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Abstract
In most tissues, cells are exposed to frequent changes in levels of oxidative stress and inflammation. Nuclear
factor (erythroid-derived 2)-like 2 (Nrf2) and nuclear factor-κB (NF-κB) are the two key transcription factors
that regulate cellular responses to oxidative stress and inflammation respectively. Pharmacological and
genetic studies suggest that there is functional cross-talk between these two important pathways. The
absence of Nrf2 can exacerbate NF-κB activity leading to increased cytokine production, whereas NF-κB
can modulate Nrf2 transcription and activity, having both positive and negative effects on the target gene
expression. This review focuses on the potentially complex molecular mechanisms that link the Nrf2 and
NF-κB pathways and the importance of designing more effective therapeutic strategies to prevent or treat
a broad range of neurological disorders.

The role of Nrf2 and its regulation
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a
key transcription factor controlling many aspects of cell
homoeostasis in response to oxidative and toxic insults. In
particular, Nrf2 mediates basal and induced transcription
of phase II antioxidant proteins, which are responsible for
the clearance of reactive oxygen species (ROS), providing
protection against the accumulation of toxic metabolites [1].
Among the most studied Nrf2-target genes are NAD(P)H
dehydrogenase quinone 1 (NQO1), heme oxygenase-1 (HO-
1), γ -glutamyl cysteine ligase modulatory subunit (GCLM),
the catalytic subunit (GCLC) and ferritin, which function
to maintain a reducing environment within the cell [2–4].
In total, Nrf2 drives transcription of hundreds of genes, which
encode a multitude of proteins involved in diverse cellular
functions, including protein and organelle homoeostasis
[5,6]. Moreover, Nrf2 also plays a prominent role in
orchestrating glucose metabolism by mediating transcription
of components of the pentose phosphate pathway [7].
Cellular levels of Nrf2 are strictly regulated by multiple
mechanisms, not all of which are fully defined. The best
characterized mechanism of Nrf2 regulation is mediated
by interaction with the Kelch-like ECH-associated protein
1 (Keap1)–Cullin3–Rbx1 complex, which mediates Nrf2
ubiquitination and subsequent proteasomal degradation [8].
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The human Keap1 protein contains 27 cysteine resides, some
of which act as sensors of oxidative stress. Oxidizing and
electrophilic agents, such as free ROS and plant-derived
phenolic compounds, among many others, can modify these
cysteine residues [9]. This causes a conformational change in
Keap1, preventing subsequent binding of newly synthesized
Nrf2, which promptly accumulates in the nucleus [10]. There,
Nrf2 associates with small Maf proteins (sMaf) and binds to
antioxidant responsive elements (ARE) in the promoters of
its target genes. This process is essential for the assembly
of the RNA polymerase machinery and the initiation of
transcription [11]. What happens to Nrf2 next remains to
be determined in more detail; however, Nrf2 can either be
degraded in the nucleus via the β-TrCP–GSK3β axis or
alternatively it may translocate back to the cytoplasm where
it is swiftly degraded by Keap1 [12,13].

The NF-κB cellular function and regulation
Nuclear factor-κB (NF-κB) is a family of transcription
factors that includes RelA (p65), RelB, c-rel, p50 and
p52 [14]. The NF-κB complex is a key transcription
factor that mediates immune responses to bacterial and
viral infections, inflammation, aspects of development, cell
proliferation and protection against UV radiation [15]. Pro-
inflammatory cytokines such as tumour necrosis factor
(TNF)α, interleukin (IL)-1β and bacterial lipopolysaccharide
(LPS) are among the most potent NF-κB activators, acting on
the extracellular receptors and initiating a relay of intracellular
phosphorylation events, which co-ordinate signalling and
conditional cell responses [16]. Phosphorylation of IκBα, the
negative regulator of NF-κB, prompts an interaction with the
β-TrCP–Skp1–Cullin1 complex driving IκBα ubiqitination
and proteasomal degradation, releasing NF-κB subunits,
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which then translocate to the nucleus [17]. NF-κB homo-
and hetero-dimers associate specifically with κB regulatory
DNA consensus sequences upstream of NF-κB target genes,
including IκBα an early-transcribed gene, which chaperones
NF-κB back to the cytoplasm [18].

In order to respond effectively to acute inflammation, NF-
κB also prompts an increase in mitochondrial activity and
NADPH oxidase expression, which are the main sources of
the endogenous free radicals [19,20].

It is now clear that robust NF-κB and Nrf2 activity is
essential for maintaining co-ordinated cellular responses to
resolve the inflammatory status of the cell/tissue. Imbalance
between Nrf2 and NF-κB pathways is associated with a
significant number of diseases ranging from neurodegen-
eration, autoimmune disorders and cancer [21]. It is well
recognized that the Nrf2 and NF-κB pathways must interplay
through multiple molecular interactions, the complexity and
consequences of which are discussed below.

The interplay between Nrf2 and NF-κB
pathways
The first insight into the interconnected nature of Nrf2
and NF-κB pathways came from the study of the Nrf2
knockout (KO) mice, which exhibit a neurodegenerative
phenotype. Additionally, in the experimental model of
brain injury the lack of Nrf2 has been associated with
the augmentation of cytokine production [22]. Moreover,
LPS-treated astrocytic and microglial cultures show more
pronounced NF-κB activity compared with wild-type cells.
The resulting elevation of cytokine production contributes to
astrogliosis, neuronal death and demyelination of neuronal
axons, which is an underlying cause of the neurodegenerative
phenotype of the Nrf2 KO animals [23,24]. Also, studies
on Nrf2− / − MEFs revealed enhanced IKKβ activity, aug-
menting the phosphorylation of IκBα and its subsequent
degradation [25]. Both Nrf2 and NF-κB are regulated by
redox sensitive factors and the absence of Nrf2 is associated
with increased oxidative and nitrosative stress, leading to
amplification of cytokine production, as NF-κB is more
readily activated in oxidative environments [26].

There have been numerous studies conducted on Nrf2
activating phytochemicals such as sulforaphane (SFP),
which is abundant in cruciferous vegetables, as well as
synthetic inducers such as 2-cyano-3,12 dioxooleana-
1,9 dien-28-imidazolide (CDDO-Im) and their anti-
inflammatory potential. Pre-stimulation of Nrf2 in primary
peritoneal macrophages dampens the production of COX-2
(cyclooxygenase 2), TNFα, iNOS (inducible nitric oxide
synthase) and IL-1β in response to LPS. This effect has been
attributed to Nrf2 activation, as the Nrf2− / − macrophages
do not exhibit this anti-inflammatory capacity [27]. What
is more, the increase inNrf2 activity in lupus nephritis leads
to the accumulation of glutathione (GSH), which effectively
buffers free radicals and prevents the activation of p65,
resulting in reduced deposition of extracellular matrix [28].
Levels of GSH are thought to decrease with age and it is

a likely contributing factor to the exacerbation of diseases
underlined by chronic inflammation [29].

HO-1 is an Nrf2 target gene, which is at the core of
Nrf2-mediated NF-κB inhibition. This enzyme is involved in
haeme metabolism by catalysing the cleavage of the porphyrin
ring of haeme into Fe2 + , carbon monoxide and biliverdin,
which is consequently converted into bilirubin. Increases in
HO-1 activity in endothelial cells leads to inhibition of NF-
κB-mediated transcription of adhesion molecules such as E-
Selectin and vascular cell adhesion molecule 1 (VCAM-1),
through the action of bilirubin and possibly by the decrease
in free intracellular iron ions [30]. A summary of known
points of molecular cross-talk between Nrf2 and NF-κB is
presented in Figure 1.

P65 and its role in modulating Nrf2 activity
The anti-inflammatory role of Nrf2 is well established;
however, it should be noted that NF-κB activity also regulates
Nrf2-mediated ARE expression. The modulatory action of
NF-κB activation is somewhat complex and appears to be
cell type dependent. There are several mechanisms by which
p65 (the canonical NF-κB subunit) can exert a negative effect
on ARE-linked gene expression. Work by Yu et al. [31] has
shown that p65 assists in increasing the abundance of nuclear
Keap1 levels. The localization of Keap1 is thought to be
mostly cytoplasmic, however the authors demonstrated that
in cells overexpressing p65, Keap1 diminished Nrf2–ARE
signalling by translocating to the nucleus [31]. As the nuclear
envelope does not permit free entry of proteins larger than
40 kDa, Keap1 is thought to enter the nucleus by interactions
with the import facilitating karyopherin alpha 6 (importin
alpha 7) (otherwise known as KPNA6) [32]. Consequently,
KPNA6 overexpression results in decreased levels of HO-1
and NQO1. However, the ability of Keap1 to enter nuclear
space and its potential nuclear functions are not well defined
and remain to be studied in more detail.

The most well-established mechanism of inhibition of
Nrf2 by p65 activity is a competition of both proteins
for the transcriptional co-activator CBP (CREB-binding
protein)–p300 complex. The CBP–p300 has an intrinsic
histone acetyl transferase activity, which leads to local
acetylation of histones and the loosening of chromatin
structure, exposing DNA for transcriptional apparatus
assembly. Aside from its role in histone modifications, it
also acetylates non-histone proteins, with Nrf2 and p65
being well-defined targets [33,34]. The lysine residues in
both transcription factors are subjected to acetyl group
addition, which is thought to augment assembly of the
transcriptional machinery and to enhance gene transcription
[35]. CBP has been shown to interact with the Neh4 and
Neh5 domains within Nrf2, which leads to the acetylation
of the Neh1 domain, the DNA-binding portion of Nrf2.
On the other hand, CBP also displays preference of binding
to phosphorylated p65 at Ser276. Overexpression of p65 is
thought to limit the availability of CBP for Nrf2 complex
formation, prioritizing transcription of the κB driven genes.
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Figure 1 Well-characterized points of molecular cross-talk between NF-κB and Nrf2 response pathways

Consequently, knockdown of p65 promotes the Nrf2–CBP
association [34]. Nrf2 reciprocates this competition and the
application of ethyl pyruvate on BV2 cells was shown to
increase Nrf2 binding to CBP, thus depriving its interaction
with p65, thereby further decreasing expression of NF-κB
target genes such as iNOS [36].

In addition, p65 can induce repression of transcription by
de-acetylation of histones, through association with histone
deacetylase (HDAC). Liu et al. [34] also demonstrated that
aside from competitive binding to CBP, p65 can promote
HDAC3 association with MafK, thus preventing heterodimer
formation with Nrf2 and therefore decreasing expression of
ARE-related genes.

As stated previously, p65 is currently thought to have
a dual role in the regulation of Nrf2 activity. Specific cell
types show induction of Nrf2 protein levels and increased
target gene expression in response to TNFα. Rushworth et
al. [37] demonstrated that Nrf2 contains several κB sites in
its proximal promoter, which are subject to binding and
transcription initiation by p65. This underlies high basal
Nrf2 activity in AML (acute myeloid leukaemia) cells and
is believed to be the prime cause of chemoresistance of AML
cells to the treatment with bortezomib [37].

The modulation of Nrf2 in response to NF-κB activation
can act as a protective mechanism against the consequences of
inflammation. Cuadrado et al. [38] established that the small
GTPase RAC1 (Ras-related C3 botulinum toxin substrate 1)
plays a key role in this process. RAC1 activation by LPS
can activate Nrf2-mediated HO-1 expression, which in turn
dampens the pro-inflammatory activity of NF-κB. RAC1
can also cause an NF-κB-mediated increase in Nrf2 levels,
which is necessary for the resolution of the NF-κB activity,
shifting the redox balance of the cell towards a more reducing
environment [38].

Protein interactors linking the NF-κB and
Nrf2 pathway
Aside from its regulatory role in the Nrf2–ARE pathway,
Keap1 has been found to interact and negatively regulate
IKKβ. IKKβ is targeted for degradation through autophagy
in the absence of HSP90 (heat shock protein 90), which is
a chaperone protein assisting in protein folding. Keap1 is
thought to prevent HSP90 binding to IKKβ, which triggers
its autophagic degradation. Additionally, Keap1 decreases the
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phosphorylation of IKKβ possibly by concealing the residues
to which phosphate groups are otherwise attached. Overall,
the outcome of the Keap1–IKKβ interaction is the negative
regulation of NF-κB though stabilization of IKBα [39].

Keap1 is thought to deplete Nrf2 from the cytoplasm,
however the F-box protein β-TrCP, a component of the
Skp1–Cullin1–β-TrCP E3 ligase complex, controls nuclear
Nrf2 levels [12,40]. The mechanism of degradation via β-
TrCP differs considerably from the Keap1 mode of action as
it only recognizes and binds to phosphorylated substrates.
The kinase that phosphorylates and marks Nrf2 for β-TrCP
binding is GSK3β. Interestingly, p65 is also a substrate for
GSK3β phosphorylation, which is thought to modulate p65
DNA binding affinity, but can have both positive and negative
effects on NF-κB depending on the cellular context [41,42].

The canonical role of β-TrCP is the regulation of IκBα

degradation in response to cytokines [17]. Therefore, β-TrCP
function can lead to augmentation of NF-κB activity as well
as to inhibition of Nrf2–ARE transcription.

Another Nrf2 target gene, p62 is involved in modulation
of antioxidant and inflammatory activities. p62 also acts as
a protein scaffold, enhancing Nrf2 activity by mediating the
autophagosomal degradation of Keap1 [43]. The ability of
p62 to oligomerize, promotes ubiquitination and activation
of TNFα receptor-associated factor 6 (TRAF6), enhancing
nerve growth factor (NGF)-mediated NF-κB signalling [44].

Finally, Nrf2 is thought to act mainly as a dimer with
sMaf proteins, one of them being MafK has been shown to
modulate transcriptional activity of p65. MafK is thought to
facilitate the interaction of p65 and CBP, leading to increases
in acetylation of p65 and its overexpression augments
production of cytokines in response to LPS. Knockdown
of Nrf2 is associated with increased levels of MafK, therefore
the activity of Nrf2 could be involved in maintaining low
levels of this protein, disallowing excessive p65 acetylation
[45].

Other interactors of Nrf2 and NF-κB components are
presented in Figure 2. However, in general, their role in
modulating the balance between the two pathways remains
to be further explored.

The importance of NF-κB and Nrf2 as
targets in neurodegenerative diseases
Intensive research into anti-inflammatory properties of Nrf2
have identified it as a promising target in treating several
neurodegenerative diseases, such as amyotrophic lateral
sclerosis (ALS), multiple sclerosis (MS) and Parkinson’s
disease (PD). Several triterpenoids and phytochemical Nrf2-
inducing compounds, such as CDDO-Im and SFP have
shown promising results in reducing inflammation of the
central nervous system (CNS) and importantly are also able
to cross the blood-brain-barrier [24,46,47]. Drugs currently
used in treating neurodegenerative disorders act primarily
by regulating neuronal physiology through modulation of
neurotransmitter release or by acting on neuronal receptors

Figure 2 Common interactions between p65 and Nrf2

Data obtained from BioGRID were filtered to remove those identified

only by co-localization studies or genetic interactions. Proteins are

represented as coloured nodes with edges representing known protein

interactions.

[48]. Importantly, Nrf2 has the potential to reduce numbers
of overactive microglia and astrocytes, which are thought to
make substantial contributors to CNS pathology [46,48,49].
In fact, the first drug approved by the U.S. Food and
Drug Administration (FDA) in treatment of MS Tecfidera®

(dimethyl fumarate) is likely to act primarily through
transcriptional activation of Nrf2 target genes and has a
potent anti-inflammatory action [50].

In addition to synthetic compounds that are used in
disease settings, many phytochemicals naturally occurring
in fruit and vegetables such as SFP, cinnamate, resveratrol
or curcumin all have the potential to extenuate chronic
inflammation. These compounds act by activating Nrf2 and
increasing the antioxidant protection of the cells, to alleviate
the damage from ROS [3,24,48]. Consuming Nrf2 activating
compounds in food could therefore have a profound role in
disease prevention.

Conclusions
Nrf2 and NF-κB are key pathways regulating the fine
balance of cellular redox status and responses to stress and
inflammation. The interplay between these pathways occurs
through a range of complex molecular interactions and can
often depend on the cell type and tissue context. These
interactions operate through both transcriptional and post-
transcriptional mechanisms, allowing fine-tuning of dynamic
responses to ever-changing environmental cues. Despite
convincing evidence for functional interactions between the
Nrf2 and NF-κB pathways, many aspects of the conditional
and dynamic nature of cross-talk remain unknown. As
such, many important aspects of co-regulation, negative
feedback and competitive binding are yet to be defined.
Systematic investigation of protein complex composition
and network analysis will provide new insights to drive
development of rationally improved strategies to manipulate
the balance between Nrf2 and NF-κB responses under both
physiological and disease conditions.
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