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1,2*, Simon SygaID

1,

Haralampos HatzikirouID
1,3

1 Centre for Information Services and High Performance Computing, Technische Universität Dresden,

Dresden, Germany, 2 Department of Mathematics, Universidad Nacional Autónoma de México, Mexico City,
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Abstract

Collective dynamics in multicellular systems such as biological organs and tissues plays a

key role in biological development, regeneration, and pathological conditions. Collective tis-

sue dynamics—understood as population behaviour arising from the interplay of the consti-

tuting discrete cells—can be studied with on- and off-lattice agent-based models. However,

classical on-lattice agent-based models, also known as cellular automata, fail to replicate

key aspects of collective migration, which is a central instance of collective behaviour in mul-

ticellular systems. To overcome drawbacks of classical on-lattice models, we introduce an

on-lattice, agent-based modelling class for collective cell migration, which we call biological

lattice-gas cellular automaton (BIO-LGCA). The BIO-LGCA is characterised by synchro-

nous time updates, and the explicit consideration of individual cell velocities. While rules in

classical cellular automata are typically chosen ad hoc, rules for cell-cell and cell-environ-

ment interactions in the BIO-LGCA can also be derived from experimental cell migration

data or biophysical laws for individual cell migration. We introduce elementary BIO-LGCA

models of fundamental cell interactions, which may be combined in a modular fashion to

model complex multicellular phenomena. We exemplify the mathematical mean-field analy-

sis of specific BIO-LGCA models, which allows to explain collective behaviour. The first

example predicts the formation of clusters in adhesively interacting cells. The second exam-

ple is based on a novel BIO-LGCA combining adhesive interactions and alignment. For this

model, our analysis clarifies the nature of the recently discovered invasion plasticity of

breast cancer cells in heterogeneous environments.

Author summary

Pattern formation during embryonic development and pathological tissue dynamics, such

as cancer invasion, emerge from individual intercellular interactions. In order to study the

impact of single cell dynamics and cell-cell interactions on tissue behaviour, one needs to

develop space-time-dependent on- or off-lattice agent-based models (ABMs), which con-

sider the behaviour of individual cells. However, classical on-lattice agent-based models

also known as cellular automata fail to replicate key aspects of collective migration,
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which is a central instance of collective behaviour in multicellular systems. Here, we pres-

ent the rule- and lattice-based BIO-LGCA modelling class which allows for (i) rigorous

derivation of rules from biophysical laws and/or experimental data, (ii) mathematical

analysis of collective migration, and (iii) computationally efficient simulations.

Introduction

Systems biology and mathematical modelling is rapidly expanding its scope from the study of

single cells to the analysis of collective behaviour in multicellular tissue- and organ-scale sys-

tems. In such systems, individual cells may interact with their environment (hapto- and che-

motaxis, contact guidance, etc.) or with other cells (cell-cell adhesion, contact inhibiton of

locomotion, etc.) and produce collective patterns exceeding the cells’ interaction range. To

study collective behaviour in such systems theoretically and/or computationally, a mathemati-

cal model must be decided upon as a first step. State-continuous models describe the dynamics

of cell densities. Their lack of resolution at the individual scale makes them inappropriate to

investigate the role of individuals in collective behaviour. Agent-based models, on the other

hand, are particularly suited to the study of collective behaviour in multicellular systems, as

they resolve individual cell dynamics, and thus allow for the analysis of large-scale tissue effects

of individual cell behaviour.

Various agent-based models have been developed to analyse tissue dynamics as a collective

phenomenon emerging from the interplay of individual biological cells. In these models, cells

are regarded as separate, individual units, contrary to continuum models, which neglect the

discrete individual cell nature, and where tissue dynamics is derived from conservation and

constitutive laws, drawing parallels to physical systems. Since agent-based models represent

individual biological cells, distinct cell phenotypes can be taken into account, which may be

fundamental for analysing the organisation at the tissue level. For example, it has been shown

that cell-to-cell variability plays a key role in tumour progression and resistance to treatment

[1]. Moreover, with the advance of high performance computing, agent-based models can be

used to analyse in vitro systems at a 1:1 basis even for large cell population sizes.

Agent-based models can be classified into on-lattice and off-lattice models depending on

whether or not cell movement is restricted to an underlying lattice (see [2] for references).

Various off-lattice models exist to study different types of single and collective cell migration

[3–8].

In lattice models, either (i) a lattice site may be occupied by many biological cells (e.g., [9]),

(ii) a site may be occupied by at most one single biological cell, or (iii) several neighbouring lat-

tice sites may represent a single biological cell (e.g., [10]). Model types (i) and (ii) can mimic

volume exclusion effects, (iii) can qualitatively capture cell deformation and compression,

while each of the three approaches can describe the effects of mechanical forces of one cell on

its neighbour, or on a group of neighbouring cells to some extent.

Lattice models are equivalent to cellular automata (CA), which were introduced by J. v.

Neumann and S. Ulam in the 1950s as models for individual self-reproduction [11]. A cellular

automaton consists of a regular spatial lattice in which each lattice node can assume a discrete,

typically finite number of states. The next state of a node solely depends on the states in neigh-

bouring sites and a deterministic or stochastic transition function. One distinguishes CA with

synchronous and asynchronous update. Cellular automata provide simple models of self-orga-

nising systems in which collective behaviour emerges from an ensemble of interacting “sim-

ple” components—being it molecules, cells or organisms [12–14]. The interacting particle
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system (IPS) is an example of probabilistic CA with asynchronous update. Here, proliferation,

death, and migration of biological cells are modeled as stochastic processes.

However, when modelling collective migration phenomena, classical CA and, particularly,

IPS models have major drawbacks which are due to the strict volume exclusion and asynchro-

nous update. Most importantly, these models fail to reproduce collective movement at unit

density, since volume exclusion at high densities results in a “jammed state”. However, a flui-

dised state at unit density is an important case of collective migration especially in epithelial

tissues. Furthermore, the asynchronous update in IPS models may lead to oscillating density

spikes. For example, in an IPS model for persistent motion in a crowded environment, cells at

the invasion front detach and leave gaps behind that are subsequently filled by following cells

[15]. This is an artefact of the asynchronous update since invasion typically happens while cells

stay connected. Moreover, classic CA models consider only cell position and not explicitly cell

momentum, complicating the modelling of collective cell migration mediated primarily

through changes in momentum, rather than density [16].

The lattice-gas cellular automaton (BIO-LGCA) introduced here is a cellular automaton in

which lattice sites are updated synchronously, and which explicitly considers individual cell

velocities. These features make the BIO-LGCA appropriate for modelling collective migration

phenomena where cell interactions result in directional changes of velocity, and where high

cell densities do not hamper movement.

The structure of the paper is as follows: we first formally define the BIO-LGCA model class.

Then, we construct biophysical BIO-LGCA rules from microscopic Langevin models for

selected cases of single and collective cell migration. Subsequently, we demonstrate how to

generate data-driven BIO-LGCA rules from experimental single cell migration data (Fig 1).

Furthermore, we show that, in specific cases, the biophysical and the data-driven approaches

converge to the same functional form. For this case, we introduce several biologically relevant

model examples. Finally, we present two examples of mean-field analysis. The first example

allows to predict the formation of cluster patterns in simulations of a BIO-LGCA model with

adhesive cell-cell interaction. The second example analyses a novel BIO-LGCA combining

adhesive interactions and alignment to explain the recently discovered invasion plasticity of

breast cancer cells in heterogeneous environments. We end with a critical discussion of the

BIO-LGCA modelling framework.

Materials and methods

A BIO-LGCA is defined by a discrete spatial lattice L, a discrete state space E, a neighbour-

hood N and local rule-based dynamics.

Lattice

The regular lattice L � Rd
consists of nodes r 2 L. Every node has b nearest-neighbours,

where b depends on the lattice geometry. Each lattice node r 2 L is connected to its nearest

neighbours by unit vectors ci, i = 1, . . ., b, called velocity channels. In addition, a variable num-

ber a 2 N0 of rest channels (zero-velocity channels) cj ¼ 0; b < j � aþ b; is allowed (Fig 2).

The parameter K = a + b defines the maximum node capacity.

Neighbourhood

The set N , the neighbourhood template, defines the nodes which determine the dynamics of

the node 0 2 L. Throughout this work, the neighbourhood will be assumed to be a von Neu-

mann neighbourhood (Fig 2), defined as N b≔N b
ð0Þ ¼ fc1; c2; . . . ; cbg, but other
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neighbourhood choices are possible. In general, N ðrÞ≔N b
ðrÞ ¼ N b

þ r ¼ frþ r0 ; r0 2 N b
g,

specifies the set of lattice nodes which determine the dynamics of the state at node r 2 L.

State space

The state space in LGCA is defined through the occupation numbers sj 2 {0, 1}, j = 1, . . ., K.

These occupation numbers represent the presence (sj = 1) or absence (sj = 0) of a cell in

the channel cj within some node. Then, the configuration of a node is given by the state

vector

s ¼ ðs1; . . . ; sKÞ 2 E ¼ f0; 1gK :

This reflects an exclusion principle which allows not more than one cell at the same node within

the same channel simultaneously. As a consequence, each node r 2 L can host up to K cells,

which are distributed in different channels.

Fig 1. BIO-LGCA modelling. The key question is to identify the interaction rules underlying a particular collective phenomenon in a population

of cells. BIO-LGCA interaction rules can be chosen ad hoc, extracted from experimental single cell migration data, or derived from biophysical

equations for single cell migration.

https://doi.org/10.1371/journal.pcbi.1009066.g001
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It is possible to consider more than one cell phenotype in the BIO-LGCA model. In this

case each phenotype is indexed by s 2 S � N. Then, the configuration vector is given by

s ¼ ðssÞs2S 2 E ¼ f0; 1gjSjK ;

where |�| denotes the cardinality of a set. Each node will be able to support up to |S|K cells.

Two useful quantities for a configuration s at a given node are the total number of cells at
the node n(s) and the momentum/node flux J(s), defined as

nðsÞ≔
X

s2S

nsðsÞ ¼
X

s2S

XK

j¼1

ss;j and JðsÞ≔
X

s2S

XK

j¼1

ss;j cj;

where nσ(s) is the σ number of cell phenotypes.

Dynamics

In general, in cellular automata a new lattice configuration is created according to a local rule

that determines the new state of each node in terms of the current states of the node and the

nodes in its neighbourhood. In order to determine a new lattice configuration, the local rule is

applied independently and simultaneously at every node r of the lattice. Mathematically, in

Fig 2. Lattice and neighbourhood in the BIO-LGCA. Example of square lattice (left). The node state is represented by the occupation of velocity channels

(right); in the example, there are four velocity channels c1, c2, c3, c4, corresponding to the lattice directions, and one “rest channel” c5. Filled dots denote the

presence of a cell in the respective velocity channel; right: von Neumann neighbourhood (green) of the red node. Black dots represent interaction partners of the

red dot. Gray dots lie outside of the interaction neighbourhood and do not interact with the red dot.

https://doi.org/10.1371/journal.pcbi.1009066.g002
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probabilistic cellular automata, the local rule can be interpreted as a transition probability

P(s! s0) to replace a current configuration s by a new node configuration s0.

In a BIO-LGCA, local rules are composed of a combination of operators for stochastic

reorientation (O), phenotypic switching (S), and stochastic cell birth and death (R), as well

as a deterministic propagation operator (P) (see Fig 3). The propagation and reorientation

operators together define cell movement, while phenotypic switching allows cells to stoch-

astically and reversibly transition between phenotypes. In a BIO-LGCA, the stochastic opera-

tors are applied sequentially to every node, such that the transition probability can be

expressed as

Pðs! s0Þ ¼ PSPRPO;

where Pi; i 2 fS;R;Og are the transition probabilities of the corresponding operator. In this

way, a post-interaction node configuration s0 is defined as the resulting node configuration

after subsequent application of the stochastic operators, i.e. s0 ¼ sS�R�O. Subsequently, the

deterministic propagation operator P is applied: cells occupying velocity channels at the node,

i.e. moving cells, are translocated to neighbouring nodes in the direction of their respective

Fig 3. Operator-based dynamics of the BIO-LGCA. Propagation P, reorientation O, phenotypic switch S, and birth/death operators R (top);

conservation laws maintained by the different operators (middle); sketches of the operator dynamics (bottom), see text for explanations.

https://doi.org/10.1371/journal.pcbi.1009066.g003
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velocity channels. The time step increases once the propagator operator has been applied.

Accordingly, the dynamics of the BIO-LGCA can be summarised by the stochastic microdyna-

mical equation

sjðrþ cj; kþ 1Þ ¼ s0jðr; kÞ: ð1Þ

Results

BIO-LGCA rule derivation

In classical cellular automata, transition probabilities are typically chosen ad hoc. Here, we

show that BIO-LGCA rules can also be derived from biophysical equations of motion and

from experimental data. In the following, we disregard birth/death processes and phenotypic

transitions. Accordingly, the corresponding BIO-LGCA model is specified exclusively by its

reorientation probability (cp. subsection “Dynamics” and Fig 3). We first present a method to

derive the BIO-LGCA reorientation probability from a Langevin model for cell migration [17].

A similar procedure has also been used to derive rules for CA models describing molecular

movement in crowded environments [18]. Secondly, we sketch a method to obtain the reori-

entation probability from experimental observations [19]. In certain cases, independent of the

applied rule derivation method, the functional form of the transition probability will be the

same (Fig 4).

Reorientation dynamics derived from biophysical equations of motion. It has been

shown that various types of cell migration can be described by self-propelled particle models

(SPPs). These off-lattice models are defined by a set of stochastic differential equations govern-

ing the motion of discrete cells in an overdamped situation, e.g in a highly viscous medium.

The stochastic differential equations encoding individual cell motion (as introduced in [20])

are Langevin equations, where a stochastic variable θm describes the orientation of the m-th

cell in the system which moves with a constant speed v0 2 R
þ

and orientation θm(t) 2 [0, 2π)

varying according to a given interaction potential and influenced by noise. The Langevin equa-

tions of motion read [21]

_xm ¼ v0vðymÞ; ð2aÞ

_ym ¼ � g
@Uðfxkg; fykgÞ

@ym
þ xmðtÞ; ð2bÞ

where xm 2 R
d

is the cell’s spatial position, vðymÞ 2 R
d

is a unit vector pointing in the direc-

tion of the cell’s displacement, g 2 Rþ is a relaxation constant, and ξm(t) is a white noise term

with zero mean and correlation hξm(t1) ξn(t2)i = 2Dθ δ(t2 − t1)δm,n. The heart of the model is

the potential Uðfxkg; fykgÞ : RNd � ½0; 2pÞ
N
7!R, where N is the number of cells within the m

−th cell’s neighbourhood of interaction, and {xk} and {θk} are the sets of all neighbouring cells’

positions and orientations, respectively. This potential encodes the biophysical mechanisms

that dictate the cell’s reorientation. Here, we assume that the reorientation potential only

depends on the orientations of neighbouring cells, though a dependence on cell positions is

also possible [22].

The probability density function of the stochastic variable θm governed by the Langevin

equations is given by the Fokker-Planck equation

@Pðym; tÞ
@t

¼ g
@

@ym

@U
@ym

P ym; tð Þ

� �

þ Dy

@
2Pðym; tÞ
@y

2

m

: ð3Þ
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If we assume fast relaxation times for the solution of the Fokker-Planck equation, then one can

choose the stationary solution as the probability of cell m to have an orientation θm, i.e.

PðymÞ ¼ C0 expð� bUðymÞÞ; ð4Þ

where β = γ/Dθ and C0 is an integration constant. Applying a discretisation of the particle ori-

entations and under the assumption that the relaxation time of the Fokker-Planck solution is

smaller than the BIO-LGCA time step and that the channel occupations in the LGCA model

are independent one can derive the reorientation probability

Pðs! sOÞ ¼
dðnðsÞ; nðsOÞÞ

Z

Yb

j¼1

fC0 exp½� bUðcjÞ�g
sOj

¼
dðnðsÞ; nðsOÞÞ

~Z
exp � b

Xb

j¼1

UðcjÞs
O
j

h i
( ) ; ð5Þ

Fig 4. Rule generation in BIO-LGCA models. A: Starting from the Langevin equations of a self-propelled particle

model, the interaction rule can be obtained from the steady-state distribution of the associated Fokker-Planck

equation. B: Alternatively, experimental observables can be used as input for the maximum caliber theory to derive the

probabilities of cell tracks and the corresponding interaction rule.

https://doi.org/10.1371/journal.pcbi.1009066.g004
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where Z ¼
P

sO
Qb

j¼1
PðcjÞ

sOj and ~Z is a normalisation constant in which the integration con-

stant C0 has been absorbed [17].

Collective migration. SPP models for collective cell migration often use interaction

potentials of the following form

Uðfxkg; fykgÞ ¼ � Cðfxkg; fykgÞ cos ½ym � φðfxkg; fykgÞ�; ð6Þ

where amplitude C (interaction strength) and shift φ (optimal orientation) may depend on the

positions and/or orientations of all cells within the neighbourhood of interaction (including

the central cell). Using trigonometric identities, the reorientation potential can then be rewrit-

ten as

Uðfxkg; fykgÞ ¼ � vðymÞ � Gðfxkg; fykgÞ; ð7Þ

where G({xk}, {θk}) is called the local director field, whose norm and argument are, respectively,

kG({xk}, {θk})k = C({xk}, {θk}) and arg [G({xk}, {θk})] = φ({xk}, {θk}). Substituting Eq 7 in Eq 5,

and using the linearity of the internal product, the transition probability of the reorientation

operator is

P s! sOð Þ ¼
dðnðsÞ; nðsOÞÞ

Z
exp bJ sð Þ � G sN

� �� �
; ð8Þ

where GðsN Þ is the local director field of the neighbourhood configuration, and J(s) is the

node flux, as described previously.

More generally, whenever the reorientation potential can be expressed as

Uðfxkg; fykgÞ ¼ � Cðfxkg; fykgÞ cosn ½ym � φðfxkg; fykgÞ�; ð9Þ

with n 2 N, the argument of the exponential in the transition probability can be expressed as

an internal product of two vectors. In the specific case of n = 2, using trigonometric functions,

one arrives at the transition probability

P s! sOð Þ ¼
dðnðsÞ; nðsOÞÞ

Z
exp bN sð Þ � G sN

� �� �
; ð10Þ

where N(s) is the local nematic alignment vector, which is defined as

N sð Þ≔
1

2

Xb

p¼1

c½2ðp� 1Þmodb�þ1sp:

Thus, the reorientation probabilities have the same general form whenever the interaction

potential is conservative (i.e. time-independent) and consists of a pairwise comparison

between the angles and/or positions of neighbouring cells.

Data-driven rules. Besides from Langevin equations defining SPP models, it is also possi-

ble to derive BIO-LGCA reorientation probabilities from experimental data (Fig 4). For this,

we assume that certain observables, e.g. an autocorrelation function, have been obtained from

primary migration data. Then, we can use the maximum caliber (or maximum path entropy)

formalism [23] to obtain the most unbiased probability distribution of paths that reproduces

the experimental observables. This translates into maximising the following functional

~C½PG� ¼ �
X

G

PG ln PG þ
Xk

j¼1

bðjÞ
X

G

PG ~UjðfsðrÞgr2LÞ � Ej

" #

þ l
X

G

PG � 1

 !

;
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where PΓ is the probability of a cell to follow a certain spatial trajectory Γ, β(j) and λ are

Lagrange multipliers, ~UjðfsðrÞgr2LÞ is the value of the optimised observable at time step j
depending on the configuration of the lattice fsðrÞgr2L, and Ej is the value of the experimental

observable at time step j. The first term of the functional is the entropy, which we want to max-

imise. The second term restricts the resulting probabilities to match the experimental observa-

tion. Since we assume the experimental observable, Ej to be a time-dependent function, a

Lagrange multiplier β(j) is needed for every time step j. The last term guarantees the normali-

sation of probabilities, which requires an additional Lagrange multiplier, λ.

The optimisation of this functional yields an optimal value for the path probabilities

PG ¼ 1

Z exp
Pk

j¼1
bðjÞ ~Uj fsðrÞgr2L

� �h i
, where the value of β(j) is such that

Ek ¼
P

G
PG ~UjðfsðrÞgr2LÞ.

If the process is Markovian, then one may decompose the path probability into individual

channel occupation probabilities for each time step k, as

Pi;k ¼
1

Z
exp bðkÞ ~Uk si j sN

� �� �
; ð11Þ

where Z is a normalisation constant and the optimised observable is dependent on the occu-

pancy of the i-th channel of the node and conditioned to a certain configuration of its interac-

tion neighbourhood. For example, if the observation is the autocorrelation function g(t) =

hv0�vti, where vt denotes the normalised velocity of a cell at time t, determined from experi-

mental data, then the corresponding channel occupation probabilities are found to be

Pi;k ¼
1

z
exp dgðkÞ ci0 � ci

� �h i
; ð12Þ

where z is the normalisation constant for the transition probability, d is the dimension of

space, and ci0 is the initial orientation of the cell.

If we assume independence among cells within the same node, we arrive at a reorientation

probability of the form

P s! sOð Þ ¼
dðnðsÞ; nðsOÞÞ

Z
exp

Xb

i¼1

bðkÞ ~Uk si j sN

� �
" #

: ð13Þ

Note that, if both the experimental observation and optimised observable are time indepen-

dent, then the Lagrange multiplier β(k) = β is also time independent, and the transition proba-

bilities are given by

P s! sOð Þ ¼
dðnðsÞ; nðsOÞÞ

Z
exp

Xb

i¼1

b ~U si j sN

� �
" #

: ð14Þ

Furthermore, if ~Uðsi j sN Þ ¼ sici � GðsN Þ, then Eq 14 reduces to Eq 8.

In conclusion, we can construct rules of the BIO-LGCA directly from experimental observ-

ables and the structure of these rules is the same as in our ad-hoc and SPP model-derived

rules.

BIO-LGCA rules for single and collective cell migration

Here, we present key examples of transition probabilities corresponding to reorientation oper-

ators, which model important elementary single-cell and collective behaviours. Note that sev-

eral of these examples’ transition probabilities have the general form of Eq 8.
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Random walk. Random walks are performed by cells such as bacteria and amoebae in the

absence of any environmental cues. Random walk of cells can be modeled by a reorientation

operator with the following transition probabilities:

P s! sOð Þ ¼
1

ZðsÞ
� d nðsÞ; nðsOÞ
� �

: ð15Þ

This rule conserves mass, i.e. cell number.

Chemotaxis. Chemotaxis describes the dependence of individual cell movement on a

chemical signal gradient field. Accordingly, spatio-temporal pattern formation at the level of

cells and chemical signals can be observed. Chemotactic patterns result from the coupling of

different spatio-temporal scales at the cell and the molecular level, respectively.

To mimic a chemotactic response to the local signal concentration, we define the signal gra-

dient field

GsigðsN Þ≔
Xb

p¼1

cp cpsig; sN ¼ ððs
1; c1

sigÞ; . . . ; ðsb; cbsigÞÞ 2 �EN ; ð16Þ

where �EN ¼ E � Rþ
0

. Chemotaxis can be modeled through a reorientation operator with tran-

sition probabilities given by

P s! sOjsN ; b
� �

¼
1

ZðsN ; bÞ
exp b GsigðsN Þ � Jðs

OÞ
� �

dnðsÞ;nðsOÞ: ð17Þ

where β is the chemotactic sensitivity of the cells.

With large probability, cells will move in the direction of the external chemical gradient

Gsig.

Haptotaxis. We consider cell migration in a static environment that conveys directional

information expressed by a vector field

E : L! R2
:

A biologically relevant example is haptotactic cell motion of cells responding to fixed local con-

centration differences of adhesion molecules along the extracellular matrix (ECM). In this

example, the local spatial concentration differences of integrin ligands in the ECM constitute a

gradient field that creates a “drift” E [24].

The transition probabilities associated to the reorientation operator, given a vector E 2 R2,

is given by

P s! sOjEð Þ ¼
1

ZðnðsÞ;E; bÞ
exp bE � J sO

� �� �
� dnðsÞ;nðsOÞ;

where E 2 R2
.

In this case, cells preferably move in the direction of the external gradient E.

Contact guidance. We now focus on cell migration in environments that convey orienta-

tional, rather than directional, guidance. Examples of such motion are provided by neutrophil

or leukocyte movement through the pores of the ECM, the motion of cells along fibrillar tis-

sues, or the motion of glioma cells along fiber track structures. Such an environment can be

represented by a second rank tensor field that encodes the spatial anisotropy along the tissue.

In each point, the corresponding tensor informs the cells about the local orientation and

strength of the anisotropy and induces a principal (local) axis of movement. Thus, the
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environment can again be represented by a vector field

E : L! R2:

Contact guidance can be modeled through a reorientation operator with transition probabili-

ties defined as

P s! sOjEð Þ ¼
1

ZðnðsÞ;E;bÞ
exp bjE � J sO

� �
j

� �
� dnðsÞ;nðsOÞ:

Collective cell migration. Several kinds of organisms, as well as biological cells, e.g. fibro-

blasts, can align their velocities globally through local interactions. Here, we introduce a reori-

entation operator where the local director field is a function of the states of several channels

and nodes, reflecting the influence of neighbouring cells during collective cell migration

(Fig 5).

P s;! sOjsN

� �
¼

1

ZðsN Þ
exp bDðsN Þ � Jðs

OÞ
� �

d nðsÞ; nðsOÞ
� �

; ð18Þ

where DðsN Þ ¼
Pb

p¼1
JðspÞ is the local cell momentum. This particular reorientation probabil-

ity triggers polar cell alignment [25].

Fig 5. Basic interactions with neighbourhood impact. Node configuration (red) before and after application of stochastic interaction rule: cell-cell attraction (top),

polar cell alignment (bottom). Gray dots represent cells outside the interaction neighbourhood.

https://doi.org/10.1371/journal.pcbi.1009066.g005

PLOS COMPUTATIONAL BIOLOGY BIO-LGCA: A cellular automaton modelling class for analysing collective cell migration

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009066 June 15, 2021 12 / 22

https://doi.org/10.1371/journal.pcbi.1009066.g005
https://doi.org/10.1371/journal.pcbi.1009066


Attractive interaction. Biological cells can interact via cell-cell adhesion, through cad-

herin interaction along filopodia, for example. Agent attraction/adhesion can be modeled with

a reorientation operator with the following probability distribution.

P s;! sOjsN ; b
� �

¼
1

ZðsN Þ
exp bGðsN Þ � Jðs

OÞ
� �

d nðsÞ; nðsOÞ
� �

; ð19Þ

where GðsN Þ ¼
PK

p¼1
nðspÞcp is the density gradient field.

This reorientation probability favors cell agglomeration (Fig 5). A similar rule has been

introduced in [26].

Mean-field analysis of a BIO-LGCA model with attractive interaction

We here demonstrate the mean-field analysis of the BIO-LGCA model for attractive interac-

tion (cp. Eq (19)). This analysis allows to predict collective behaviour in the form of cell aggre-

gation. In particular, we calculate the critical sensitivity βc, such that aggregation occurs for β
> βc, while a homogeneous initial condition is stable for β< βc. Under “mean-field” we under-

stand that we neglect correlations between the occupation numbers of different channels and

that we approximate the mean value of any function f of a random variable X by the function

evaluated at the mean value of the random variable, i.e. hf(X)i � f(hXi). As we are interested in

the onset of aggregation from a homogeneous initial state with low density �r≔ 1

jLj

P
r2LnðrÞ �

1 and weak interaction β� 1 we can linearise the transition probabilities. We further assume

that there is at most one cell at each node and therefore only consider single cell transitions

(n = 1). For the partition function Z we then obtain

Z ¼
XK

i¼1

exp bGðsN Þ � ci �
XK

i¼1

1þ bGðsN Þ � ci ¼ K; ð20Þ

due to the lattice symmetry. For the single cell transition probability we obtain

PðsOi ¼ 1jsN Þ �
1þ bGðsN Þ � ci

K
: ð21Þ

Since the transition probability only depends on the number of cells at the neighbouring

nodes, but not on their distribution on the channels, we analyse the mean local density

rðr; kÞ≔hnðr; kÞi ¼
XK

i¼1

siðr; kÞ

* +

: ð22Þ

According to the propagation rule, the cell number n(r, k + 1) is given by

nðr; kþ 1Þ ¼
XK

i¼1

sOi ðr � ci; kÞ: ð23Þ

We calculate the expected value under the mean-field assumption in terms of numbers of cells

n(r) at node r 2 L, and the number of cells nN ðrÞ in the neighbourhood of r 2 L as

rðr; kþ 1Þ ¼
XK

i¼1

X

nN

PðsOi ¼ 1jnN ðr� ciÞ
ÞPðnN ðr� ciÞ

Þ: ð24Þ

As in the low-density regime PðnðrÞ > 1Þ � 0 8r 2 L, we can use the single-cell transition

probability Eq (21) and the factorising probability distribution under our mean-field
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assumption to obtain

rðr; kþ 1Þ ¼
XK

i¼1

X

nN

1þ bci �
PK

j¼1
cjnðr � ci þ cj; kÞ
K

P nN ðr� ciÞ

� �

�
1

K

XK

i¼1

1þ bci �
Xb

j¼1

cjr r � ci þ cj; k
� �

" #

P n r � cið Þ ¼ 1ð Þ

�
1

K

XK

i¼1

1þ bci �
Xb

j¼1

cjr r � ci þ cj; k
� �

" #

r r � ci; kð Þ:

ð25Þ

To proceed, we assume a one-dimensional lattice, where b = 2, c1,2 = ±1 with a rest channels to

obtain the finite-difference equation (FDE)

rðr; kþ 1Þ ¼
a
K
rðr; kÞ þ

1

K
r r � 1; kð Þ þ r r þ 1; kð Þ½ �þ

b

K
frðr � 1; kÞ r r; kð Þ � r r � 2; kð Þ½ � þ rðr þ 1; kÞ r r; kð Þ � r r þ 2; kð Þ½ �g

: ð26Þ

This FDE can be analysed by means of linear stability analysis. To do this, we first rewrite Eq

(26) in terms of the density difference Δρ(r, k) ≔ ρ(r, k + 1) − ρ(r, k), which we linearise

around the steady state for a small perturbation of the form rðr; kÞ ¼ �r þ drðr; kÞ

Drðr; kÞ � Drðr; kÞj�r þ
X

r0

@Drðr; kÞ
@rðr0; kÞ

j�rdrðr
0; kÞ ð27Þ

¼ K � 1fdrðr; kÞ½� 2þ 2b�r� þ ½drðr þ 1; kÞ þ drðr � 1; kÞ� � ½drðr þ 2; kÞ þ drðr � 2; kÞ�b�rg: ð28Þ

We now apply the discrete Fourier transform

d~rðq; kÞ ¼
XL� 1

r¼0

drðr; kÞ exp
� 2piqr

L
; ð29Þ

and obtain the mode-dependent FDE

D~rðq; kþ 1Þ ¼
2d~rðq; kÞ

K
b�r � 1þ cos

2pq
L
� b�r cos

4pq
L

� �

ð30Þ

¼
2d~rðq; kÞ

K
2b�r � 1þ cos

2pq
L
� 2b�r cos2

2pq
L

� �

; ð31Þ

using 2 cos x = eix + e−ix and cos 2x = 2 cos 2 x − 1. Note that the system becomes unstable

when the r.h.s. of the equation is larger than 0, meaning the perturbation grows, while it is sta-

ble with a decreasing perturbation if it is smaller than 0. To find the dominant Fourier mode q
that maximises the r.h.s. we assume an infinite lattice L!1 such that we can define the

quasi-continuous wave number k≔ 2pq
L and use the derivative with respect to κ to calculate the
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maxima of the bracket on the r.h.s. of Eq (31),

� sin kþ 4b�r cos k sin k ¼ 0; ð32Þ

� 1þ 4b�r cos k ¼ 0; ð33Þ

cos k ¼
1

4b�r
: ð34Þ

Note that we divided by sin κ here, neglecting the trivial solutions κ = 0, π. Clearly the solution

cos kc ¼
1

4b�r
is only valid for b�r � 1

4
and it is the dominant wave number in this case. This in

turn allows us to define the critical parameter combination ðb�rÞc≔ 1

4
. We can also calculate the

dominant wave length in dependence of b�r as lc ¼
2p

kc
, which diverges at b�r ! ðb�rÞc so lc !

1 and approaches λc! 4 for b�r !1. In conclusion, our mean-field analysis allows us to

predict the onset of the instability of the homogeneous steady state in dependence on density ρ
and sensitivity β as well as the wave length of the observed patterns without the need for com-

puter simulations, as seen in Fig 6.

Explaining invasion plasticity of breast cancer

Progression of cancer depends on changes at the individual cell level and interactions of

healthy and malignant cells. Various CA models have been suggested for selected aspects of

cancer progression (see e.g. [27, 28]). Here, we shed light on the invasion plasticity of growing

tumours. Solid tumours have been observed to switch between jammed (immobile, glass-like),

highly correlated collective movement (active nematic phase) and single-cell-disseminating,

uncorrelated (gas-like) states, which is often referred to as invasion plasticity [29–31]. These

behaviours result from an interplay between cell-cell and cell-ECM interactions, which have

been recently studied using a BIO-LGCA model [16]. Computational simulations showed

remarkable similarity to the experimental mammary gland carcinomas. Here, we generalise

the computational results in [16] by deriving an analytical theory for the observed phase

transitions.

Fig 6. Pattern formation in the LGCA aggregation model. Left: critical wave length obtained from the mean-field

analysis. The critical wave length diverges for ðb�rÞ ! ðb�rÞc ¼ 1=4, and limðb�rÞc!1
lc ¼ 4. Right: emergence of a

periodic pattern from a homogeneous initial state. The horizontal distance of the orange dashed lines is equal to the

critical wave length predicted by mean-field analysis. Parameters: b ¼ 100; �r ¼ 1; a ¼ 2.

https://doi.org/10.1371/journal.pcbi.1009066.g006
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We will consider a 1D system (akin to cells moving inside an ECM duct). In this case, cells

can only move in the positive or negative direction, thus the velocity channels are given by c1 =

1 and c2 = −1. As in the original model, we incorporate the effect of cell-cell adhesion as attrac-

tive and velocity alignment interactions. Additionally, we mimic steric interactions between

cells by an increased tendency of cells to remain in rest channels if their neighbours occupy

rest channels as well. However, while in the aforementioned elementary models the relative

strengths of these interactions were assumed to be fixed, and their absolute strengths were var-

ied by a single parameter, we here treat these mechanisms as independent, to obtain the full

spectrum of possible migration modes. Our model considers b = 2 velocity channels and a rest

channels, for a total of K = 2 + a channels. Under these assumptions, the BIO-LGCA transition

probabilities are given by

P s! sO j sN

� �
¼
dnðsÞ;nðs0Þ

Z
exp E s; s0; sN

� �� �
: ð35Þ

The energy function is divided into three contributions

E ¼ Eagg þ Ealign þ Erest:

The aggregation energy is given by the logistic density gradient, Eagg ¼ baggjðsOÞgaggðsN Þ,

where jðsOÞ ¼
Pb

j¼1
sOj cj is the post-interaction flux, and the logistic density gradient

gagg sN

� �
¼
Xb

j¼1

n s r þ cj
� �� �

1 �
nðsðr þ cjÞÞ

ncrit

� �

cj; ð36Þ

where ncrit is a parameter controlling the maximum density of cell aggregates, thus modelling

the homeostatic cell density.

The alignment energy corresponds to the collective cell migration interaction (Eq 18), here

given by Ealign ¼ balignjðsOÞgalignðsN Þ, where the post-interaction flux is as before and the neigh-

bourhood flux

galignðsN Þ ¼
Xb

j¼1

jðsðr þ cjÞÞ: ð37Þ

Finally, the resting energy is given by Erest ¼ brestnrestðsOÞnrestðsN Þ, where the local resting

cell density is nrestðsOÞ ¼
PK

j¼bþ1
sOj and the neighbourhood resting cell density is

nrestðsN Þ ¼
Pb

j¼1
nrestðsðr þ cjÞÞ.

To facilitate further analysis, we assume that the density is low, and that there is at most one

cell at each node. Then, under the mean-field approximation the dynamics of the BIO-LGCA

model is given by the lattice-Boltzmann (LBE) equation

fjðr þ cj; kþ 1Þ ¼ rðr; kÞTj; ð38Þ

where fj(r, k) ≔ hsj(r, k)i, rðr; kÞ ¼
PK

j¼1
fjðr; kÞ, and Tj≔PðsOj ¼ 1 j sN Þ is the single particle
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probability given by

Tj ¼

1

Z
exp baggcjgagg þ baligncjgalign

h i
j � 2

1

Z
exp brestnrest½ � j > 2:

8
>><

>>:

ð39Þ

The homogeneous steady state of the LBE, where the density, �r, occupation of velocity

channels, fv, and rest channels, fr, is constant and identical in every lattice node is given by

�r ¼ 2fv þ afr; ð40Þ

fv ¼
�r

2þ aPr
; ð41Þ

where

Pr ¼ expð2brestafrÞ: ð42Þ

The steady states can now be calculated numerically. Subsequently, We linearise the LBE

around the numerically obtained steady states, and apply a discrete Fourier transform with

respect to the spatial coordinates to eliminate dependencies on spatial increments. Then, the

stability of the steady states is given by the eigenvalues, Λ, of the Boltzmann propagator matrix

Gm;nðqÞ ¼ e� icmq Tm þ
X2

‘¼1

eic‘q
@

@fnðr þ c‘; kÞ
fm r þ cm; kþ 1ð Þ

" #

; ð43Þ

where q 2 [0, 2π) is the wavevector, and fm(r + cm, k + 1) is given by the LBE.

The maximum of the modulus of the Boltzmann propagator eigenvalues, |Λ| gives informa-

tion on the wavelength l ¼ 2p

q of spatial patterns observed in the model, while the argument of

the eigenvalues, arg(Λ), defines the propagation velocity of these patterns. Calculating these

numerically, we find the phase space shown in Fig 7.

We can identify four distinct regions in the parameter space.

1. Diffusive (gas-like) phase. In this region, cells move freely and diffuse within the ECM duct.

In the phase space, this corresponds to the region of the parameter space with low βalign,

βagg, and βrest values, see Fig 7B.

2. Collective motion (active nematic) phase. This is the region with high βalign. In this region,

cells move collectively into the same direction, see Fig 7C.

3. Aggregation phase. In this region, cells arrange themselves in static clusters and form cellu-

lar patterns within the duct. This corresponds to the region with high βagg, see Fig 7D.

4. Jammed (glass-like) phase. This corresponds to the regime with high βrest. In this region,

cells neither form patterns nor do they move collectively. However, almost all cells are in a

resting channel and the dynamics is frozen, similar to a crystalline solid, see Fig 7E.

In conclusion, we can reproduce the prime modes of collective migration using three mech-

anisms: alignment of velocities, aggregation and an inhibition of motion by non-migratory

cells. We here treated these mechanisms as independent, however, in reality, they are the result

of a complex interplay of cell-cell adhesion, cellular contractility, and intercellular signaling.

Identifying the regulation of these cellular properties is a topic of ongoing research.
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Fig 7. Migration modes in the BIO-LGCA model. A: Phase diagram for low (left) and high (right) values of βrest. B-E:

Snapshots of the different phases of cell density (left) and local flux (right): B: diffusive motion, if all sensitivities β are

low: cells interact weakly with one another and with the ECM; C: collective motion for high βalign; D: pattern formation

for high βagg; E: jammed state for high βrest.

https://doi.org/10.1371/journal.pcbi.1009066.g007
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Discussion

In contrast to “continuum systems” and their canonical description with partial differential

equations, there is no standard model for describing interactions of discrete objects, particu-

larly interacting and migrating discrete biological cells. In this paper, the BIO-LGCA is pro-

posed as a lattice-based model class for a spatially extended system of interacting cells. We

provided various examples of BIO-LGCA models for homogeneous cell populations, i.e. cells

are assumed to be of the same phenotype and not to change their behaviour. Examples include

haptotaxis, chemotaxis, contact guidance and collective migration. However, the BIO-LGCA

idea can be expanded to heterogeneous populations and environments, e.g. cells may dynami-

cally regulate their adhesivities and/or may interact with a heterogeneous non-cellular envi-

ronment [32]. BIO-LGCA models have already been used in the study of several biological

processes including angiogenesis [33], bacterial rippling [34], active media [35], epidemiology

[36] and various aspects of tumour dynamics [16, 28, 32, 37–39].

BIO-LGCA models are appropriate for low and moderate cell densities. For higher densi-

ties, e.g. in epithelial tissues, cell shape may matter and other models, such as the Cellular Potts

model, might be better choices (see [2, 40] for reviews of on- and off-lattice models). It is also

important to be aware of lattice artefacts due to the spatial discretisation inherent in every cel-

lular automaton model, e.g. the checkerboard artefact (cp. [41]). In two spatial dimensions, the

hexagonal lattice possesses less artefacts than the square lattice. A major advantage of

BIO-LGCA models compared to other on- and off-lattice cell-based models for interacting cell

systems, such as interacting particle systems, e.g. [42], asynchronous cellular automata, e.g.

[43–45], further cell-based models [46] or systems of stochastic differential equations [47], is

their computational efficiency, and their synchronicity and explicit velocity consideration,

which enables the modelling of moderately packed cell collectives while minimising model

artefacts.

The BIO-LGCA framework facilitates theoretical analysis of collective behaviour [41]. In

many cases, the collective behaviour of the BIO-LGCA can be analysed using reasonable

approximations, such as a spatial mean-field description resulting on a partial differential

equation [41, 48–50]. Collective behaviour at the tissue scale includes cell density patterns and

the dynamics of moving cell fronts [51, 52]. Cell density patterns can often be assessed experi-

mentally and provide, therefore, a means to relate BIO-LGCA model predictions to experi-

mental observations.

Meanwhile, off-lattice models formulated as stochastic differential equations for moving

and interacting cells have been derived from individual-based BIO-LGCA models [53]. Indi-

vidual-based BIO-LGCA are lattice-based models that allow to distinguish and track individual

cells which is not possible in classical LGCA models (e.g. [48]). We have also defined a “boson-

type” LGCA which contrary to the BIO-LGCA does not possess an exclusion principle with

respect to the velocity channels and facilitates mathematical analysis [54]. To model cell migra-

tion involving steric effects, the model has to be extended to discourage individuals moving

into the direction of steeply increasing cell density gradients.

The BIO-LGCA modelling strategy is “modular” starting from “basic model moduli”,

which include those explored in this paper such as alignment, attraction, contact guidance,

hapto- and chemotaxis. Coupling the moduli is required to design models for complex biologi-

cal problems. The focus of future activities is the analysis of further model combinations for

selected biological problems, which are not necessarily restricted to cells but could also com-

prise interactions at subcellular and tissue scales. The resulting multi-scale models will contain

a multitude of coupled spatial and temporal scales and will impose significant challenges for

their analytic treatment.
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