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A B S T R A C T

Following the emergence of COVID-19 at the end of 2019, several mathematical models have been developed
to study the transmission dynamics of this disease. Many of these models assume homogeneous mixing in the
underlying population. However, contact rates and mixing patterns can vary dramatically among individuals
depending on their age and activity level. Variation in contact rates among age groups and over time
can significantly impact how well a model captures observed trends. To properly model the age-dependent
dynamics of COVID-19 and understand the impacts of interventions, it is essential to consider heterogeneity
arising from contact rates and mixing patterns. We developed an age-structured model that incorporates time-
varying contact rates and population mixing computed from the ongoing BC Mix COVID-19 survey to study
transmission dynamics of COVID-19 in British Columbia (BC), Canada. Using a Bayesian inference framework,
we fit four versions of our model to weekly reported cases of COVID-19 in BC, with each version allowing
different assumptions of contact rates. We show that in addition to incorporating age-specific contact rates
and mixing patterns, time-dependent (weekly) contact rates are needed to adequately capture the observed
transmission dynamics of COVID-19. Our approach provides a framework for explicitly including empirical
contact rates in a transmission model, which removes the need to otherwise model the impact of many
non-pharmaceutical interventions. Further, this approach allows projection of future cases based on clear
assumptions of age-specific contact rates, as opposed to less tractable assumptions regarding transmission rates.
1. Introduction

COVID-19 disease is an infectious respiratory disease caused by the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (An-
dersen et al., 2020). It was first detected in the city of Wuhan,
Hubei province, China, in December 2019 (World Health Organization
(WHO), 2021d) and has since spread around the world with over 235
million confirmed cases and over 4.8 million confirmed deaths globally
as of October 3, 2021 (World Health Organization (WHO), 2021b).
The World Health Organization (WHO) declared COVID-19 a public
health emergency of international concern (PHEIC) on January 20,
2020 (World Health Organization (WHO), 2021a) and a pandemic on
March 11, 2020 (World Health Organization (WHO), 2021c). Several
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non-pharmaceutical interventions (NPIs), such as physical distancing,
isolation, hand washing, stay-at-home orders, closure of schools and
businesses, and travel restrictions, have been deployed at various times
to limit the spread of COVID-19 (Ferguson et al., 2020; Flaxman et al.,
2020; Lai et al., 2020; Perra, 2021). Nevertheless, significant numbers
of new COVID-19 cases continue to occur worldwide.

Laboratories in the province of British Columbia (BC), Canada, led
by the Public Health Laboratory (PHL) at the BC Centre for Disease
Control (BCCDC) started developing a new diagnostic test for COVID-
19 before the first case of the disease in BC (BC Center for Diseases
Control (BCCDC) and Provincial Health Service Authority (PHSA),
2022). The first laboratory-confirmed case of COVID-19 infection in
vailable online 9 April 2022
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Fig. 1. Schematic of the age-structured model. Compartments are defined as follows:
Susceptible individuals (𝑆); exposed (𝐸1); pre-symptomatic (𝐸2); Infected individuals
in the first half of their infectious period (𝐼1); Infected individuals in the second half of
their infectious period (𝐼2); and recovered (𝑅). It is assumed that recovered individuals
become immune to the disease. Each compartment is a vector whose elements represent
the corresponding population for each age-group in the model. The index in the
schematic represents the 𝑗th age group. The solid black arrows show the flow of
individuals between the model compartments at rates indicated beside the arrows, while
the dashed red arrows indicated disease transmission (see (2.1) for more details).

the province was reported to public health on January 26, 2020 (Rose
et al., 2020). By March 16, 2020, the province has increased its COVID-
19 testing capacity from ∼ 500 samples per day to up to 2000 tests
per day, and more than 6200 tests per day by April 20, 2020 (BC
Center for Diseases Control (BCCDC) and Provincial Health Service
Authority (PHSA), 2022). During the early stages of the pandemic in
BC, individuals displaying cold, influenza or COVID-19-like symptoms
were recommended to get tested, while those with no symptoms were
not recommended to test. As of October 3, 2021, there have been
over 189,000 reported cases of COVID-19 in BC and nearly 2000
confirmed deaths (BC Center for Diseases Control (BCCDC) and Provin-
cial Health Service Authority (PHSA), 2021). In addition, by the end
of the first week of October 2020, BC had already experienced its
4th wave of COVID-19 (BC Center for Diseases Control (BCCDC) and
Provincial Health Service Authority (PHSA), 2021). The distribution
of reported cases varies between age groups, with generally a small
proportion among children and a declining proportion with age among
adults (British Columbia Center for Disease Control (BCCDC), 2021a).
However, the proportion of cases hospitalized generally increases with
age. In addition to other factors, including public health measures,
these differences may be due to underlying variation in contact rates
and activity by age, as well variation in susceptibility (Davies et al.,
2020; Bentley, 2020; Zhang et al., 2020) and severity (Jordan et al.,
2020; Undurraga et al., 2020; Hoffmann and Wolf, 2021; Dong et al.,
2020) by age. According to the article ‘‘Review of COVID-19 outbreaks in
care homes in British Columbia’’, published by the Office of the Seniors
Advocate, BC (Office of the Senior advocate British Columbia, 2022),
there were a total of 365 COVID-19 outbreaks at 210 long term-care
and/or assisted living sites in BC from January 15, 2020 to February
28, 2021. These outbreaks led to 4484 cases (6% of the total reported
cases of COVID-19 in BC) and 782 resident deaths (57% of all COVID-19
deaths). See Rose et al. (2020), BC Center for Diseases Control (BCCDC)
and Provincial Health Service Authority (PHSA) (2021), Anderson et al.
(2020), Office of the Senior advocate British Columbia (2022) for more
details about the COVID-19 pandemic in British Columbia. To provide a
better understanding of the transmission dynamics of COVID-19 in BC,
it is therefore essential to assess the impact of contact rates and mixing
patterns of individuals among different age groups (Britton et al., 2020;
Monod et al., 2021; James et al., 2021; Richard et al., 2021; Zhang
et al., 2020; Singh and Adhikari, 2020).
2

Several mathematical models have been deployed to study the
transmission dynamics of COVID-19. Many of these models assume
homogeneous mixing in the population, using the same contact rate and
mixing pattern for everyone (Anderson et al., 2020; He et al., 2020; Tu-
ite et al., 2020; Betti et al., 2021; Ndaïrou et al., 2020; Kucharski et al.,
2020; Bhatnagar, 2020; Iboi et al., 2020). These types of models can
help to answer broad population-level questions, but are not suitable
for understanding age-related dynamics. Age-structured models have
also been used to study COVID-19, including the impact of social dis-
tancing on its spread (Kimathi et al., 2020; Singh and Adhikari, 2020),
the effectiveness of different vaccination strategies (Moore et al., 2021;
Mulberry et al., 2021; Bubar et al., 2021; Kirwin et al., 2020; Shayak
et al., 2021; Hammoumi et al., 2021; Sadarangani et al., 2021; Jentsch
et al., 2021), and the effects of herd immunity and re-opening (Britton
et al., 2020; Brett and Rohani, 2020b,a; Wang et al., 2021; Canabarro
et al., 2020; Babajanyan and Cheong, 2021). Although these models
incorporate heterogeneity in the contact rates and mixing patterns by
age group, they assume fixed contact rate for each age group through-
out the epidemic. This can be problematic since NPIs, such as physical
distancing, self-isolation, stay-at-home orders, and travel restrictions
alter contact and activity levels over time, and these impacts may differ
by age group. In order to overcome these limitations, it is necessary to
incorporate ongoing population-based measures of contact rates by age
group into a transmission modeling approach.

In this work, we develop a susceptible–exposed–infectious–recovered
(SEIR) age-structured model to study the transmission dynamics of
COVID-19 in British Columbia, Canada. This model incorporates the
average weekly contact rates and population mixing patterns computed
from the ongoing BC Mix COVID-19 Survey (BC-Mix) (Adu et al., 2021).
Unlike other age-structured models used to study COVID-19 dynamics,
where contact rate for each age group is fixed throughout the epidemic
or adjusted by re-scaling an initial rate, our model uses the near real-
time contact rates among age groups to inform transmission dynamics.
Using a Bayesian inference framework, we calibrate our model to the
weekly reported cases of COVID-19 in BC, starting from September
2020 to the end of January 2021, just as COVID-19 vaccination was be-
ginning in the province. Scaling parameters are estimated by age group
to account for the differential impact of contacts on transmission. We
considered four different scenarios that allow or exclude variation in
contact rates and scaling parameters in our model fitting and show that
optimal fits require both the age-specific scaling and time-dependent
contact rates.

2. Methods

2.1. Mathematical model

We develop an age-structured SEIR model to study the transmission
dynamics of COVID-19 in British Columbia (BC), Canada. Our model
follows a design similar to an age- and activity-structured model used
previously to study the dynamics of the 2009 H1N1 influenza pandemic
in the Greater Vancouver Regional District of British Columbia (Con-
way et al., 2011). It has six compartments tracking the disease trajec-
tory: where 𝑆 represents the susceptible population, 𝐸1 and 𝐸2 are for
the exposed population, 𝐼1 and 𝐼2 represent the infectious population,
and 𝑅 represents those who have recovered from the disease. Individu-
als in 𝐸1 are considered exposed, but not yet able to transmit infection
(exposed), while those in 𝐸2 can transmit infections without showing
any symptoms of the disease (pre-symptomatic). An infected individual
spends the first half of their infectious period in 𝐼1 and the other half in
𝐼2. Here, we used an infectious period of 5 days (Tindale et al., 2020;
Ganyani et al., 2020; Anderson et al., 2020). See Table 1 for all the
model parameters. Fig. 1 shows the schematic diagram of the model
with solid black arrows indicating the direction of flow of individuals
between the compartments at the rates indicated beside the arrows,
while the dashed red arrows show disease transmission. The index 𝑗
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Table 1
Model parameters, descriptions, and values. The basic reproduction number 𝑅0 in the SEIR model (2.1) is taken to be the effective reproduction number 𝑅0𝑡 in
BC at the beginning of September 2020 since the case data considered are from September 2020 to January 2021. The normalization constant 𝐶𝑁 for 𝑅0𝑡 was
computed for the two population mixing matrices shown in Fig. 3. For the BC Mix matrix (left panel of Fig. 3) 𝐶𝑁 = 35.1027 and for the 2009 matrix (right
panel of Fig. 3) 𝐶𝑁 = 30.2650. The total population of BC is 5, 147, 712 (BCStats, 2021).
Parameter Description Value References

𝑁age Number of age groups 10
𝛽 Disease transmission rate Derived (Adu et al., 2021)
𝐶 𝑁age ×𝑁age population mixing matrix Derived (Adu et al., 2021)
𝐾 Contact rate vector Derived (Adu et al., 2021)
𝛷 Vector of the scaling parameters for the contact rates Estimated
𝐻1 Rate of transitioning from 𝐸1 to 𝐸2 1/5 (days−1) Kucharski et al. (2020), Zou et al.

(2020), Anderson et al. (2020)
𝐻2 Rate of transitioning from 𝐸2 to 𝐼1 1 (days−1) Li et al. (2020), Tindale et al. (2020),

Ganyani et al. (2020), Anderson et al.
(2020)

𝛾 Infection recovery rate 1/5 (days−1) Tindale et al. (2020), Ganyani et al.
(2020), Anderson et al. (2020)

𝑅0𝑡 Effective reproduction number in BC at the beginning of
September 2020

1.24 British Columbia Center for Disease
Control (BCCDC) (2021b)

𝐶𝑁 Normalization constant for 𝑅0𝑡 35.1027 & 30.2650 Computed
𝑃𝑎𝑔𝑒 Population of British Columbia by age-group 86,903 (<2 years) BCStats (2021)

187,311 (2–5 years)
599,526 (6–17 years)
458,056 (18–24 years)
734,923 (25–34 years)
687,491 (35–44 years)
669,568 (45–54 years)
736,998 (55–64 years)
576,218 (65–74 years)
410,718 (75+ years)
w
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𝐶

p
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represents the age groups. The compartments 𝐸2, 𝐼1, and 𝐼2 (in red) are
the infectious compartments of the model, representing individuals who
may transmit the disease to their contacts. We assume that the total
population size of BC remains constant over the epidemic period and
that recovered individuals develop permanent immunity to the virus.

Let 𝑁age be the number of age groups in the model so that each of
the compartments 𝑆,𝐸1, 𝐸2, 𝐼1, 𝐼2, and 𝑅 is a vector with𝑁age elements.
We stratify the BC population into 𝑁𝑎𝑔𝑒 = 10 age groups given by
<2 years, 2–5 years, 6–17 years, 18–24 years, 25–34 years, 35–44
years, 45–54 years, 55–64 years, 65–74 years, and 75+ years. These age
groups largely follow those used in the influenza study of Conway et al.
(2011); however, other groupings could be used within this framework.
Each compartment of the model is divided into ten sub-compartments
based on age groups. This gives a total of 60 sub-compartments and or-
dinary differential equations for the model. Our model further assumes
that each individual remains in the same age group throughout the
epidemic. The differential equations for the model in vector notation
are given by:
d𝑆
d𝑡 = −𝛽. ∗ 𝛹. ∗ 𝐶𝑖𝑛𝑓 . ∗ 𝑆

d𝐸1
d𝑡 = 𝛽. ∗ 𝛹. ∗ 𝐶𝑖𝑛𝑓 . ∗ 𝑆 −𝐻1. ∗ 𝐸1

d𝐸2
d𝑡 = 𝐻1. ∗ 𝐸1 −𝐻2. ∗ 𝐸2

d𝐼1
d𝑡 = 𝐻2. ∗ 𝐸2 − 2𝛾. ∗ 𝐼1

d𝐼2
d𝑡 = 2𝛾. ∗ 𝐼1 − 2𝛾. ∗ 𝐼2
d𝑅
d𝑡 = 2𝛾. ∗ 𝐼2

(2.1)

where 𝐻1 is the rate of transitioning from 𝐸1 to 𝐸2, 𝐻2 is the rate of
transitioning from 𝐸2 to 𝐼1, and 𝛾 is the recovery rate. We have assumed
that the transition rates 𝐻1,𝐻2, and 𝛾 are the same for all age groups.
The model can easily be extended to have age-specific transition rates.
In this case, 𝐻1,𝐻2, and 𝛾 would be vectors with 𝑁age elements. Note
that . ∗ represent element-wise multiplication. The vector 𝛹 = 𝛷. ∗
𝐾, where 𝐾 is a vector for the contact rates of the age groups and
𝛷 ≡ (𝜙1,… , 𝜙Nage) is a vector whose entries are the scaling parameters
3

for the contact rates. These scaling parameters are used to account for m
the differential impact of contacts on transmission. They translate self-
reported contact rates computed for each age group from the survey
data into impacts on transmission that helps to account for aspects such
as recall bias, sampling bias, and challenges in defining which contacts
actually lead to transmission. In addition, these scaling parameters are
used to account for other factors that affect disease transmission such as
physical distancing, hand washing, wearing of face mask, e.t.c, which
are not explicitly included in our model. The scaling parameters are
fixed throughout the epidemic period. We consider a scenario where
the contact rate 𝐾 is fixed throughout the epidemic period and another
where it changes from week to week during the epidemic. In addition,
a fixed scaling parameter can be used for the entire population; in this
case, 𝛷 becomes a scalar. More details about the scaling parameters
and the different scenarios can be found in Section 2.3.

In the ODE model (2.1), 𝛽 is the transmission rate given by

𝛽 =
𝑅0
𝐶𝑁

(

1
𝐻2

+ 1
𝛾

)−1
, (2.2)

here 𝑅0 is the basic reproduction number and 𝐶𝑁 is the normalization
onstant for 𝑅0 that incorporates the effect of the contact rates and
he population mixing patterns into the basic reproduction number.
etails of how 𝐶𝑁 is calculated are given below. The fractions 1∕𝐻2
nd 1∕𝛾 are the pre-symptomatic and recovery periods, respectively.
he heterogeneity in disease transmission depends largely on the vector
𝑖𝑛𝑓 , whose 𝑗th entry is defined as

𝑗
𝑖𝑛𝑓 =

𝑁age
∑

𝑘=1

𝐶𝑘𝑗 (𝐸2𝑘 + 𝐼1𝑘 + 𝐼2𝑘)
𝑃age,𝑘

, 𝑗 = 1,… , 𝑁age, (2.3)

where 𝐶𝑘𝑗 is the 𝑘th element in the 𝑗th column of the 𝑁age×𝑁age mixing
matrix 𝐶, which gives the proportion of the total contacts of the 𝑗th age
group that is made with the 𝑘th age group (see Fig. 3). Here, 𝑃age is a
vector for the BC population size stratified by age group and 𝑃age,𝑘 is the
opulation of the 𝑘th age group. The expression (𝐸2𝑘 + 𝐼1𝑘 + 𝐼2𝑘)∕𝑃age,𝑘
ives the proportion of infectious individuals in the 𝑘th age group.
nlike the model of Conway et al. (2011), we do not further stratify
ur population by activity levels here. The activity level of each age
roup is implicitly captured by their average weekly contact rates. We
omputed the average weekly contact rates 𝐾 and population mixing
atrix 𝐶 from the BC Mix COVID-19 survey (Adu et al., 2021).
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Table 1 provides a description of the model parameters and their
values. The population size of BC, stratified by the age groups of
our model, is also given in Table 1. Since the case data considered
in our fits start at September 2020, in order to coincide with the
beginning of the BC Mix survey, rather than at the beginning of the
COVID-19 epidemic in BC, the basic reproduction number 𝑅0 in the
model (2.1) is the effective reproduction number 𝑅0𝑡 in BC at the
beginning of the period (September 2020–January 2021). We compute
the normalization constant 𝐶𝑁 for the effective reproduction number
𝑅0𝑡 using numerical bootstrapping based on the next-generation matrix
approach of computing 𝑅0 (Diekmann et al., 1990; Van den Driessche
and Watmough, 2002; Jones, 2007). To compute 𝐶𝑁 , we numerically
construct the next-generation matrix for (2.1) with the transmission
rate 𝛽 as given in (2.2). Observe that (2.2) contains 𝑅0 and the param-
eter 𝐶𝑁 , which we want to compute. We set 𝑅0 = 1 and loop over a
range of values of 𝐶𝑁 . For each value of 𝐶𝑁 , we compute the spectrum
of the next-generation matrix and output the value of 𝐶𝑁 for which
the spectral radius of the matrix equals unity as our normalization
constant. In other words, our desired normalization constant is the
value of 𝐶𝑁 that returns unity as the dominant eigenvalues of the next-
generation matrix of the ODE system (2.1) when the basic reproduction
number 𝑅0 = 1 in (2.2). It is important to mention that since the next-
generation matrix depends on the contact rates and population mixing
patterns, 𝐶𝑁 also depends on these parameters. 𝐶𝑁 incorporates the
effect of population heterogeneity into the basic reproduction number
and the transmission rate 𝛽 (2.2). For all the results presented in this
paper, individuals aged 0–17 are assumed to be 50% as susceptible as
individuals 18 years or older (Davies et al., 2020; Bentley, 2020; Zhang
et al., 2020). Using a seropositivity rate of 4.5% at the start of the study
period (COVID-19 Immunity Task Force (CITF), 2021), we calculated
the ascertainment fraction for reported cases to be 0.255 (i.e., 25.50%
of all cases were assumed reported), which was then used when fitting
to the age specific reported case numbers.

2.2. Data

The reported number of cases of COVID-19 in British Columbia were
obtained from the British Columbia Centre for Disease Control (BCCDC)
and stratified by the age groups of our model. Based on symptom onset
date, we extracted these data from a line list generated by BCCDC
Public Health Reporting Data Warehouse (PHRDW). Approximately
12.93% of the total reported cases during our study period do not have
symptoms onset date. These cases were removed from our analysis.
The collected data was incorporated into the model likelihood based
on disease incidence (2.4). The case data used here covered the time
period September 2020 to January 2021, inclusive. This time period
was selected to match with the available contact rate data (see below),
but also provides a wide range of COVID-19 dynamics for modeling.

We focused here on the dynamics of community transmission and
therefore excluded residents of long-term care homes (LTCH). In par-
ticular, cases were removed if the transmission setting was specifically
identified as a long-term care facility and the case was identified as
a patient or resident (not staff). In the SEIR model (2.1), incidence is
computed as the number of pre-symptomatic individuals (𝐸2) transi-
tioning to the infectious class (𝐼1). Fig. 2 shows the weekly reported
cases of COVID-19 in BC by age group from September 2020 to January
2021 (top left) and the percentage of cumulative reported cases for
each age group within this period (top right). The 18–24 age group
had the highest reported infection rate (by population size), with total
reported cases during our study period corresponding to 1.77% of their
population, followed by the 25–34 age group with 1.59%, and the 35–
44 age group with 1.32% of their total population. The percentage of
reported cases in the remaining age groups were; 45–54 years (1.15%),
55–64 years (0.81%), 6–17 years (0.80%), 75+ years (0.57%), 65–
74 years (0.55%), <2 (0.45%), and 2–5 (0.43%). We observe from
4

this figure that the reported cumulative cases of COVID-19 was not r
uniform across age groups, possibly due to the variation in contact rates
and mixing patterns between age groups, differences in reporting, and
reduced susceptibility among younger individuals (Davies et al., 2020;
Bentley, 2020; Zhang et al., 2020).

Heterogeneity in contact rates and mixing patterns among age
groups are essential aspects of our model. These parameters are in-
troduced through the average weekly contact rate vector 𝐾 and the
𝑁age × 𝑁age mixing matrix 𝐶, which we compute from the BC-Mix
survey (Adu et al., 2021). This survey was initiated in September 2020
by the British Columbia Center for Disease Control (BCCDC) as part
of ongoing public health surveillance for COVID-19. In the survey, BC
residents 18 years of age and older were asked questions related to their
daily contacts, response to non-pharmaceutical interventions such as
the wearing of face masks and physical distancing, and vaccination. We
computed the average weekly contact rate based on survey responses
to the question: ‘‘How many people did you have in-person contact with
between 5 am yesterday and 5 am today?’’, where an in-person contact
is defined as either having an in-person two-way conversation with
three or more words or physical skin-to-skin contact, e.g. a handshake,
hug, kiss, or contact sports (see Adu et al., 2021 for more details).
For each week from September 2020 to January 2021, contact rates
were stratified by the age groups: 18–24 years, 25–34 years, 35–
44 years, 45–54 years, 55–64 years, 65–75 years and 75+ years, and
then used to compute the average contact made by each age group
weekly. These results are presented in Fig. 2 (bottom left), where the
dots are the computed average contact rates and local polynomial
regression lines using the loess method (Avery, 2013) are included to
illustrate time trends. Since the BC-Mix survey is only available for
individuals 18 years and above, the average weekly contact rates for
the age groups <2 years, 2–5 years, and 6–17 years were fixed at
5.5280, 12.4169, and 13.4486, respectively, throughout the epidemic
period of September 2020–January 2021. We derived these contact
rates from the original influenza model of Conway et al. (2011), which
was based on empirical contact data from 2009 for the lower mainland
of BC. Although it is difficult to determine if these contact rates remain
fully representative in the current time period, our model structure
allows flexibility (through scaling parameters, described below) in how
contacts impact transmission. The bottom right panel of Fig. 2 shows
the BC population size distribution by age group (BCStats, 2021) (see
Table 1 for actual values).

We constructed the population mixing matrix 𝐶 from the BC-Mix
survey data. Respondents were asked to provide their own age, as
well as the ages of their first ten contacts from the previous day. This
information was used to compute, for each age group, the proportion
of their total contacts that were made with each of the other age
groups. This corresponds to the columns in the 𝑁age ×𝑁age population
mixing matrix 𝐶, each of which sum to 1. Unlike the average contact
rates by age group, which we computed weekly, only one mixing
matrix was constructed from the survey data based on the total data
from September 2020 to January 2021. In Fig. 3, we present the
population mixing matrix 𝐶 derived from the BC-Mix survey (left panel)
and, for comparison (and later use in modeling), the corresponding
matrix from the 2009 influenza study of Conway et al. (2011) (right
panel). For convenience, we refer to the mixing matrix derived from
the influenza model of Conway et al. (2011) as the 2009 matrix, and
the one constructed from the BC-Mix survey as BC-Mix matrix. Note
that in order to complete the first three columns of the BC-Mix matrix
(i.e., for individuals under 18 years of age), we adapted data from
the 2009 matrix for age groups <2 years, 2–5 years, and 6–17 years.

e observe a pattern of assortative mixing from the BC-Mix matrix
i.e., contact proportions are higher within age groups than between
ge groups), although this pattern is not as evident in the 2009 matrix.
t is also apparent that children ≤ 5 years of age make a relatively
arge proportion of their contacts with adults of child-bearing age (25–
4 years) and with adolescents 6–17 years of age. This pattern likely

eflects family contacts among children, parents and siblings.
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Fig. 2. Reported cases of COVID-19 and contact rates in BC. Top left: Weekly reported cases of COVID-19 in BC by symptom onset date from September 2020 to January 2021.
Top right: Cumulative reported cases by age group during study period, as a percentage of that age group’s population size. Bottom left: Average weekly contact rates by age
group over time from September 2020 to January 2021. The dots are the computed average contact rates, while the solid lines are fits from local polynomial regressions with loess
method (shown only for illustration of trends) (Avery, 2013). Bottom right panel: BC population distribution by age group. The color codes are consistent across all the panels.
Fig. 3. Population mixing patterns. Heat maps showing the mixing patterns between individuals of different age groups as derived from the BC-Mix survey (Adu et al., 2021)
(left panel) and influenza model of Conway et al. (2011) (right panel). Each column represents the proportion of the total contacts of a specific age group made with each of the
other age groups. Since the BC-Mix survey does not include individuals <18 years, the columns for the age groups: <2 years, 2–5 years, and 6–17 years in the BC-Mix matrix (left
panel) were derived from the 2009 matrix (right panel).
2.3. Bayesian inference

We fit our age-structured model (2.1) to the weekly reported cases
of COVID-19 in BC (top left panel of Fig. 2) for all the age groups
simultaneously, using a Bayesian inference framework and the RStan
package in R version 3.6.3 (Stan Development Team, 2020). For each
age group, the likelihood is constructed according to

cases(𝑡) ∼ NegBin(incidence(𝑡) × ascert_fraction, 𝜓), (2.4)

where NegBin(.) is the negative binomial distribution, cases(𝑡) and
incidence(𝑡) are the weekly reported cases of COVID-19 in BC and
the incidence computed from our SEIR model (2.1), respectively. The
ascertainment fraction is given by ascert_fraction and 𝜓 is the over-
dispersion parameter. This framework allows us to incorporate our
prior knowledge into the model parameters and gives us the ability to
evaluate probabilistic statements of the data given the model.
5

To translate contact rates computed from the BC-Mix survey into
impacts on transmission, we introduce scaling parameters for the aver-
age weekly contact rates, which are estimated for each age group from
the fit. We also incorporate as a parameter the prevalence of COVID-
19 in BC at the beginning of our study period (September 2020). As
a validation step we simulated incidence data from our SEIR model
(2.1) using known parameter values and tested our model’s ability
to recover these values. The resulting posterior distributions were
inspected for biases and coverage of the true parameters. All inferences
performed in this paper were done using the Variational Bayes (VB)
method with the meanfield algorithm implemented in RStan (The Stan
Development Team, 2021; Yao et al., 2018), where the Bayesian model
parameters were the initial total disease prevalence in the population
and the scaling parameters for the contact rates. Other fixed parameters
of the model are given in Table 1. The VB method was compared to the
adaptive Hamiltonian Monte Carlo method No-U-Turn sampling and
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found to produce comparable estimates of the posterior distribution
with significant reduction in total computation time (Hoffman et al.,
2014). Although, we set the maximum number of iterations for opti-
mizing the evidence-lower bound (ELBO) in VB to 10,000, the mean
and/or median ELBO usually converge in 1000–3000 iterations of the
stochastic gradient ascent algorithm (see Hoffman and Johnson, 2016;
Yao et al., 2018; Gundersen, 2021 for more information about ELBO in
the variational Bayes method).

We considered four variations of the above Bayesian model based on
the age-specific contact rates and the scaling parameters used to remove
biases from the contact rates computed from the BC-Mix survey. These
specific models, in order of increasing parameter flexibility, are:

1. A single scaling parameter for contact rates across all age groups
and a fixed contact rate for each age group throughout the study
period (SSFR).

2. Age-specific scaling parameters and a fixed contact rate for each
age group (ASSFR).

3. A single scaling parameter across age groups and time-dependent
average weekly contact rates for each age group (SSVR).

4. Age-specific scaling parameters and time-dependent average
weekly contact rates (ASSVR).

Performing inference with each of these models provided a framework
to understand the independent and combined effects of contact rates
(fixed or time-varying) and scaling parameters (one for all age groups,
or one for each age group) on the posterior predictive distribution and
to determine which of the four models produces the best recreation of
the observed data. We rank the models by comparing their leave-one-
out predictions and standard errors, computed using the leave-one-out
cross-validation (LOO) method (Magnusson et al., 2020; Guo et al.,
2021; Vehtari et al., 2017). Further comparisons were done using the
widely applicable information criterion (WAIC) method (Watanabe and
Opper, 2010; Vehtari et al., 2021). The fixed contact rates used for
the SSFR and ASSFR models were given as the average of the weekly
contact rates for each age group from September 2020 to January
2021. As an additional model to compare the impact of the contact
mixing matrix on the posterior predictive distribution, we constructed
each of the above four models using the 2009 survey-derived contact
matrix as opposed to the BC-MIX survey-derived contact matrix (see
Supplementary material A.3).

3. Results

We fit our age-structured SEIR model (2.1) to the weekly reported
cases of COVID-19 in BC from September 2020 to January 2021, shown
in the top left panel of Fig. 2. Of primary interest was the model
fits based on 2020/2021 contact rates from the BC-Mix survey (Adu
et al., 2021); however, we also compared fits based on previous contact
network data collected during 2009 (Conway et al., 2011).

3.1. Model fitting scenarios

In Fig. 4, we present our model fits for the BC-Mix matrix (left
panel of Fig. 3) for the four models described above for selected age
groups (2–5 years, 35–44 years, and 55–64 years) and the total reported
cases. The fits for the remaining age groups are presented in Supple-
mentary material A.1. In the first scenario (SSFR), only a single scaling
parameter is estimated across age groups (0.949, 90% CrI: 0.936–0.964;
initial prevalence estimate = 9827, 90% CrI: 8455–11,245) and contact
rates for each age group are fixed over time. This model predicts an
approximately linear increase in cases over time, which fails to capture
the true trends in the data. Similar results are shown for the ASSFR
model, which had separate age-specific scaling parameters (see Fig. 5
and Table S1 of Supplementary material A.1; initial prevalence estimate
= 5488, 90% CrI: 5173–5806), but still used fixed contact rates for
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each age group. This scenario again predicts a linear increase in cases,
although, in contrast to the SSFR model, the credible intervals of the
predictions are narrower and the predicted median incidence crudely
approximates the overall trend in the underlying data. Nevertheless,
the ASSFR model still fails to capture the dynamic time trends in the
case data.

The remaining results in Fig. 4 show the SSVR and ASSVR scenarios,
where time-dependent average weekly contact rates were used. In these
scenarios, our model was able to capture the trends in the reported
cases. Due to the single scaling parameter (0.930, 90% CrI: 0.919–
0.940; initial prevalence estimate = 5039, 90% CrI: 4430–5496), the
SSVR model was unable to accurately predict case numbers, even
though it captured the temporal trends in the data. It either overes-
timated or underestimated reported cases with large credible intervals.
In contrast, the ASSVR model (initial prevalence estimate = 2824, 90%
CrI: 2690–2959; age-specific scaling parameters provided in Fig. 5 and
Table S1 of Supplementary material A.1), captured both the trends in
reported cases and the case numbers with a higher accuracy compared
to the other scenarios. In this scenario, we used age-specific scaling
parameters together with time-dependent average weekly contact rates.
Of all the four models considered, ASSVR with age-specific scaling
parameters and time-dependent contact rates provided the best recon-
struction of the reported cases data (fourth row of Fig. 4). In addition, a
comparison of the leave-one-out predictions and standard error for the
four models, computed using the leave-one-out cross-validation (LOO)
method (Guo et al., 2021; Vehtari et al., 2017), ranked the ASSVR
model as having the highest predictive accuracy, followed by ASSFR,
SSVR, and then SSFR. A similar ranking was obtained using the widely
applicable information criterion (WAIC) method (Watanabe and Opper,
2010; Vehtari et al., 2021). See Table S2 of Supplementary material
A.1 for detailed output of the model comparison. Taken together, these
results suggest that the time-dependent weekly contact rates are re-
quired to accurately capture the trends in the reported cases, while the
age-specific scaling parameters allow the fits to properly match actual
numbers of reported cases. Similar results were obtained using the 2009
mixing matrix (right panel of Fig. 3). These results are presented in
Supplementary material A.3.

3.2. Scaling contact rates

Comparisons of the estimated age-specific scaling parameters for
the ASSFR and ASSVR models based on the BC-Mix contact data are
shown in Fig. 5 (similar results are shown for the 2009 matrix in
Fig. S10 of Appendix A.3). The blue vertical dashed line at 1 indicates
where the scaling parameter has no effect on the fit. When the scaling
parameter is less than 1, it indicates a reduction in the contribution
the observed contact rates have to transmission; conversely, scaling
parameters greater than one indicate an increase in the contribution
observed contact rates make to transmission. We observe that the
estimated scaling parameters for the ASSFR and ASSVR models are
generally similar and closer to 1 for all age groups except <2 years, 2–5
years, and 6–17 years. Overall, relatively little re-scaling was needed
for contact rates computed from the BC-Mix survey, suggesting that
the survey was able to capture contact activity relevant for COVID-19
transmission. However, the estimated scaling parameters for ages <2
years, 2–5 years, and 6–17 years were notably greater than 1 and with
wider 90% credible intervals. This suggests that self-reported contact
rates for youngest age groups tended to under-estimates the level of
contact relevant to COVID-19 transmission. Recall that these youngest
age groups were not available in the BC-Mix survey and that we used
instead the contact rates derived from the original influenza model
of Conway et al. (2011) for age 0–17 years. It is possible that these
contact rates, recorded during 2009, were not fully representative of
contacts made during our 2020/2021 study period. Nevertheless, model
fits for the 0–17 ages groups were generally close to the observed data
S4, suggesting the scaling parameters were able to largely accommo-

date any discrepancies. We also assumed in our model that individuals
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Fig. 4. Observed and estimated case counts obtained using the BC-Mix matrix. Top row (red): Single scaling parameter and fixed contact rates (SSFR). Second row (gold):
Age-specific scaling parameter and fixed contact rates (ASSFR), third row (green): single scaling parameter and time-dependent contact rates (SSVR), and fourth row (blue): Age
specific scaling parameter and time-dependent contact rates (ASSVR). The black dots are the weekly reported cases of COVID-19 in BC, the solid lines are the median predicted
cases, the darker bands are the 50% CrI, while the lighter bands are the 90% CrI. Similar plots for the remaining age groups are provided in Supplementary material A.1.
in these youngest age groups are only 50% as susceptible as adults.
This may contribute to the high estimates in the scaling parameters
as reduction in susceptibility would lead to fewer infections, and the
scaling parameters may reflect a correction for this. The estimates of
the age-specific scaling parameters shown in Fig. 5 are presented in
Table S1 of Supplementary material A.1. Similar results are presented
in Tables S3 of Supplementary material A.3 for the 2009 matrix.

3.3. Model validation and projection

Next, we generated short-term projections of new cases from our
model fits to help validate our modeling framework. We fit our model
to a subset of the reported cases (September to December 2020), and
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projected forward to predict cases for the month of January 2021 (4
weeks). We then compared the predicted cases against actual reported
cases for this 4-week period. The ASSVR model was used for this study
with the results presented in Fig. 6 for all the age groups and total
reported cases.

Our model was able to accurately predict trends in most, but not all,
age groups. True case numbers fell within the 90% credible intervals
of our predictions for most age groups, except 18–24 and 25–34 years,
where our model slightly underestimated reported cases. It is important
to mention that for the prediction period January 2021, we used the
average weekly contact rates for this month as computed from the
BC-Mix survey. In reality, contact rates for future dates would not



Epidemics 39 (2022) 100559

8

S.A. Iyaniwura et al.

Fig. 5. Estimated age-specific scaling parameters for the BC-Mix matrix. ASSFR model (red) and ASSVR model (blue). The blue vertical dashed line at 1 indicates where the scaling
parameter has no effect on the fit. These estimates are presented in Table S1 of Supplementary material A.1. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 6. Model validation and projection. Model fits for the period from September to December 2020 (in blue) and projection for January 2021 (in red) with 50% and 90%
credible interval (CrI) bands, using the BC-Mix matrix. The solid lines are the median predicted cases, narrow bands are 50% CrI, and wider bands are 90% CrI. Black dot are
weekly reported cases of COVID-19 in BC. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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be available and would need to be hypothesized based on historical
contact rates for different possible scenarios.

4. Discussion

We developed an SEIR-type age-structured model that explicitly
incorporates contact rate data and mixing patterns computed from the
BC-Mix survey (Adu et al., 2021) for studying the transmission dynam-
ics of COVID-19. Our model builds upon a framework that used age-
and activity-structure to study the dynamics of the 2009 H1N1 virus in
the Greater Vancouver area of British Columbia, Canada (Conway et al.,
2011). It divides the population of BC into: susceptible (𝑆), exposed
(not infectious 𝐸1 and pre-symptomatic infectious 𝐸2), infectious (𝐼1
and 𝐼2) and recovered compartment (𝑅), and stratifies each into ten
age groups: <2 years, 2–5 years, 6–17 years, 18–24 years, 25–34 years,
35–44 years, 45–54 years, 55–64 years, 65–74 years, and 75+ years.
Unlike the other age-structured models (Moore et al., 2021; Mulberry
et al., 2021; Bubar et al., 2021; Britton et al., 2020; Brett and Rohani,
2020b) used to study the dynamics of COVID-19, where the contact
rates are fixed throughout the epidemic period, our model uses time-
varying weekly contact rates computed directly from ongoing survey
data (BC Mix COVID-19 survey (BC-Mix) (Adu et al., 2021)). Hence,
the effects of non-pharmaceutical interventions (NPIs) on the activity
level of each age group are implicitly captured by the contact rates
computed from the survey. Further, we use a population mixing matrix,
derived from the same survey data, which specifies the proportion of
total contacts of an age group that is made with each of the other age
groups. For simplicity, we elected to use a single mixing matrix for
the entire study period from September 2020 to January 2021, which
assumes population mixing patterns in BC were roughly constant. For
comparison, we also implemented our model with the age mixing
matrix of Conway et al. (2011) used to study 2009 H1N1 transmission
in the Greater Vancouver area. It is likely that patterns of mixing
among age groups change over time (e.g., due to age-specific seasonal
behaviors, responses to public health measures, etc.); an interesting
extension of this work would be to explore time trends in the mixing
matrix itself and assess how this impacts the observed transmission
dynamics.

Using a Bayesian inference framework, we calibrate our model to
weekly reported cases of COVID-19 in BC from September 2020 to Jan-
uary 2021. We show that our framework is robust to population mixing
patterns, with similar results found using the current (2020/2021
BC-Mix survey) and previous (2009 influenza mixing survey) mixing
matrices. Our use of scaling parameters to translate self-reported con-
tact rates in each age group into impacts on transmission helps to
account for aspects of self-reported survey data, such as recall bias and
challenges in defining which contacts actually lead to transmission.
We considered four different Bayesian models based on the scaling
parameters (single scaling parameter vs age-specific scaling) and on
the contact rates themselves (fixed contact rates vs time-varying rate).
Fixed contact rates for each age group, predicted an approximately
linear growth in cases and failed to capture observed trends in the data.
With time-varying contact rates, our model captured trends in reported
cases, but significantly under- or over-estimated the actual values.
Only the combination of age-specific scaling parameters and time-
dependent contact rates provided adequate fits to observed cases data.
In addition, the Bayesian model with age-specific scaling parameters
and time-varying average weekly contact rates was ranked the most
preferred using the leave-one-out cross-validation (LOO) and the widely
applicable information criterion (WAIC) methods. These results show
that, beyond incorporating population heterogeneity from contact rates
and mixing patterns, it is also essential to use time-varying contact rates
and allow age-specific scaling of these rates.

We validated our modeling framework by fitting our model to the
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cases data from September to December 2020 and projected forward to
predict the reported cases for January 2021 using the posterior distri-
bution of the estimated parameters. Our projections provide moderate
to good fits to the observed reported cases. In most age groups, we
captured the reported cases within the 90% credible intervals of our
model prediction. As expected, our projections are highly dependent
on the underlying contact rates; as a result, we were able to capture
the true trends in cases particularly for older age groups, which are
well represented in the contact survey data. In contrast, the lower
response rates among younger adults (18–34 years) in the BC-Mix
survey may have resulted in contact rates (and hence, projections) that
were less representative of the true trends. A related limitation of our
framework is that it requires one to specify the future weekly contact
rates in order to project future cases. One way to approach this issue
would be to use contact rates from previous weeks and assume these
will be representative of future contact rates. Such projections would
be interpreted as a possible scenario if future contact rates remained
similar to historical levels. A distinct benefit of our model is that future
projections can be made based on clear assumptions about contact
rates in the underlying population, as opposed to more challenging
assumptions about changes in transmission rates (which could be due
to many factors).

Our modeling framework is based on deterministic ODE equations,
which are well suited to capturing smooth changes in transmission
but may not be suitable for sudden fluctuations. The sensitivity to
underlying contact rates can be a limitation if contact data are, for any
reason (including poor data quality) unstable. Fluctuating contact rates
could lead to unrealistic predictions as the model tries to capture these
dynamics with a series of small exponential growths and decays. This
appears to be the case for our 18–24 age group, which typically had
unstable contact rates due to small numbers of survey respondents of
this age.

We show the importance of including population-based contact
rates in modeling of COVID-19. In this study, we used self-reported
rates of close contact from the BC-Mix survey which began during
September 2020 and is (as of October 2021) still ongoing. By including
such contact information, it removes the need to otherwise estimate
how contact rates might change over time due to, for example, non-
pharmaceutical interventions (NPIs), such as restrictions on gathering
sizes, travel, and closure of businesses (e.g., stores, restaurants, etc.).
Yet, this approach is not without limitations. Certain NPIs, such as face
masks and handwashing, may reduce transmission without affecting
contact rates. It is possible to include additional parameters in our
model to account for changes in the probability of infection per contact,
and this would be an interesting area for further work. In this paper,
we take a more general approach and introduce scaling parameters that
‘translate’ self-reported contact rates into contributions to transmission,
by age group to account for possible biases in the survey data. Another
limitation to note is that current contact rates for the age groups <2
years, 2–5 years and 6–17 years were not available (BC-Mix survey
respondents must be 18+ years of age) and so were instead derived
from the previous influenza model of Conway et al. (2011). These
contact rates were computed during 2009 and thus may no longer
represent the true pattern of population mixing in BC. Although the
scaling parameters for these age groups seems to largely account for
any discrepancies, it would be preferable to have current contact rates
for all age groups in our model. Lastly, we excluded 12.93% of the
reported cases in our line list data from our analysis dues to lack of
symptoms onset date. This is a relatively large proportion of the total
reported cases. Not applying a correction to the remaining data set used
for our analysis can be seen as a limitation of this work.

Our modeling framework focuses on age-related patterns of con-
tact and transmission and does not consider other possible sources of
variation. For example, we used average provincial contact rates for
each age group and did not explore regional differences or variation
by socio-economic or occupation group (e.g., essential workers). We

are currently developing a variation of this SEIR model that focuses
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on the meta-population dynamics of transmission within and among
health regions of BC. Another interesting extension of this work would
be to use time-dependent scaling parameters and mixing matrices. By
allowing these parameters and matrices to vary, the model may be
better able to capture changes in mixing patterns among age groups and
how contact rates translate into impacts on transmission. The impact of
certain non-pharmaceutical interventions may vary among age groups,
particularly for measures such as closure of schools and businesses;
time-varying mixing and scaling would reduce the need to adjust the
model fits specifically to reflect the implementation of these measures.
Other interesting directions, already under investigation by our team,
include incorporating the effect of COVID-19 vaccination and variants
of concern (VoCs) in this modeling framework. Certain variants have
been shown to be more contagious than the original SAR-CoV-2 virus
and responsible for spikes in reported cases during spring/summer of
2021 in many parts of the world. Yet, at the same time, vaccination has
substantially reduced transmission in many populations. These factors
had negligible impact on the results presented here, given that our data
ended January 2021, but are of critical importance when looking at
later time periods. Indeed, the effects of VoCs and vaccination may be
highly age specific and our modeling framework is thus naturally suited
to incorporating these elements.

5. Conclusion

Incorporating real-time contact survey data into models of COVID-
19 dynamics has the potential to provide more rapid and improved
estimates of infection rates and projected trends. Our study shows
how empirical contact rate data can be integrated into a transmission
modeling framework and used to capture age-specific trends in cases.
Further work could consider how different types and levels of con-
tact, as reported through survey data, contribute to the transmission
dynamics of COVID-19.
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