematodes and plants. Genome Res. 2006,

16, 1017–1030. [CrossRef]
45. Jain, N.; Cho, H.; O’Connell, M.; Lee, J.K. Rank-invariant resampling based estimation of false discovery rate for analysis of small

sample microarray data. BMC Bioinform. 2005, 6, 187. [CrossRef] [PubMed]
46. Fu, Y.; Qian, X. Transferred subgroup false discovery rate for rare post-translational modifications detected by mass spectrometry.

Mol. Cell. Proteom. 2014, 13, 1359–1368. [CrossRef] [PubMed]
47. Bryden, M.M. Testicular temperature in the Southern elephant seal, Mirounga leonina(Linn). Reproduction 1967, 13,

583–584. [CrossRef]
48. Blix, A.S.; Fay, F.H.; Ronald, K. On testicular cooling in phocid seals. Polar Res. 1983, 1, 231–233. [CrossRef]
49. Garolla, A.; Torino, M.; Sartini, B.; Cosci, I.; Foresta, C. Seminal and molecular evidence that sauna exposure affects human

spermatogenesis. Hum. Reprod. 2013, 28, 877–885. [CrossRef]
50. Gou, L.-T.; Kang, J.-Y.; Dai, P.; Wang, X.; Li, F.; Zhao, S.; Zhang, M.; Hua, M.-M.; Lu, Y.; Zhu, Y.; et al. Ubiquitination-Deficient

Mutations in Human Piwi Cause Male Infertility by Impairing Histone-to-Protamine Exchange during Spermiogenesis. Cell 2017,
169, 1090–1104.e13. [CrossRef]

http://doi.org/10.1080/15384101.2017.1361066
http://www.ncbi.nlm.nih.gov/pubmed/28825854
http://doi.org/10.1038/s41467-019-11346-y
http://www.ncbi.nlm.nih.gov/pubmed/31358751
http://doi.org/10.1095/biolreprod.104.027565
http://doi.org/10.1538/expanim.56.71
http://doi.org/10.1093/molbev/mst197
http://doi.org/10.1093/molbev/msm088
http://doi.org/10.1093/oxfordjournals.molbev.a025957
http://doi.org/10.1007/PL00006320
http://doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://doi.org/10.1093/molbev/msi097
http://www.ncbi.nlm.nih.gov/pubmed/28409507
http://doi.org/10.1055/s-2003-36894
http://www.ncbi.nlm.nih.gov/pubmed/12545425
http://doi.org/10.1007/s00383-020-04735-8
http://doi.org/10.1016/j.juro.2014.05.005
http://doi.org/10.1016/j.jgg.2021.05.010
http://doi.org/10.1095/biolreprod.112.099143
http://www.ncbi.nlm.nih.gov/pubmed/22592496
http://doi.org/10.3390/ijms20133226
http://doi.org/10.1101/gr.5089806
http://doi.org/10.1186/1471-2105-6-187
http://www.ncbi.nlm.nih.gov/pubmed/16042779
http://doi.org/10.1074/mcp.O113.030189
http://www.ncbi.nlm.nih.gov/pubmed/24200586
http://doi.org/10.1530/jrf.0.0130583
http://doi.org/10.1111/j.1751-8369.1983.tb00738.x
http://doi.org/10.1093/humrep/det020
http://doi.org/10.1016/j.cell.2017.04.034


Genes 2021, 12, 1780 14 of 14

51. Ma, T.; Keller, J.A.; Yu, X. RNF8-dependent histone ubiquitination during DNA damage response and spermatogenesis. Acta
Biochim. Biophys. Sin. (Shanghai) 2011, 43, 339–345. [CrossRef] [PubMed]

52. Nazari, M.; Babakhanzadeh, E.; Mohsen Aghaei Zarch, S.; Talebi, M.; Narimani, N.; Dargahi, M.; Sabbaghian, M.; Ghasemi, N.
Upregulation of the RNF8 gene can predict the presence of sperm in azoospermic individuals. Clin. Exp. Reprod. Med. 2020, 47,
61–67. [CrossRef] [PubMed]

53. Plans, V.; Scheper, J.; Soler, M.; Loukili, N.; Okano, Y.; Thomson, T.M. The RING finger protein RNF8 recruits UBC13 for lysine
63-based self polyubiquitylation. J. Cell. Biochem. 2010, 97, 572–582. [CrossRef] [PubMed]

54. Ito, K.; Adachi, S.; Iwakami, R.; Yasuda, H.; Muto, Y.; Seki, N.; Okano, Y. N-terminally extended human ubiquitin-conjugating
enzymes(E2s) mediate the ubiquitination of RING-finger proteins, ARA54 and RNF8. FEBS J. 2010, 268, 2725–2732. [CrossRef]

http://doi.org/10.1093/abbs/gmr016
http://www.ncbi.nlm.nih.gov/pubmed/21444325
http://doi.org/10.5653/cerm.2019.03111
http://www.ncbi.nlm.nih.gov/pubmed/32146775
http://doi.org/10.1002/jcb.20587
http://www.ncbi.nlm.nih.gov/pubmed/16215985
http://doi.org/10.1046/j.1432-1327.2001.02169.x

	Introduction 
	Materials and Methods 
	Selected Species 
	Candidate Genes and Sequence Acquisition 
	Selective Pressure Analysis 
	Labeling Positive Selection Sites on the Three-Dimensional Structure of Proteins 
	Identification of Convergent Amino Acids among Abdominal Testicular Laurasiatherians 
	Functional Assays of RNF8 
	Plasmid Construction and Transient Transfection 
	Cell Culture, Protein Extraction and Western Blot Analysis 
	Statistical Analysis 


	Results 
	Positive Selection in Abdominal Testicular Mammals 
	Rapid Evolution Rates in the Abdominal Testicular Lineages 
	Potential Molecular Convergence between Abdominal Testicular Species 
	Functional Convergence of the RNF8 among Abdominal Testicular Species 

	Discussion 
	References

