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Abstract: Chronic infections caused by obligate intracellular bacteria belonging to the Chlamydiales
order are related to the formation of persistent developmental forms called aberrant bodies (ABs),
which undergo DNA replication without cell division. These enlarged bacteria develop and persist
upon exposure to different stressful conditions such as β-lactam antibiotics, iron deprivation
and interferon-γ. However, the mechanisms behind ABs biogenesis remain uncharted. Using an
RNA-sequencing approach, we compared the transcriptional profile of ABs induced by iron starvation
to untreated bacteria in the Chlamydia-related species Waddlia chondrophila, a potential agent of abortion
in ruminants and miscarriage in humans. Consistent with the growth arrest observed following iron
depletion, our results indicate a significant reduction in the expression of genes related to energy
production, carbohydrate and amino acid metabolism and cell wall/envelope biogenesis, compared
to untreated, actively replicating bacteria. Conversely, three putative toxin-antitoxin modules were
among the most up-regulated genes upon iron starvation, suggesting that their activation might
be involved in growth arrest in adverse conditions, an uncommon feature in obligate intracellular
bacteria. Our work represents the first complete transcriptomic profile of a Chlamydia-related species
in stressful conditions and sets the grounds for further investigations on the mechanisms underlying
chlamydial persistence.

Keywords: Chlamydiales; Waddlia chondrophila; aberrant bodies; iron deprivation; persistence;
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1. Introduction

Members of the Chlamydiae phylum are highly diverse species of obligate intracellular
Gram-negative bacteria, currently classified in more than 10 family-level lineages [1]. The well-studied
Chlamydiaceae family includes two major human pathogens, Chlamydia trachomatis, one of the most
prevalent sexually-transmitted bacterial pathogens [2], and Chlamydia pneumoniae, responsible for
respiratory diseases [3]. Bacteria belonging to the other families are commonly referred to as
‘Chlamydia-related’ or ‘Chlamydia-like’ organisms [4]. First isolated from an aborted bovine foetus,
Waddlia chondrophila belongs to the Waddliaceae family [5] and is a possible agent of abortion in
ruminants [6–8]. In humans, several studies revealed a possible role of W. chondrophila in adverse
pregnancy outcomes [9–12] and tubal infertility [13]. In addition, W. chondrophila might be implicated
in lower respiratory tract infections such as bronchiolitis and pneumonia [14,15].

All described chlamydiae species share a unique biphasic developmental cycle alternating between
two morphologically distinct forms, the infectious non-dividing elementary bodies (EBs) and the
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non-infectious dividing reticulate bodies (RBs) [16,17]. Following entry into a host cell through
endocytosis or phagocytosis, EBs reside in a cytoplasmic vacuole, named inclusion, where they
differentiate into replicative RBs. This transition involves the decondensation of the bacterial genome
and the activation of a specific transcriptional program [18–22]. After several cycles of division through
binary fission, RBs redifferentiate into EBs, which are released by host cell lysis or extrusion [23].
Upon exposure to stressful conditions, chlamydiae can develop into a third form, called aberrant bodies
(ABs), a reversible stage associated to persistence. Numerous stressful conditions have been reported to
induce ABs, includingβ-lactam antibiotics [24], phosphonic acid antibiotics [25,26], interferon-γ [27] and
nutrients starvation [28]. Iron deprivation following deferoxamine or 2,2′-bipyridyl (BPDL) treatment
also leads to the formation of ABs in vitro [29], a predictable observation since chlamydiae are strongly
dependent on iron availability [30–33]. Interestingly, spontaneously occurring W. chondrophila ABs
were observed in vitro in a human endometrial cell line overexpressing lactoferrin (an iron-binding
glycoprotein), which likely restricts bacterial access to this important nutrient [34]. In vivo, ABs were
observed by electron microscopy in the genital tract of non-treated C. trachomatis infected women [35].
Iron availability is a physiological parameter that fluctuates during the menstrual cycle in women,
and these fluctuations might play a role in chronic infections by Chlamydiales [36,37].

Chlamydial iron homeostasis is complex and tightly linked to the regulation of gene expression
(reviewed in [38]). Chlamydiae can acquire iron from the host by recruiting to the inclusion
transferrin—containing vesicles from the slow recycling endocytic pathway [39]. It was also previously
shown that C. trachomatis uses the ATP-binding cassette (ABC) transport system encoded by ytgABCD
to import iron from the inclusion lumen [40–43].

While stress stimuli inducing the formation of ABs are well described, the molecular mechanisms
leading to the development of enlarged chlamydiae remain poorly understood. Previous studies have
investigated differences in gene expression and protein levels in ABs induced by distinct stressful
conditions compared to untreated bacteria by qRT-PCR, microarray or immunoblotting, but no shared
regulatory mechanisms could be identified (reviewed in [44]). This is consistent with our recent
observation that different stress stimuli induce the formation of morphologically distinct ABs in
W. chondrophila [29]. Variations in the transcriptional response of ABs induced by different stress
stimuli could be due to methodological limitations, as qRT-PCR and immunoblot are low-throughput
methods whereas microarrays, despite providing high-throughput screenings, show a restricted ability
to quantify lowly and very highly expressed genes, and are not suitable for the analysis of highly
similar sequences [45]. To overcome these limitations, RNA sequencing (RNA-seq) was recently used
for transcriptome profiling of C. trachomatis in response to iron starvation [46].

The transcriptional response of Chlamydia species to different stressful conditions does not seem
to be conserved, but the response to the same stress might be conserved in different chlamydial
species. Only two studies investigated the transcriptional profile of EBs and RBs in Chlamydia-related
bacteria [20,47], and to our knowledge no data are available on their response to stressful conditions.
Chlamydia-related species possess much larger genomes and more versatile metabolic capabilities
than Chlamydia species [48,49], which makes them particularly relevant for the investigation of the
transcriptional response to adverse conditions. As the presence of ABs seems to be associated to
persistent/recurrent chlamydial infections [50,51], it is crucial to understand whether the formation of
ABs upon exposure to analogous stress stimuli is associated to a similar transcriptional response in
distantly related chlamydial species.

In this study, we performed a comparative transcriptomic analysis of W. chondrophila RBs and ABs
induced by the iron chelator BPDL. Our results show a significant decrease in expression of genes related
to energy production, carbohydrate and amino acid metabolism and cell wall/envelope biogenesis in
ABs, compared to actively replicating RBs, which is consistent with a growth arrest induced by stressful
conditions. Understanding the molecular mechanisms involved in the development of persistent
chlamydial forms is pivotal to fight chronic chlamydial infections. Investigating the transcriptional
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response to specific stress conditions in multiple Chlamydiae species will undoubtedly help unravel the
mechanisms of persistence.

2. Material and Methods

2.1. Cell Culture and Bacterial Strains

HEp-2 cells (ATCC® CCL-23TM) were grown in Dulbecco’s Modified Eagle Medium (DMEM,
PAN-Biotech, Aidenbach, Germany) supplemented with 10% Fetal Bovine Serum (FBS, Gibco,
Thermo Fisher Scientific, Waltham, MA, USA) in 75 cm2 flasks or in 24-well plates at 37 ◦C in presence
of 5% CO2. Acanthamoeba castellanii (ATCC® 30010TM) was cultured in 25 cm2 flasks containing 10 mL
of peptone-yeast extract-glucose (PYG) medium at 25 ◦C. W. chondrophila (ATCC® VR-1470TM) was
co-cultivated with A. castellanii in 25 cm2 flasks with 10 mL of PYG broth at 32 ◦C. After seven days of
co-culture, bacteria were collected by filtering the suspension through a 5-µM-pore filter to eliminate
amoebal cysts and trophozoites. The filtrate was then diluted 10 times in PYG to infect A. castellanii
and 100 times in DMEM to infect HEp-2 cells (MOI ~15).

2.2. Infection Procedure and 2,2′-bipyridyl Treatment

The day before infection, cells were seeded in 25 cm2 flasks (2 × 106 cells per flask) or 24-well
plates (2.5 × 105 cells per well) containing glass coverslips, and incubated overnight at 37 ◦C with 5%
CO2 until infection. Confluent cell cultures were then infected with W. chondrophila at a final dilution of
1:100 (MOI ~15), 1:500 or 1:1000 in DMEM. Infected HEp-2 cells were centrifuged at 1790× g for 10 min
at room temperature and incubated for 15 min at 37 ◦C with 5% CO2. To remove non-internalized
bacteria, cells were washed once with phosphate buffer saline (PBS) before adding fresh DMEM
supplemented with 10% FBS.

The iron chelator 2,2′-bipyridyl was purchased from Sigma-Aldrich (Saint-Louis, MO, USA) and
solubilized in 100% ethanol. For immunofluorescence experiments, BPDL was added 2, 4, 8 or 16 h post
infection (hpi) at a final concentration of 50, 75 or 100 µM. Infected cells were fixed 24 hpi. For RNA
extraction, infected HEp-2 cells were treated with 75 µM BPDL at 8 hpi and harvested 24 hpi (16 h
treatment with BPDL). Untreated infected HEp-2 cells were harvested 24 (RBs) or 72 hpi (EBs).

2.3. Immunofluorescence Staining

W. chondrophila infected HEp-2 cells grown on glass coverslips were fixed 24 hpi with ice-cold
methanol for 5 min and washed three times with PBS. Coverslips were then incubated for at least
2 h in blocking solution (PBS, 1% bovine serum albumin, 0.1% saponin, 0.04% sodium azide) at 4 ◦C.
For immunofluorescence staining, glass coverslips were incubated with rabbit anti-W. chondrophila
antibodies (1:5000 dilution) [52] for 2 h in a humidified chamber. Coverslips were then washed 3 times
with PBS and incubated for 1 h with an Alexa Fluor 488-conjugated goat anti-rabbit IgG antibody
(1:1000 dilution, Life Technologies, Thermo Fisher Scientific) in blocking solution, containing 150 ng/mL
DAPI (Molecular Probes, Thermo Fisher Scientific) and 100 ng/mL Texas Red-conjugated concanavalin
A (Invitrogen, Thermo Fisher Scientific). After three washes with PBS and one with deionized water,
coverslips were mounted on glass slides with Mowiol (Sigma-Aldrich, Buchs, Switzerland). Confocal
microscopy images were obtained using a Zeiss LSM 710 Meta (Zeiss, Feldbach, Switzerland) at the
Cellular Imaging Facility of the University of Lausanne. Additional analyses of the pictures were
performed with ImageJ software, version 1.50b (https://imagej.nih.gov). For the calculation of the
infection rate, the number of cells and inclusions per field was calculated (200 cells per dilution of the
inoculum and per treatment were counted).

2.4. Cell Viability Assay

Viability of HEp-2 cells treated with BPDL was assessed using an in vitro resazurin-based
toxicology assay kit (Sigma-Aldrich, Switzerland). HEp-2 cells were seeded at 2.5 × 104 cells per well
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in 96-well plates and grown overnight. The culture medium was then replaced with fresh medium
containing increasing concentrations of BPDL and the cells were incubated for 24 h at 37 ◦C and 5%
CO2. The viability assay was performed according to the manufacturer’s protocol. Fluorescence
was monitored using a FLUOstar Omega microplate reader (BMG Labtech, Offenburg, Germany) at
580 nm, using an excitation wavelength of 540 nm. Untreated cells represented the positive control
(100% viability), whereas the negative control was obtained by treating the cells with ice-cold methanol
for 5 min. Each condition was tested in triplicate.

2.5. RNA Extraction and Sequencing

Per replicate, two 25 cm2 flasks containing W. chondrophila infected HEp-2 cells were harvested by
scraping. Three biological replicates were performed for each condition (untreated RBs, untreated EBs
and BPDL-treated). The cell suspension was centrifuged at 1790× g for 10 min. The supernatant was
then transferred to a new tube and centrifuged at 5000× g for 15 min. Both pellets were pooled together
in 2.5 mL of TRIzol (Invitrogen), vortexed and stored at −80 ◦C. RNA extraction was performed
according to the manufacturer’s instructions. RNA was resuspended in 60 µL of water and DNA
contamination was removed from the samples with the DNA-freeTM DNA removal kit (Invitrogen)
following the manufacturer’s instructions. To verify the quality, 2 µL RNA were analyzed by Fragment
Analyser using the standard sensitivity RNA analysis kit (Agilent Technologies, Santa Clara, CA,
USA). Removal of rRNA was performed with the Ribo-Zero rRNA Removal Kit according to the
manufacturer’s instructions (Illumina, San Diego, CA, USA). RNA samples were quantified with the
QubitTM RNA Broad-Range Assay Kit (Thermo Fisher Scientific) and sent to Fasteris SA (Geneva,
Switzerland), which performed negative selection of Poly-adenylated transcripts (to remove host
mRNA), library preparation (Illumina TruSeq Stranded mRNA Library Prep Kit) and sequencing on
Illumina NovaSeq 6000.

2.6. Sequence Read Processing and Gene Expression Analysis

Raw reads were trimmed with trimmomatic [53] version 0.36 (parameters: ILLUMINACLIP:
NexteraPE-PE.fa:3:25:6, LEADING:28, TRAILING:28 MINLEN:30). Trimmed reads were mapped to
the genome of W. chondrophila WSU 86-1044 (assembly accession: GCF_000092785.1) with bwa-mem
version 0.7.17 (default parameters, [54]). Htseq version 0.11.2 was used to count reads aligned to
each W. chondrophila gene (parameters: stranded = no t gene). A rarefaction analysis was performed
to evaluate if the sequencing depth was sufficient for further analysis: sequencing reads of each
sample were downsampled from 500,000 reads up to the total number of reads available by steps
of 500,000 reads. Each subsample was analyzed to determine the number of W. chondrophila genes
detected with progressive increase of the number of reads. The number of detected genes is expected
to reach a plateau when the sequencing depth is sufficient to capture all genes expressed under the
considered condition.

EdgeR version 3.26.5 [55] was used to perform the differential expression analysis. Library sizes
were normalized using the calcNormFactors function with the default “Trimmed Mean of M-values”
method [56]. Genes with low read counts were filtered with the edgeR function filterByExpr with default
parameters. Dispersion was calculated using the estimateCommonDisp and estimateTagwiseDisp
functions. The function exactTest was used to identify genes significantly differentially expressed.
Expression changes presenting a false discovery rate corrected p-value (FDR) lower than 0.01 where
considered significant. Normalized expression values were calculated as Reads Per Kilobase of
transcript per Million mapped reads (RPKM). Heatmaps were done with the pheatmap R package
(“complete” clustering method) [57] based on log2 transformed RPKM values. KEGG annotations
were retrieved using the KEGG API [58]. COG annotations and orthology information were retrieved
from the ChlamDB website [59]. GO annotations were retrieved from the Gene Ontology Annotation
(GOA) Database (UniprotKB version 2020-02-24) [60]. Gene set enrichment analysis were performed
using goatools [61].
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3. Results

3.1. BPDL Treatment Induces the Formation of Aberrant Bodies in W. chondrophila

BPDL is able to chelate both ferric and ferrous species of iron and cause the formation of ABs
in C. trachomatis [32,33]. Furthermore, BPDL treatment proved more efficient than other compounds
(such as deferoxamine mesylate) to induce the transcriptional response to iron starvation, and therefore
is more suitable for transcriptomic analysis [33]. As due to the presence of efflux pumps in amoebae
the treatment with drugs often requires higher concentrations than in mammalian cells, we chose
to grow W. chondrophila in human (HEp-2) cells for the RNA-seq experiment. Moreover, we had
already observed that BPDL induced the formation of ABs in W. chondrophila grown in Vero cells [29].
Since BPDL has never been tested on HEp-2 cells infected with W. chondrophila, AB formation was
assessed at different concentrations by immunofluorescence microscopy (Figure 1). The treatment with
BPDL up to 100 µM did not significantly affect host cells viability (Figure S1). In the case of infected
cells, in the presence of 50 µM BPDL bacteria inside the inclusions showed morphologies similar
to the untreated control. Significant bacterial enlargement and reduced number of bacteria inside
inclusions were observed by increasing the concentration of BPDL (Figure 1). Therefore, only BPDL
concentrations above 75 µM were selected for subsequent experiments.

Figure 1. Formation of W. chondrophila aberrant bodies in presence of different concentrations of BPDL.
HEp-2 cells were infected with W. chondrophila and treated with 50, 75 or 100µM BPDL 2 hpi. Infected cells
were fixed 24 hpi, labelled with Concanavalin A (red), DAPI (blue) and anti-W. chondrophila antibodies
(green) and observed by confocal microscopy. Images of HEp-2 cells infected with W. chondrophila and
treated with BPDL at different times pi are shown in Figure S3.
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3.2. Optimization of the Conditions for the RNA Sequencing Upon BPDL Treatment

Due to W. chondrophila obligate intracellular life cycle, the majority of the mRNAs present in the
samples originates from the host cells. To obtain a quantity of ABs RNA sufficient for sequencing,
two conditions should be fulfilled: (i) high percentage of infected cells and (ii) inclusions mostly filled
with ABs. Preliminary experiments were carried out in order to optimize both infection and BPDL
treatment protocols. First, the optimal dilution of the W. chondrophila inoculum was determined by
immunofluorescence. A dilution of 1:100 of the filtered co-culture (as described in the Methods),
resulting in 50% of infected cells, was selected (Figure S2, Control). Second, different concentrations of
BPDL and durations of treatment were compared (Figure 1 and Figure S3). Based on these analyses,
the following protocol was selected: treatment of W. chondrophila infected HEp-2 cells with 75 µM
BPDL at 8 hpi and cells harvesting for RNA extraction 24 hpi (Figure 2A). The transcriptional response
to iron deprivation was monitored comparing BDPL-treated to untreated W. chondrophila infected
HEp-2 cells, also collected at 24 hpi (Figure 2B). Treatment with BPDL did not affect the infection rate
(Figure S2). Immunofluorescence pictures confirmed that the selected protocol for BPDL treatment
resulted in the formation of numerous ABs (Figure 2C).

Figure 2. Formation of W. chondrophila aberrant bodies in the conditions used for the RNA-seq
experiment. (A) Protocol for the treated samples (ABs): BPDL was added 8 hpi at a concentration of
75 µM and samples were harvested 24 hpi. (B) For the untreated control (RBs), infected HEp-2 cells
were harvested 24 hpi. (C) In parallel to the RNA-seq experiment, W. chondrophila infected HEp-2
cells were grown on glass coverslip in presence (left panel) or absence (right panel) of 75 µM BPDL
added 8 hpi. Infected cells were fixed 24 hpi, labelled with Concanavalin A (red), DAPI (blue) and
anti-W. chondrophila antibodies (green) and observed by confocal microscopy to confirm the formation
of ABs. Both pictures display the same scale.

3.3. Comparative Transcriptomic Analysis of Persistent W. chondrophila Induced by Iron Starvation

To monitor the transcriptional response to iron starvation in W. chondrophila, RNA-seq
was performed on BPDL-treated and untreated samples; BPDL samples were harvested 24 hpi,
whereas untreated samples were harvested 24 or 72 hpi (RBs and EBs, respectively). Three biological
replicates were used for each condition. Between 1.21% and 42.19% of the reads could be mapped to the
reference W. chondrophila genome (Table S1). A rarefaction/saturation analysis showed that the number
of expressed genes detected by RNA-seq reached a plateau for all samples and replicates in the case of
RBs and EBs (24 and 72 hpi, respectively, in Figure S4). In contrast, the three BPDL-treated samples
exhibited lower sequencing depth and a higher proportion of host sequences compared to control
samples, and their curves did not reach a plateau. The libraries corresponding to samples BPDL-2
and BPDL-3 were therefore subjected to a second sequencing run. The number of reads obtained for
sample BPDL-1 during the first sequencing run was so low that this sample was removed from the
analysis. Re-sequenced samples exhibited much higher sequencing depth and reached a plateau on
rarefaction curves (Figure S4). Samples retained for the analysis had between 5.4 and 9.7 million reads
mapping to W. chondrophila genome (Table S1).
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The untreated samples harvested 24 and 72 hpi exhibited highly correlated expression profiles
(Pearson correlation coefficient >0.99) (Figure 3A). The correlation of the expression profiles of the two
BPDL-treated samples was slightly lower (Pearson correlation coefficient of 0.9839) and the samples
were relatively distant on the y-axis of the principal component analysis plot as compared to the
replicates of RBs and EBs (Figure 3B).

Figure 3. Inter- and intragroup variability of gene expression. (A) Pearson correlation of log2
transformed read counts. BPDL-2 and BPDL-3 exhibit lower correlation than the two other conditions
(24 and 72 hpi). (B) Gene expression principal component analysis (first two dimensions). Replicates
for untreated samples (24 and 72 hpi) exhibit lower within-group distances as compared to the two
BPDL-treated samples.

In response to iron deprivation, 32.9% of the W. chondrophila genome (657/1′999 open reading
frames (ORFs)) was significantly differentially expressed (FDR ≤ 0.01). Among these genes, 325 were
down-regulated and 332 up-regulated in comparison to the 24 hpi untreated control (Figure S5;
Table S1). Of these 657 differentially expressed ORFs, 73 (11.11%) are specific to W. chondrophila,
a proportion similar to that of the complete genome (12.04%). Less than half of the differentially
expressed genes (275/657, 41.86%) have at least one homolog in C. trachomatis. Many of the differentially
expressed genes encode hypothetical proteins of unknown function, as reflected by the fact that 52.5%
(345/657) could not be assigned to a COG category of known function (Figure 4). This proportion also
corresponds to the proportion of proteins of unknown function encoded in the W. chondrophila genome
(52.5%). Genes encoding proteins of unknown function were more frequently up-regulated (56.4%)
than down-regulated (43.6%) upon BPDL treatment.

Iron deprivation affected numerous biological pathways: genes related to transcription and
translation were mainly up-regulated, whereas genes implicated in energy production, carbohydrate
transport and metabolism, amino acid transport and metabolism as well as cell wall/envelope biogenesis
were generally down-regulated (Figure 4; Tables S2 and S3).
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Figure 4. Cont.
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Figure 4. Analysis of differentially expressed genes (BPDL vs. untreated RBs) by functional COG
categories. (A) The list shows for each COG category: the number of genes (annotated on W. chondrophila
genome) belonging to the given COG category (All); the number of genes up-regulated by BPDL
treatment (Up); the number of genes down-regulated by BPDL treatment (Down); the number of
genes up- or down-regulated (Up + down). As the same gene can be assigned to more than one COG
category, the total number of genes in the last line exceeds that of the genes encoded by W. chondrophila
genome. For each number, the fraction (with respect to the total, indicated in the last line) was also
calculated. (B) The fraction for each COG category shown in A. The graph clearly shows that among
the genes up-regulated by BPDL treatment, unknown functions and functions related to translation
are over-represented, while energy production, carbohydrate metabolism, amino acid metabolism,
inorganic ions transport and metabolism functions are over-represented among genes down-regulated
by iron depletion.

Expression of 56 genes was reduced at least twofold in response to iron starvation (Figure S6
and Table S3). Among these genes, cyoA, cyoB and cyoC encode for subunits of the cytochrome
ubiquinol oxidase and indicate a down-regulation of oxidative phosphorylation. On the other hand,
the expression of 88 genes was increased at least twofold in response to iron starvation (Figure S7 and
Table S2). This group includes mdtA and mdtC, part of the putative multidrug efflux pump mdtABC,
and groEL1, groES1 and groES3, encoding for the GroEL/ES chaperonin machine, which plays an
essential role in protein folding [62]. Two putative transcriptional repressors, the heat shock-repressor
hrcA and wcw_0478, were also up-regulated in W. chondrophila upon iron starvation. In addition,
three up-regulated genes, rplU, rplM and rpmE2, encode for ribosomal proteins.

The volcano plot shown in Figure 5 displays the most down-regulated (Log2FC ≤ −2) or
up-regulated genes (Log2FC ≥ 2) exhibiting a minimum of 4-fold decrease or increase, respectively.
Additional information concerning these 17 genes is summarized in Table 1.



Microorganisms 2020, 8, 1848 10 of 17

Figure 5. The most down- or up-regulated genes in persistent W. chondrophila. Volcano plot displaying
the differential gene expression of persistent versus untreated W. chondrophila. Each point represents
the average value of one gene from two (BPDL-treated) or three (untreated) replicates. Colored points
represent the most significantly differentially expressed genes, with an FDR ≤ 0.01 (False Discovery
Rate) and a log2FC ≤ −2 (blue) or ≥ 2 (red). If available, the gene name is indicated.

Table 1. Summary of the genes showing the highest change in expression upon BPDL-treatment.

Gene 1 Locus tag LogFC FC FDR Product Conservation 2

wcw_0483 wcw_0483 −2.0 0.2 2.03 × 10−8 Transposase B
wcw_1348 wcw_1348 2.0 4.1 3.15 × 10−13 Putative addiction module killer protein B

groES1 wcw_1342 2.1 4.2 3.69 × 10−31 Co-chaperonin GroES A
wcw_0676 wcw_0676 2.1 4.3 0.0064 tRNA-Ser A
wcw_1200 wcw_1200 2.3 4.8 4.31 × 10−24 Hypothetical protein C

mazF wcw_p0022 2.4 5.1 1.01 × 10−9 Putative MazF-like toxin B
wcw_0479 wcw_0479 2.5 5.5 3.82 × 10−37 Putative regulator of cell morphogenesis B
wcw_0478 wcw_0478 2.5 5.7 3.39 × 10−22 Putative HTH-type transcriptional repressor B
wcw_p0021 wcw_p0021 2.6 6.0 1.88 × 10−13 Hypothetical protein B
wcw_0429 wcw_0429 2.6 6.1 4.94 × 10−35 Hypothetical protein C
wcw_0520 wcw_0520 2.8 6.8 1.11 × 10−26 Hypothetical protein B
wcw_1932 wcw_1932 3.1 8.4 4.90 × 10−11 tRNA-Gly A
wcw_1094 wcw_1094 3.2 9.0 2.64 × 10−22 Hypothetical protein B
wcw_p0003 wcw_p0003 3.2 9.5 1.30 × 10−17 Hypothetical protein B
wcw_1257 wcw_1257 3.6 12.0 2.35 × 10−9 tRNA-Ala A
wcw_1095 wcw_1095 3.6 12.4 5.10 × 10−23 Hypothetical protein B

wcw_p0002 wcw_p0002 4.2 18.7 7.40 × 10−28 Putative component of the toxin-antitoxin
plasmid stabilization module B

1 The table includes only the genes with a log2FC ≤ −2 or ≥2 and an FDR ≤ 0.01 (in red or blue in Figure 5). 2 Refers
to available genomes. A: Conserved in all chlamydiae species. B: Conserved in several chlamydia-related species.
C: Specific to W. chondrophila.

Only one gene, wcw_0483, annotated as a transposase, showed a major (4-fold) decrease in RNA
levels in response to iron deprivation, while 16 genes were up-regulated more than 4-fold. Among them,
wcw_p0002, wcw_1348 and mazF encode putative toxins belonging to type II toxin-antitoxin systems,
suggesting a possible role for such systems in persistence of Chlamydia-related bacteria. Interestingly,
Wcw_0479, annotated as a putative regulator of cell morphogenesis, is a di-iron-containing protein
with homology to Escherichia coli YtfE, involved in the repair of iron-sulfur clusters.
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4. Discussion

As obligate intracellular bacteria, chlamydiae are strictly dependent on iron availability, thus iron
deprivation blocks the bacterial developmental cycle. Indeed, we confirmed that iron deprivation
induces the formation of ABs in HEp-2 cells infected with W. chondrophila. The presence of ABs
following iron depletion was previously reported in C. trachomatis and C. pneumoniae [30,32,33]. To date,
the regulation of iron homeostasis in W. chondrophila has not been investigated, but the underlying
mechanisms might be similar to those previously described in Chlamydia species [38].

While numerous stimuli inducing ABs formation in vitro are well described, many aspects of the
mechanisms underlying their biogenesis remain unclear. Previous studies investigated the expression
of chlamydial genes upon interferon-γ or penicillin treatment and iron depletion by microarray [63,64]
or qRT-PCR [65–67], and the early response to iron starvation was investigated by RNA-seq (3–6 h
of BPDL treatment, before the formation of ABs) in C. trachomatis [46]. However, the genome-wide
transcriptional activity of ABs in Chlamydia-related bacteria was never assessed so far. In order to
obtain a complete picture of the transcriptional landscape in W. chondrophila ABs, we compared RNA
levels of BPDL-treated and untreated infected HEp-2 cells at 24 hpi (treatment protocol in Figure 2A).

We observed a higher variability in gene expression between the two BPDL replicates than
between EBs and RBs (Figure 3), which suggests a more heterogeneous transcriptional landscape
in W. chondrophila ABs compared to untreated EBs and RBs. Further work will be required to assess
whether this variability is specific of BPDL-induced ABs or it also occurs upon other stressful
conditions. In W. chondrophila ABs induced by BPDL treatment, 32.9% of the genome (657/1′999)
was differentially expressed as compared to the untreated control (RBs), including 325 (16.3%)
down-regulated and 332 (16.6%) up-regulated genes. In comparison, only 7% to 8% of the C. trachomatis
genome was shown to be differentially expressed upon iron depletion [46]. The comparison between
the RNA-seq datasets shows that only 3 homologous genes were differentially expressed in both
C. trachomatis [46] and W. chondrophila: CTL0332/wcw_1181 (encoding SmpB, required for the rescue of
stalled ribosomes mediated by trans-translation), CTL0132/wcw_1554 (encoding a protein containing
a KH domain, known to bind RNA or ssDNA in proteins associated with transcriptional and
translational regulation) and CTL0575/wcw_0582 (infA, encoding the essential translation initiation
factor IF-1). Nevertheless, these genes were down-regulated by BPDL treatment in C. trachomatis and
up-regulated in W. chondrophila. Similarly, genes related to translation and ribosome translation were
also down-regulated upon iron starvation in C. trachomatis [46] and up-regulated in W. chondrophila
(Figure 4), which could represent a major difference between Chlamydiaceae and Chlamydia-related
species. However, as stated above, C. trachomatis transcriptional response was investigated after 3 and
6 h of exposure to BDPL, before the formation of ABs. In contrast, the transcriptional response of
W. chondrophila to iron deprivation was assessed after 16 h of exposure to BPDL, when W. chondrophila
exhibited the typical shape of persistent chlamydiae (Figure 2C). Therefore, the differences in the
transcriptional response to iron depletion between C. trachomatis and W. chondrophila might reflect
mainly the different protocols used for the BPDL treatment. In addition, differences in metabolic
capacities, reflected by the large difference in genome size (1.04 Mbp for C. trachomatis versus 2.11 Mbp
for W. chondrophila), could also contribute to the differences observed in the transcriptomic profiles [48].

Our data indicate a significant decrease in expression of genes related to energy production,
carbohydrate and amino acid metabolism and cell wall/envelope biogenesis in ABs, compared to actively
replicating RBs, which is consistent with a growth arrest induced by stressful conditions. However,
most of the differentially expressed genes encode proteins of unknown function. Interestingly, some of
these hypothetical proteins are found exclusively in W. chondrophila, suggesting that species-specific
functions allowing survival in adverse conditions evolved in this obligate intracellular species.
Moreover, the genome of W. chondrophila exhibits numerous repeated sequences and transposases,
in contrast to Chlamydia species that almost completely lack these elements [48]. Between 40% and
50% of the genes showing at least a twofold up or down-regulation following iron depletion in
W. chondrophila are actually in proximity of putative transposases, and three putative transposases
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are among the most down-regulated genes (wcw_0483, wcw_1956, wcw_0001; Figure S6 and Table S1).
This suggests that elements of phage origin or mobile genetic elements could be (partially) responsible
for the high proportion of genes of unknown function differentially expressed upon BPDL treatment in
W. chondrophila (Figure 4).

Among the 88 genes exhibiting at least a 2-fold expression increase upon iron depletion, only
wcw_0479 seems directly related to iron starvation, as it encodes a homolog of YtfE, which in E. coli is
involved in the biosynthesis of iron-sulfur clusters. Furthermore, ytfE was previously shown to be
significantly up-regulated under nitrosative stress [68]. Moreover, when the gene is mutated, E. coli is
more sensitive to iron starvation [69]. Analogously to what observed in E. coli, the stress induced by
BPDL treatment led to a significant increase of ytfE expression in W. chondrophila. On the other hand,
in both BPDL-treated and untreated samples we observed a high expression of the ytgABCD operon
(wcw_1670-wcw_1673), encoding for the only known ABC transporter implicated in iron acquisition in
chlamydiae. The transcription of this operon was not significantly affected by BPDL treatment. This is
consistent with previous data reporting a high expression of C. trachomatis ytgABCD operon in both
untreated and iron-depleted conditions [46].

Interestingly, two genes implicated in oxidative stress, encoding the KatA catalase (wcw_0655)
and peroxiredoxin 1 (wcw_0039), were significantly down-regulated upon iron starvation. Recently,
downregulation of genes related to oxidative stress has also been observed in Burkholderia cenocepacia
upon iron depletion [70], which could represent an iron-sparing measure in iron-limited conditions,
as many proteins involved in the oxidative stress response contain iron.

Few genes have been proposed as molecular markers of persistence for Chlamydiae species.
Among them, the early gene euo (wcw_1683), identified as a transcriptional repressor regulating
Chlamydia late genes [71], was up-regulated in persistent C. trachomatis induced by BPDL [33].
Increased expression of euo upon iron depletion was also reported in C. pneumoniae and, to a weaker
extent, in Chlamydia psittaci [65]. In addition, the up-regulation of euo was observed in C. trachomatis,
C. pneumoniae and C. psittaci treated with interferon-γ [63,72]. In W. chondrophila, euo was significantly
up-regulated by BPDL treatment in comparison to the untreated control, but showed only a 1.85-fold
increase. Interestingly, two other putative transcriptional repressors, hrcA and wcw_0478, were also
up-regulated by BPDL treatment. As shown in Table 1, wcw_0478 was among the genes exhibiting the
highest increase in expression (5.7-fold).

Besides euo, the late gene omcB, encoding the outer membrane complex protein B, is also considered
as a molecular marker of persistence. omcB is down-regulated in persistent Chlamydia induced either
by iron deprivation, interferon-γ or azithromycin [33,63,72–74]. In contrast, OmcB protein levels were
unaffected in iron-starved C. pneumoniae [75]. A down-regulation of omcB (wcw_1162) in persistent
W. chondrophila was observed in the current study, although below the 2-fold threshold (1.82-fold
decrease). Our data are thus overall consistent with previous studies, which reported an up-regulation
of euo and a down-regulation of omcB in persistent Chlamydiae. However, finding common markers
of persistence for the different members of the Chlamydiae phylum is challenging, since numerous
discrepancies are observed between different studies. Indeed, expression levels of putative markers
greatly vary according to bacterial species, host cell lines, treatment applied and time-point used for
the experiments [76].

In response to iron deprivation, some genes were highly up-regulated or down-regulated
(Log2FC≤−2 and≥2). Among the most up-regulated genes, expression of wcw_p0002, mazF (wcw_p0022)
and wcw_1348 was increased 18.7, 5.1 and 4.1 folds, respectively. Interestingly, all three genes encode
putative toxins of type II toxin-antitoxin systems. Indeed, both Wcw_p0002 and Wcw_1348 exhibit a
HigB-like domain (interpro accession IPR009241), whereas Wcw_p0022 encodes a putative MazF-like
toxin, part of the MazEF toxin-antitoxin system [48]. Toxin-antitoxin systems have been described to
play a role in bacterial persistence, for example in the case of E. coli or Mycobacterium tuberculosis [77–79].
Indeed, transcriptomic analysis showed that at least 10 toxin-antitoxin systems were significantly
up-regulated in M. tuberculosis persisters induced by antibiotics [80]. In addition, the deletion of
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toxin-antitoxin operons was shown to significantly impact the level of E. coli persistence [81]. In contrast
to W. chondrophila, no toxin-antitoxin systems have been identified in Chlamydiaceae species, which is
likely due to their reduced genomes [82].

5. Conclusions

The transcriptional response of obligate intracellular chlamydiae to iron starvation is complex
and leads to the development of aberrant bodies, which might represent a persistent form in adverse
conditions. Moreover, different stressful conditions seem to induce distinct transcriptional responses.
This study represents the first investigation of the transcriptional landscape of aberrant W. chondrophila
induced by iron starvation and suggests a role of toxin-antitoxin modules in the biogenesis of
iron-depleted aberrant bodies. Undoubtedly, a better understanding of the molecular mechanisms
leading to the development of persistent forms in Chlamydiales will be of extreme importance for the
treatment of chronic chlamydial infections.
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