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Abstract

Brown spiders are venomous arthropods that use their venom for predation and defense. In humans, bites of
these animals provoke injuries including dermonecrosis with gravitational spread of lesions, hematological
abnormalities and impaired renal function. The signs and symptoms observed following a brown spider bite are
called loxoscelism. Brown spider venom is a complex mixture of toxins enriched in low molecular mass proteins
(4–40 kDa). Characterization of the venom confirmed the presence of three highly expressed protein classes:
phospholipases D, metalloproteases (astacins) and insecticidal peptides (knottins). Recently, toxins with low levels
of expression have also been found in Loxosceles venom, such as serine proteases, protease inhibitors (serpins),
hyaluronidases, allergen-like toxins and histamine-releasing factors. The toxin belonging to the phospholipase-D
family (also known as the dermonecrotic toxin) is the most studied class of brown spider toxins. This class of toxins
single-handedly can induce inflammatory response, dermonecrosis, hemolysis, thrombocytopenia and renal failure.
The functional role of the hyaluronidase toxin as a spreading factor in loxoscelism has also been demonstrated.
However, the biological characterization of other toxins remains unclear and the mechanism by which Loxosceles
toxins exert their noxious effects is yet to be fully elucidated. The aim of this review is to provide an insight into
brown spider venom toxins and toxicology, including a description of historical data already available in the
literature. In this review article, the identification processes of novel Loxosceles toxins by molecular biology and
proteomic approaches, their biological characterization and structural description based on x-ray crystallography
and putative biotechnological uses are described along with the future perspectives in this field.
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Background
Since the brown spider, an arachnid of the genus Loxos-
celes (Araneae, Sicariidae), can be found worldwide, it has
different common names depending on the region it is
found, including brown recluse, violin spider and fiddle-
back spider [1–4]. The Loxosceles genus was described by
Heineken and Lowe in 1832 [3, 5]. These spiders are
brown in color with a characteristic dark violin-shaped
mark on cephalothorax and have six equal sized eyes dis-
tributed in semi-circular fashion [6, 7]. The individuals
present sexual dimorphism, the females usually have
larger abdomens and can inject more venom when they

bite [2]. Brown spiders are commonly found in workplaces
with secluded, dry, sheltered areas such as underneath
structures, logs, or in piles of rocks or leaves. The brown
spider is also adapted to live indoors, they can be found in
dark closets, inside shoes, or attics [6, 7]. Even though the
genus Loxosceles comprises approximately 130 species
and all of them are probably capable of producing clinic-
ally significant bites, the species responsible for envenom-
ation in the United States are Loxosceles reclusa,
Loxosceles deserta and Loxosceles arizonica. In Brazil, Lox-
osceles intermedia, Loxosceles gaucho and Loxosceles laeta
are considered to be the most important spiders from the
medical point of view [4, 8–11]. Spider envenomation is a
serious public health threat in Brazil due to the number of
cases recorded annually [12]. In 2015, 26,298 spider bites
were recorded in Brazil, including 30 fatal cases [13].
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Spiders of the Loxosceles genus are one of the four groups
of spiders that produce venoms that can cause significant
clinical manifestations in human or even fatalities follow-
ing envenomation [14]. The condition that commonly ap-
pears after accidents involving Loxosceles spiders is known
as loxoscelism and is characterized by several reactions.
Although most bites are benign and local, systemic symp-
toms can emerge [6]. Local reactions include dark blue-
violet colored necrotic wounds with gravitational spread,
which eventually become indurated, and ultimately lead to
scarring [2, 8]. In nearly half of the cases, cutaneous le-
sions are associated with non-specific systemic symptoms,
including fever, fatigue, headache, vomiting, pruritus and
rash [8, 11, 15]. Systemic loxoscelism is a less frequent
complication (occurring in up to 13% of the cases) that
usually affects children, and leads to manifestations such
as renal failure and hematological disturbances, i.e., dis-
seminated intravascular coagulation and intravascular
hemolysis [7, 11, 16, 17]. The first clinical cases of loxosce-
lism were published in the literature describing both
cutaneous and cutaneous-visceral reactions [18–20].
The treatment for loxoscelism includes mainly anti-

venom, corticosteroids and dapsone. However, there are
no clinical trials to substantiate any method. In addition, it
is difficult to evaluate the efficacy of the treatment because
of the diverse forms of cutaneous lesions and often late
diagnosis. While systemic corticosteroids are widely used
in Brazil – either alone or associated with the antivenom –
dapsone is frequently used in the USA, although there is
no consensus on the efficacy of these treatments [21].
Indications for antivenom therapy depend mainly on the

time of progression – the earlier the therapy is performed
the greater the efficacy. This was corroborated by an experi-
mental study that showed that necrotic injuries in rabbits
were about 90% smaller compared with the control when
the antivenom was administered up to 6 h, while the reduc-
tion in the lesion dropped to 30% when the antivenom was
administered up to 48 h after the bite [22]. Health protocols
in Brazil, Peru and Argentina advise the use of intravenous
antivenom in cases of cutaneous or cutaneous-hemolytic
forms of loxoscelism – when hemolysis is present the
antivenom is indicated even 48 h after the bite [21].
However, antivenom therapy may lead to anaphylactic

reactions. A clinical study showed that almost one third
of the patients who received antivenom manifested some
type of early anaphylactic reaction [23]. Experimental
studies demonstrate some efforts in this direction by
developing alternative means to elicit a protective im-
mune response against the noxious effects of dermone-
crotic toxins, such as using an immunogenic synthetic
peptide or a neutralizing monoclonal antibody that
protect rabbits mainly against dermonecrotic toxin activity
[24, 25]. In this context, another study deepened this issue
when it identified peptide epitopes of representative toxins

in three species of Loxosceles describing new antigenic re-
gions important to induce neutralizing antibodies. These
synthetic peptides where used to develop an in vitro
method to evaluate the neutralizing potency of horse
hyperimmune sera (anti-Loxosceles sera) [26].
Epitopes of a recombinant dermonecrotic toxin from

L. intermedia venom were also used to construct a
chimeric protein called rCpLi. In this study, the authors
demonstrate that horses immunized with three initial
doses of crude venom followed by nine doses of rCpLi
generate antibodies with the same reactivity as those
produced following immunization exclusively with whole
venom. They argue that the use of this new generation
of antivenoms will reduce the suffering of horses and
devastation of arachnid fauna [27].
Diagnosis of loxoscelism is difficult and usually

presumptive. It is often made through evolution of the
clinical picture and epidemiological information, since
few patients bring the animal for its identification [23].
Recently, an experimental study developed a recombin-
ant immunotracer based on a monoclonal antibody that
reacts with L. intermedia venom components of 32–
35 kDa and neutralizes the dermonecrotic activity of the
venom. This antibody was re-engineered into a colori-
metric bifunctional protein (antibody fragment fused to
alkaline phosphatase) that proved to be efficient in two
stated immunoassays. This immunotracer could become
a valuable tool to develop immunoassays that may facili-
tate a rapid and reliable diagnostic of loxoscelism [28].
As the cases of loxoscelism became noteworthy, Loxos-
celes spider venoms started to be investigated and bio-
logically and biochemically characterized. This review is
focused on different aspects of venom components, such
as studies in toxinology employing 'omics' strategies and
recombinant toxins. The following sections present a
historical perspective of the accumulated knowledge re-
garding the brown spider venom.

History of the brown spider venom toxinology
Beginning of the venom study
Loxosceles spider venoms have been studied for over
60 years (Fig. 1). Different scientific research groups
across the world started the process of venom extraction
and characterization, motivated by the several reports of
human loxoscelism cases. Earlier, due to technical limi-
tations, the studies were based only on the in vitro and
in vivo experimental observations. These observations
yielded insight into the pathophysiology of cutaneous
arachnoidism. The first experimental study of loxosce-
lism available in the literature was described by
Macchiavello in 1947 [29]. That report described the
stages of dermonecrosis in guinea pigs after spontaneous
bite by Loxosceles laeta. The first studied venom of
brown spider was extracted from Loxosceles laeta and,
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afterwards, from Loxosceles reclusa [29–32]. Since then,
several studies on Loxosceles venoms and toxins were
published and this subject attracted the attention of
several scientists and research groups (Fig. 2).

Separation of the venom components
During the end 1960’s and early 1970’s extraction of
brown spider venom started along with isolation of indi-
vidual components [33, 34]. According to the observa-
tions of Morgan in 1969 [34], the clear, highly viscous
venom extracted from an adult female spider contained
on average 50 μg of protein. Moreover, the venom ex-
tracted from eight males and eight females of L. reclusa

spiders were determined by SDS-PAGE electrophoresis
and were analyzed [35]. These Loxosceles venoms pre-
sented a similar protein profile and were enriched in low
molecular mass protein molecules. Molecular mass
analysis revealed three main groups of proteins with
different molecular masses −30-40 kDa, 20–30 kDa and
2–10 kDa [35, 36]. The toxicity profiles of Loxosceles
venoms were similar between female and male speci-
mens, and between distinct species, such as L. laeta, L.
reclusa, L. intermedia, L. adelaida, L. similis and L.
gaucho. Partial purification of the venom toxins by
sephadex gel filtration revealed three major fractions;
fraction A, with hyaluronidase activity; fraction B, re-
sponsible for major dermonecrotic activity; and fraction
C, devoid of dermonecrotic activity [33, 34, 37–40]. Fur-
thermore, protease, esterase, and alkaline phosphatase
activities were reported in Loxosceles venom [35–39, 41].

Demonstration of the biological effects of the venom
The number of investigations, regarding the toxicity and
pathophysiological effects of Loxosceles venom, increased
together with the development of scientific techniques.
The use of preparative gel electrophoresis and gel
filtration provided tools for investigation of each protein
fraction from brown spider venom [42–44]. Cation-
exchange chromatography at pH 4.0 purified the toxin
fraction responsible for lethality in mice, induction of
necrosis in rabbits, calcium-dependent hemolysis of
human erythrocytes, and a decrease in the calcium-
induced coagulation time of human plasma [45]. Indeed,
a fraction of the L. reclusa venom has also shown to

Fig. 1 Major historical evolution on the knowledge on brown spider venom. Main publications in toxinology on Loxosceles spiders

Fig. 2 Number of scientific publications on Loxosceles during the last
60 years. Graphs were prepared using the number of articles
retrieved in PubMed (http://www.ncbi.nlm.nih.gov/pubmed) using
‘Loxosceles’ in all fields as filter of search, in July 2016
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produce hematological effects in albino mice [46, 47].
Similar effects were observed with L. laeta venom in
rabbits. There were studies that demonstrated abnormal-
ities in the blood coagulation process, including
alterations in thromboplastin time, prothrombin time,
platelet count and fibrinogen-fibrin degradation [48].
Moreover, a low molecular mass peptide fraction of L.
reclusa venom was shown to contain lethal and neuroac-
tive components to insects [49].
Despite the significance of studying protein fractions

of brown spider venom, some recent and relevant stud-
ies focus on the mechanics of action of whole venom
even though sometimes making a parallel with specific
toxins. Systemic loxoscelism, for example, was the sub-
ject of two studies that focused on renal and cardiac tox-
icity [50, 51]. It was observed that L. gaucho venom
caused early acute kidney injury in rats probably due to
an impaired renal flow and systemic rhabdomyolysis.
The authors also showed that renal damage is independ-
ent of a dermonecrotic injury or blood pressure changes
[51]. Moreover, cardiotoxic effects of L. intermedia
venom were studied in mice and results demonstrated
that venom antigens were detected in the heart and that
the venom induced an impairment in the heart function.
The authors argue that these cardiotoxic effects could
play a role in the symptoms of systemic loxoscelism, and
that loxtox proteins are important to develop the heart
dysfunction in envenomed mice [50].
Aiming to investigate the vascular disorders often as-

sociated with venom exposure, Nowatzki et al. [52, 53]
analyzed the effects of L. intermedia venom on endothe-
lial cells in culture in two different studies. They showed
that the venom primarily induces specific changes to
cellular adhesion followed by cell retraction, detachment
and, finally, drives an apoptotic mechanism known as
anoikis. These effects may lead to capillary vessel fragil-
ity and facilitate the observed hemorrhagic outcome
[53]. Moreover, endothelial cell endocytosed the toxins
of L. intermedia venom but, as no lysosomal damage
was observed, the authors argue that deleterious effects
on these cells are not caused by internalization of toxins
[52]. Cultured keratinocytes exposed to L. laeta venom
increased the expression/secretion of MMP2, MMP9
and MMP7, which was associated with cell death. These
effects upon keratinocytes are likely to contribute to the
pathology of cutaneous loxoscelism [54].
The release of inflammatory mediators after inocula-

tion of L. gaucho venom in mice footpads was investi-
gated and results showed a marked PGE2 release
associated with an increase of interleukin-6 (IL-6),
monocyte chemoattractant protein-1 (MCP-1) and kera-
tinocyte chemoattractant (KC). Edema and leukocyte
migration to the site of inoculation was also observed,
thus suggesting that these mediators contribute to the

inflammatory reaction induced by L. gaucho venom [55].
Platelets were also shown to have a role in inflammation,
besides being also involved in local thrombotic disorders
induced by Loxosceles venom. L. gaucho venom induced
aggregation of platelets, activated adhesion to collagen
and increased the expression of ligand-induced binding
site 1 (LIBS1) and P-selectin, demonstrating the pivotal
role of platelets in the development of dermonecrosis
[56]. On the other hand, another study showed that the
platelets have a role in minimizing the hemorrhagic
phenomena and the inflammatory and wound-healing
processes, since platelet depleted rabbits showed more
severe reactions after Loxosceles venom application [57].
Despite all these studies demonstrating important mech-
anisms by which Loxosceles venom lead to the main
injuries observed after envenomation, it is known that
the venom is a mixture of several hundred biologically
active compounds that act synergistically. Thus, the
detailed mechanism of action of Loxosceles venoms
remains unknown and is still object of study.

Biochemical characterization of the venom components
Barbaro et al. [58], in 1992, used gel filtration to identify
a 35-kDa fraction of L. gaucho venom. This fraction was
found to have dermonecrotic, immunogenic and life-
threatening activities; it was also the first antigen to be
detected by antibodies during the course of
immunization. This 35-kDa fraction purified from L.
intermedia venom was found to be able to be incorpo-
rated into human erythrocytes membranes and render
them susceptible to the alternative pathway of comple-
ment. A functional analysis of this venom fraction
indicated the presence of sphingomyelinase activity and
that it was capable of inducing all the in vivo effects seen
with whole spider venom, including C-dependent
hemolysis and dermonecrosis [59].
Protease activities were also found in brown spider

venoms, with distinct molecular mass profiles and sub-
strate preferences [60, 61]. Based on the enzymatic fea-
tures, they were classified as metalloproteases and
serinoproteases. Two brown spider metalloproteases
were identified, namely loxolysin A (20 kDa), with activ-
ity on fibronectin and fibrinogen, and loxolysin B
(30 kDa), with gelatinolytic activities [60]. Regarding the
presence of metalloproteases in Loxosceles venom, two
proteases were also found in L. rufescens venom, a
23-kDa fibrogenolytic protease and a 27-kDa gelatinoly-
tic protease. Their activities were inhibited by 1,10-phe-
nantroline, confirming the metalloprotease characteristic
of the protease [62, 63]. The degradation of fibrinogen
was reported to occur due to different Loxosceles
venoms; again, inhibition of degradation by 1,10-phe-
nantroline was also reported [64, 65].
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Serineproteases were detected in L. intermedia venom
by zymographic assays showing two gelatinolytic signals
with high molecular masses (85 kDa and 95 kDa) [61].
The biochemical nature of these proteases was charac-
terized by total inhibition of gelatin hydrolysis using
distinct serineprotease inhibitors such as aprotinin,
benzamidine, leupeptin, PMSF, and soybean-trypsin
inhibitor [61].
Later on, the first description of peptides from the in-

hibitor cystine knot family (ICK) in Loxosceles venoms
was published by de Castro et al. [66]. These small pep-
tides isolated from the venom of L. intermedia demon-
strated insecticidal activities, and were named LiTx1,
LiTx2, and LiTx3. These components are polypeptides
with molecular masses ranging from 5.6 to 7.9 kDa, pre-
senting insecticidal activities against highly destructive
pests such as Spodoptera frugiperda and Spodoptera
cosmioides. Further analysis of the sequences pointed to
the presence of possible post-translational modification
regions in the sequences of LiTx1-3, such as N-myristoy-
lation, amidation, and casein kinase II phosphorylation
sites. Based on the sequences of these toxins, the authors
proposed that LiTx-3 may act on NaV (voltage-gated so-
dium) channels and that LiTx-2 and 3 may act on NaV
or CaV (voltage-sensitive calcium) channels [66].

Omics and recombinant venom components
Molecular biology techniques were essential for under-
standing the toxicology of Loxosceles venoms. The
amount of venom (volume and protein) that can be ex-
tracted from each spider is small, hampering the process
of isolation of single native toxins. The first toxin to be
cloned and studied in the recombinant form was a
sphingomyelinase-D from L. laeta venom in 2002 by
Fernandes-Pedrosa et al. [67]. In the same year,
Kalapothakis et al. [68] cloned and expressed a
functional sphingomyelinase-D from L. intermedia
spider venom and demonstrated its immunological
properties. A characterization of a phospholipase D from
L. gaucho was also reported [69]. Nowadays, there are 24
reports of recombinant toxins from Loxosceles in the
literature (Fig. 3).
The L. laeta venom gland transcriptome analysis re-

vealed that 16.4% of the total toxin-encoding ESTs belong
to sphingomyelinases-D [70]. Recently it was found that
15% of the whole L. similis venom gland transcriptome
corresponds to phospholipase-D transcripts [71]. More-
over, the L. intermedia transcriptome analysis revealed
more than 20.2% of all toxin-encoding ESTs from L. inter-
media venom gland correspond to phospholipases D and
represents a significant proportion of the toxins present in
the brown spider venom [72]. Corroborating these find-
ings, two-dimensional gel electrophoresis demonstrated at
least 25 spots immunologically related to phospholipases

D toxins in L. intermedia crude venom [73]. Indeed, at
least 11 phospholipase-D isoforms were identified in the
venom proteome of L. gaucho, corroborating the presence
of several different dermonecrotic toxins in the Brown
spider venom [74].
Using RNA sequencing, 23 complete sequences of

phospholipase-D proteins (PLD) were found in L. similis
venom gland and classified as loxtox proteins [71, 75].
Seven different isoforms of phospholipase-D were gener-
ated as recombinant proteins, namely LiRecDT (Loxos-
celes intermedia recombinant dermonecrotic toxin) and
these enzymes have also been classified as members of
the LoxTox family [75–80]. Several other isoforms have
also been identified in the venoms of Loxosceles reclusa,
Loxosceles laeta, Loxosceles arizonica, Loxosceles similis,
Loxosceles boneti, and Loxosceles deserta [81–89]. Stud-
ies comparing recombinant isoforms with distinct
capacities for degrading substrates have demonstrated
differences in the intensity of the effects of these
proteins [90].
Most enzyme isoforms from the Loxosceles genus have

been heterologously produced in prokaryotic systems
using E. coli, and large amounts of the soluble and enzy-
matically active forms of these proteins are easily
obtained. The knowledge of PLD sequences allowed the
development of promising tools, such as a recombinant
chimeric protein immunogen expressing epitopes of a
dermonecrotic toxin from L. intermedia venom, which
was atoxic and capable of inducing dermonecrotic and
hemorrhagic protection [91]. Brown spider phospholi-
pases D catalyzes the hydrolysis of phospholipids, such
as sphingomyelin (SM), at a terminal phosphodiester
bond to release choline and produce ceramide 1-phos-
phate (C1P) [73, 90, 92]. The catalysis mediated by phos-
pholipases D in the presence of Mg+2-cofactor leads to
hydrolysis of lysophosphatydilcholine (LPC) and release
of lysophosphatidic acid (LPA) [81, 92, 93]. It seems that
the production of these bioactive metabolites can

Fig. 3 Loxosceles recombinant toxins. Graph shows the percentage
of recombinant Loxosceles toxins described in the literature classified
by class of toxins. In each type of toxin, the number of recombinant
isoforms is available
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promote upregulation of proinflammatory molecules
and exert deleterious effects after exposure to brown
spider phospholipases D [90, 92, 94–99].
Alternatively, some authors stand up for that

phospholipase-D toxins (testing recombinant toxins and
whole venoms) exclusively catalyze transphosphatidyla-
tion rather than hydrolysis, forming cyclic phosphate
products from both major substrates – SM and LPC
[100]. It was also shown that a sphingomyelinase-D from
Loxosceles arizonica (Laz-SMase D) is a potent insecti-
cidal toxin [101].
The first metalloprotease, cloned and expressed from

the cDNA library, was extracted from Loxosceles inter-
media venom gland, and was characterized as an astacin-
like protease. This astacin metalloprotease presented a
catalytic domain of 18 amino acids – HEXXHXXGXX-
HEXXRXDR – and a conserved methionine involved in a
sequence turn, met-turn, and zinc-dependent activity
(MXY) [102]. The recombinant Loxosceles intermedia
astacin-like protease (LALP) promoted endothelial cell
cultures de-adhesion, in vitro degradation of fibronectin,
fibrinogen, and gelatin [63]. Astacin proteases comprises a
family of toxins in L. intermedia venom, two other iso-
forms, named LALP2 and LALP3 were also described
[103]. Besides, astacins were identified in L. laeta (LALP4)
and L. gaucho (LALP5) venoms, suggesting the existence
of an interspecies toxin family and revealing the import-
ance of these metalloproteases as components of Loxos-
celes venom [104].
Interestingly, when transcriptome complete analysis of

L. intermedia and L. laeta venom glands were performed
these studies revealed that astacin metalloproteases are
included among the high expressed toxins [70, 72]. In L.
intermedia venom gland, astacin transcripts comprise
more than 22% of the toxin-encoding transcripts and
represent 8% of the total transcripts in L. laeta venom
gland [70, 72]. Loxosceles proteases (metalloproteases
and serineproteases) account for 23.1% of the total
toxin-encoding transcripts in L. intermedia venom
gland, second only to the insecticidal peptide sequences
that comprise the majority of expressed toxins. In
addition, the analysis of proteases in the L. intermedia,
L. laeta, and L. gaucho venoms using two dimensional
western blotting and zymogram, demonstrated a great
content of active proteases among the three analyzed
venoms, corroborating the high mRNA expression
reported on the transcriptome analysis [104].
Regarding the ICK peptides in Loxosceles venom, tran-

scriptome analysis of L. intermedia venom gland found
that ICK peptides comprise 55.6% of toxin-encoding
messengers [72]. Previously described ICK peptides
(LiTx1-3) were found and a novel ICK peptide from L.
intermedia, LiTx-4, was identified, and later described
by the authors. The most abundant toxin transcripts

found were transcripts similar to LiTx-3 (32%), LiTx-2
(11.4%), LiTx-1 (6.2%), and LiTx-4 (3.7%) [72].
In fact, it was reported that the cloning and produc-

tion of a recombinant peptide from L. intermedia venom
had a great similarity with the ICK family of peptides,
especially LiTx-3 [105]. The recombinant peptide,
named U2-sicaritoxin-Li1b (U2- SCRTX-Li1b), was used
as a tool that enabled the demonstration of an antigenic
cross-reactivity of antisera raised against crude venom of
L. intermedia, L. gaucho, and L. laeta with U2-SCRTX-
Li1b. This cross-reactivity corroborates the presence of
ICK-like toxin members in these Loxosceles venoms,
thus strengthening the idea that this toxin family is
widespread throughout the genus [105, 106].

Structural analysis of Loxosceles toxins
The first structural study on Loxosceles toxins was per-
formed by Zela et al. in 2004 [107], in which the
crystallization and preliminary crystallographic analysis
of a sphingomyelinase-D from L. laeta spider venom
were performed. Crystal structure of LiRecDT1 from L.
intermedia was published by de Giuseppe et al. [108], in-
dicating that this toxin contained an additional disulfide
bond in the toxin structure catalytic loop compared with
the previously described phospholipase-D from L. laeta
[109, 110]. The phospholipase-D from L. gaucho was
also crystallized by Ullah et al. [111] in 2014 and the
structure was shown to be very similar to the
phospholipase-D from L. intermedia [112].
The structural details of the molecules reflect the dis-

tinct enzymatic behaviors of the venom from different
species. Phospholipase-D with different structures could
have different substrate affinities or enzymatic activities;
therefore, these differences could explain the clinical
symptoms or severity observed at the local bite site or the
systemic effects during envenomation by different species
of the Loxosceles genus. In addition, structural analysis of
the catalytic site provided important insights into the
enzymatic activities of each isoform [108, 110, 112].
Comparisons of the amino acid sequences of spider

venom PLDs indicate that these proteins contain either
284 or 285 amino acids and display a significant degree
of homology, mainly with regard to the catalytic import-
ant residues [85]. The single polypeptide chain folds to
form a distorted TIM-barrel, which is lined with eight
parallel β-strands internally linked by short flexible loops
to eight α-helices that form the outer surface of the
barrel [110]. The catalytic loop is stabilized by a disulfide
bridge (Cys51 and Cys57) in the L. laeta and with a
second disulfide bridge (Cys53 and Cys201) in the L.
intermedia, which links the catalytic loop to the flexible
loop to significantly reduce the flexibility of the latter
loop [108–110]. The catalytic site, Mg2+ binding site,
and the substrate binding site are located in a shallow
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depression that contain His12, Glu32, Asp34, Asp91,
His47, Lys93, Tyr228, and Trp230, which are very con-
served in Loxosceles PLD isoforms [108, 110]. The
importance of theses residues was confirmed by site-
directed mutagenesis and the X-ray structural studies
indicating involvement of the two histidines (His12 and
His47) in close proximity to the magnesium coordin-
ation (Glu32, Asp34, and Asp91) that promote the acid-
base catalytic mechanism. Furthermore, the residues
Lys93, Tyr228, and Trp230 were shown to be important
for recognition and stabilization of the substrate
(phospholipid) during the catalytic process [113, 114].
Several mutants of PLDs were studied recently bring-

ing light in the understanding of the catalytic and
recognition sites [114, 115]. However, the variety of mo-
lecular mechanisms triggered by Loxosceles
phospholipase-D toxins and their lipid metabolites
should be further investigated as a complex event
dependent on the types of cells involved, the abundance,
and availability of the lipid substrate, and intracellular
and extracellular signaling cascades [97, 116]. For now,
it is demonstrated that phospholipases D from different
Loxosceles species have the ability to reproduce many ef-
fects of the cutaneous and cutaneous-visceral loxosce-
lism. They are described as being responsible for several
biological properties ascribed to the whole venom,
including dermonecrosis, massive inflammatory
response with neutrophil infiltration, complement acti-
vation, platelet aggregation, immunogenicity, edema,
increased vessel permeability, hemolysis, renal failure,
toxicity for several cultured cell types, and animal lethal-
ity [65, 76–81, 84, 90, 92–95, 114, 117–120].
Recently, we have observed that all this deleterious

events can be prevented using specific phospholipases
inhibitors that can decrease the brown spider recombin-
ant phospholipase-D activity [121]. This strengthen the
idea of the importance of designing and optimizing a
specific drug to treat the serious clinical symptoms
caused by the brown spider bite, a public health problem
in several parts of the world and until now without
specific treatment.

Production of novel and less expressed components in
recombinant form
Serineproteases, hyaluronidases, venom allergens, a
histamine releasing factor also known as translationally
controlled tumor protein (TCTP), enzymatic inhibitors
(serpins), and C-type lectins were identified in transcrip-
tome studies of Loxosceles venom glands [70, 72]. The
cDNA libraries enabled an overview of the Loxosceles
venom and allowed the description of new molecules of
biotechnological interest.
Since then, several components, i.e., TCTP and hyal-

uronidases were further explored and produced as

recombinant molecules [122, 123]. New isoforms of the
previously described and studied toxins served as tools
that strengthened the knowledge concerning venom
actions and loxoscelism [76, 78–80, 102, 104, 124].
The identification of hyaluronidase activity in Loxos-

celes venoms comes from a study of L. reclusa venom,
which demonstrated hyaluronidase activity upon hyalur-
onic acid (HA) and condroitin-sulphate (CS) types A, B,
and C [39]. The medically important venoms from five
Loxosceles species in the US (L. deserta, L. gaucho, L.
intermedia, L. laeta, and L. reclusa) contain a 44-kDa
hyaluronidase, which is able to degrade HA detected by
zymogram assays [65]. All these identifications of Loxos-
celes hyaluronidases suggest the biological conservation
and significance of these enzymes [65]. Two hyaluroni-
dase molecules of 41 and 43 kDa were characterized as
pH-dependent endo-β-N-acetyl-d-hexosaminidases
hydrolases in L. intermedia venom [124]. These enzymes
were able to degrade HA and CS in vitro and HA in
rabbit skin [124].
Corroborating the identification of hyaluronidase ac-

tivity, a proteomic study also described the presence of
hyaluronidases in Loxosceles venoms [125]. Loxosceles
hyaluronidase shows high activity, requiring few micro-
grams of venom to demonstrate its activity [40, 65, 124].
The transcriptome analysis of L. laeta and L. intermedia
venom glands showed that this class of toxin is minim-
ally expressed representing only 0.13% of the total
expressed sequences of L. laeta venom gland [70, 72]. A
brown spider recombinant hyaluronidase from L. inter-
media venom presenting a molecular mass of 46 kDa
was obtained and characterized [122]. The active
enzyme, after in vitro refolding, was able to degrade HA
and CS. These results corroborate previous data
concerning a native hyaluronidase that degrades both
glycosaminoglycans demonstrating that the recombinant
hyaluronidase can also be considered as chondroitinase
[122]. The biological characterization of the recombinant
hyaluronidase showed an increase in erythema, ecchym-
osis, and dermonecrotic effects induced by the recom-
binant dermonecrotic toxin (LiRecDT1) in rabbit skin
[122]. Furthermore, a new Loxosceles intermedia
hyaluronidase isoform (42 kDa) was successfully
expressed and secreted by insect cells (SF-9) by baculo-
virus technology. This novel toxin presented activity
against HA and its characterization is in process
(Chaves-Moreira: personal communication).
The L. intermedia venom gland transcriptome analysis

described the sequence of a protein identified as possible
histamine releasing factor (HRF/TCTP) expressed at
relatively low level in the venom, i.e., only 0.4% of the
toxin-encoding transcripts [72]. The functional
characterization of the recombinant protein, called
LiTCTP, revealed that this toxin leads to edema and
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enhanced vascular permeability [123]. The cutaneous
symptoms of envenomation with Loxosceles venom in-
clude erythema, itching and pain. In some cases, Loxos-
celes spider bites can cause hypersensitivity or even
allergic reactions. These responses could be associated
with histaminergic events, such as an increase in vascu-
lar permeability and vasodilatation. LiTCTP could be
associated with these deleterious venom activities, as this
protein was identified in L. intermedia venom. Another
Loxosceles TCTP has been described in the venom gland
of Loxosceles laeta using transcriptome analysis [70].
Sequences with significant similarity with allergen-like

toxins from other venoms were found on the transcrip-
tome studies of L. laeta and L. intermedia venom glands
[70, 72]. These sequences described in L. intermedia
transcriptome encode for venom allergens that are
cysteine-rich molecules and show significant similarity
to allergens from another spider genus (Lycosa sigorien-
sis), scorpions and mite allergens [72]. The amino acid
sequence of a putative allergen from L. laeta venom is
similar to venom allergen III and includes the presence
of conserved cysteine residues [70]. In fact, allergic reac-
tions following Loxosceles bites have been described in a
few cases, as reviewed by Gremski et al. in 2014 [10]. A
fine macular or papular eruption appears over the entire
body in approximately 25% of the published cases of lox-
oscelism. In addition, cases of acute generalized exan-
thematous pustulosis (AGEP) after accidents with L.
reclusa and L. rufescens have been reported [126, 127]. A
recombinant allergen factor from L. intermedia venom
was already cloned with a calculated molecular mass of
46 kDa and five disulfide bonds (Chaves-Moreira:
personal communication). The expression of this recom-
binant protein will help to investigate the underlying
mechanisms involved in the allergic responses observed
in loxoscelism cases and might be used to biomedical
purposes in this field.

Conclusion
Loxosceles toxins are continuously being studied by
researchers worldwide (Figs. 1 and 2). In recent years, a
great amount of new toxins were identified in Loxosceles
venom through combination of data from molecular biol-
ogy techniques, proteomic studies, and characterization of
recombinant toxins. Indeed, the identification, the bio-
chemical and biological characterization and the structural
studies of Loxosceles toxins improved the knowledge on
venom composition and the involvement of these toxins
in loxoscelism. However, there are many molecules (espe-
cially, those with low level of expression) that remain
unidentified, without biological characterization and/or
unknown mechanisms of action. Most of these
unidentified molecules presented difficulties and solubility
problems when prokaryotic expression systems were

applied. Eukaryotic expression systems are proposed to
ensure extraction of these toxins. Promising initial results
were achieved with baculovirus and insect cells technology
as well as with plant heterologous models for protein
expression, as these models promoted extraction of
soluble, pure and active forms of new toxins.
Therefore, further studies focusing on the recombin-

ant production of novel toxins or the production of
larger amounts of known toxins are imperative for
characterization of their different components. Loxos-
celes toxicology can explore the putative biotechno-
logical applications of toxins. The designing of inhibitor
molecules for different toxins could be used as tools to
elucidate the mechanisms of action and to elaborate
protocols of basic and clinical research. It is of great
interest to find inhibitors with the ability to stop or
even delay the process of development and progression
of loxoscelism as there is still no specific treatment
available for the brown spider bite.
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