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Abstract: Non-alcoholic fatty liver disease (NAFLD), an important chronic disease, is one of the major
causes of high mortality and creates a substantial financial burden worldwide. The various immune
cells in the liver, including macrophages, NK cells, dendritic cells, and the neutrophils involved
in the innate immune response, trigger inflammation after recognizing the damage signaled from
infection or injured cells and tissues. The stimulator of interferon genes (STING) is a critical molecule
that binds to the cyclic dinucleotides (CDNs) generated by the cyclic GMP-AMP synthase (cGAS) to
initiate the innate immune response against infection. Previous studies have demonstrated that the
cGAS-STING pathway plays a critical role in inflammatory, auto-immune, and anti-viral immune
responses. Recently, studies have focused on the role of STING in liver diseases, the results implying
that alterations in its activity may be involved in the pathogenesis of liver disorders. Here, we
summarize the function of STING in the development of NAFLD and present the current inhibitors
and agonists targeting STING.

Keywords: non-alcoholic fatty liver disease; STING; inflammation; inhibitors; agonists

1. Introduction

Non-alcoholic fatty liver disease (NAFLD), a disease characterized by hepatic steato-
sis, ranging from simple steatosis (non-alcoholic fatty liver, NAFL) to a more developed
inflammatory and fibrogenic phase (non-alcoholic steatosis hepatitis, NASH) and even
progress to hepatocellular carcinoma (HCC), causes enormous health problems and has
created a financial burden worldwide [1–3]. Currently, NAFLD has become the second
indication for liver transplantation in Western countries. NAFL-associated end-stage liver
disease may also become one of the major indications of liver transplantation in China in
the future. The annual health costs that are directly attributable to NAFLD are expected
to exceed EUR 35 billion in four European countries (France, the UK, Germany, and Italy)
and more than USD 100 billion in the United States [4]. NAFLD affects approximately
25% of the global population, with the highest prevalence in the Middle East (32%) and
South America (31%), followed by Asia (27%), the US (24%), and Europe (23%) [5]. Hepatic
inflammation is the main cause of liver injury, including NASH and its related diseases [6,7].
The pathogenesis of NASH is complex, and its occurrence and progression are regulated
by hepatic lipid deposition, oxidative stress, insulin resistance, immune dysfunction, and
apoptosis [8–11]. Emerging studies suggest that NAFLD-associated events significantly
increase cancer mortality, cardiometabolic disease, and liver disease. The magnitude of
these risks is particularly high when the disease progresses to NASH [12–14]. Moreover,
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based on its remarkable prevalence and persistent progressive features, there is no doubt
that the burden of NAFLD will continue to increase in the absence of an effective con-
trol [15]. Unfortunately, even though its pathogenesis and potential therapeutic targets
have been extensively reported, no drugs have yet been approved by the US Food and
Drug Administration (FDA) for clinical use.

Factors influencing the development of NAFL/NASH are gradually being identified.
Recently, the potential role of the stimulator of interferon genes (STING) and its downstream
signaling pathways in the progression of NAFLD has been demonstrated [16–18]. STING,
a pattern recognition receptor mainly residing on the endoplasmic reticulum (ER), requires
palmitoylation at the Golgi apparatus to accomplish its activation after recognizing exoge-
nous or self-DNA [19]. Subsequently, its downstream pathways including tank-binding
kinase 1 (TBK1), interferon regulating factor (IRF)3, and nuclear factor kappa-B (NF-κB)
are activated to induce the production of type I interferon (IFN) and pro-inflammatory
factors to regulate innate immune cell responses [20,21]. STING expression was found
to be significantly upregulated in the liver of patients with NAFL [22], while STING ex-
pression in macrophages/Kupffer cells (KCs) could promote the progression of NAFLD
via the mediation of hepatic inflammation and fibrosis [23,24], suggesting that STING
activation promotes NAFLD progression. Long-term activation of the STING pathway
in the liver aggravates inflammation, hepatocyte death, and compensatory proliferation,
thereby promoting the inflammation-driven carcinogenesis pathway, suggesting that the
inhibition of STING appears to be a potential strategy to slow the progression of inflam-
matory NASH. In contrast, some cancer cells were found to evade tumor immunity by
down-regulating STING expression, suggesting that the inhibition of STING may also play
a tumor-promoting role in established tumors. Therefore, the activation of cGAS/STING
signaling may contribute to anti-tumor immunity in the treatment of HCC [25–28]. In
summary, STING-targeted regulators are expected to be used for the treatment of NASH
and NASH-associated HCC, respectively.

Currently, negative regulation of the STING signaling pathway is mainly carried
out through post-translational modification, the regulation of protein interaction, and
the promotion of protein degradation. Haag et al. [29] reported that compounds such as
H-151 and C171 inhibit the palmitoylation modifications required for STING activation
through covalent binding, while Li et al. demonstrated that Astin C, tetrahydro-γ-carboline
derivatives, and SN-011 bind to STING mainly through the competitive inhibition of
endogenous cyclic dinucleotides (CDNs) [30]. In addition, Palbociclib, a 4/6 inhibitor of
cyclin-dependent kinases (CDKs), was recently found to directly target the Y167 site of
STING and inhibit the activation of STING by blocking STING dimerization [31]. However,
no studies have reported inhibitors that target STING for the treatment of NAFLD. Besides,
studies on STING agonists targeting advanced solid tumors are still in clinical phase trials.
Therefore, it is important to further clarify the role of STING and its downstream signaling
pathway in NAFL/NASH and to find inhibitors and agonists for the treatment of NAFLD
and NASH-related HCC in the future. Here, we summarize and discuss the role of STING
in NAFLD, and also present the existing inhibitors and agonists targeting STING.

2. Structure and Signaling Pathway of STING

STING, encoded by TMEM173 genes, was firstly reported as an endoplasmic reticulum
adaptor facilitating innate immune signaling in 2008 [32]. The structure and function of
STING are highly conserved across species. Human STING contains 379 amino acids,
while mouse STING encodes 378 amino acids. It consists of an N-terminal containing four
transmembrane domains (TM1~4) and a C-terminal domain (CTD), mainly including the
dimerization domain (DD) and the carboxyl-terminal tail (CTT). The N-terminal domain is
mainly involved in anchoring STING to the ER or to other membrane structures. The DD, a
highly conserved region, plays a critical role in the migration of STING to the perinuclear
region and activating the downstream signaling pathways. The CTT is mainly responsible
for the recruitment and activation of TBK1 and IRF3. In addition, the CTD domain contains
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two CDN-binding domains (CBD) that bind to cGAMP to activate STING. In its inactive
state, STING is anchored to the ER as a butterfly-like dimer through several transmembrane
domains (Figure 1). Once the cGAMP is bound, STING will undergo a conformational
change that results in the tight binding of adjacent STING dimers to form oligomers that
participate in the subsequent immune response.
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Figure 1. Structural basis of cGAS-STING [21,33]. (a) The domain composition of human-STING and
human-cGAS. (b) STING oligomerization occurs after binding to cGAMP. Human-STING (colored
in green, PDB ID:4EMU) and human-STING binds with 2′3′cGAMP (colored in cornflower blue,
PDB ID:4LOH).

STING and its pathway have been found to play important roles in inflammation,
autophagy, apoptosis, cellular senescence, anti-tumor immunity, and neurodegenerative
diseases. The cGAS recognizes aberrant DNA derived from the cytoplasm and changes
conformation to catalyze the production of cGAMP. Then, cGAMP binds and activates
the STING located on the ER, causing STING to undergo a conformational change and
transfer to the Golgi apparatus. Next, STING directly connects to sulfated glycosamino-
glycans (sGAGs), initiating STING multimerization. Subsequently, the sequence motif
named PLPLRT/SD, found at the C-terminal tail of STING, mediates the recruitment and
activation of TBK1 and stimulates the phosphorylation of IRF3. Phosphorylated IRF3
dimerizes and translocates to the nucleus, triggering the expression of the type-I IFN
gene [20,34]. In addition, STING also activates the NF-κB signaling pathway to generate the
associated cytokines. Gui et al. also reported a novel mechanism whereby STING activates
autophagy by inducing LC3 lipidation, which depends on WIPI2 and ATG5 rather than on
TBK1 activation and IFN induction [35]. Furthermore, STING regulates the downstream
PERK-elF2α pathway, leading to phosphorylation of the elF2α S51 site and the suppression
of cap-dependent mRNA translation, to accelerate cellular senescence and lung and kidney
fibrosis [36]. Activation of the above-mentioned signaling pathways contributes to the
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production of pro-inflammatory cytokines and amplifies inflammation (Figure 2). Although
impermanent inflammation is essential to initiate the body’s defense responses against
pathogen invasion, persistent or chronic inflammation can cause arthritis, cardiovascular
diseases, autoimmune diseases, neurological diseases, and even cancer [37,38], indicat-
ing that restraining STING activation may provide a promising therapeutic strategy for
inflammatory diseases. In contrast, appropriate activation of the cGAS-STING pathway
can exhibit potential therapeutic effects in some cancers, and STING agonists can enhance
anti-tumor activity. However, sustained auto-activation will induce chronic inflammation
and ultimately promote tumor growth and metastasis [27,28,39,40]. Therefore, appropriate
regulation of the cGAS-STING is particularly necessary.
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Figure 2. cGAS/STING signaling pathway in immunity [19,35,36]. Exogenous and self-DNA from
viruses, tumors and dead cells, bacteria, damaged mitochondria, and genomes are recognized by
cGAS, then by synthesized cGAMP from ATP and GTP. The binding of cGAMP to STING induces
STING transfer from the ER to the Golgi apparatus and for self-oligomerization, which promotes the
activation and translocation of NF-κB and IRF3 into the nucleus and exerts a pro-inflammatory effect
by the generation of cytokines and type-I IFNs. It also induces LC3 to activate the autophagic signaling
pathway, leading to cellular senescence and organ fibrosis via the STING-PERK-eIF2α pathway.

3. NAFL/NASH and STING

NAFL is a type of simple steatosis characterized by hepatic steatosis without substan-
tial inflammation or fibrosis [41]. Hepatic steatosis is defined as the deposition of large
amounts of triglycerides in hepatocytes. Long-term fatty liver issues can cause the necrosis
of hepatocytes, which may evolve into NASH, liver cirrhosis, or HCC [42–44].
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The liver is an important immunological organ involved in the immune response; it
possesses resident cells, including KCs, dendritic cells (DCs), hepatic stellate cells (HSCs),
liver sinusoidal endothelial cells (LSECs), and blood circulating cells, such as natural killer
cells (NK), monocytes, and neutrophils [45–48]. HSCs that normally remain quiescent trans-
form into myofibroblasts with proliferative and fibrogenic characteristics upon recognition
of injury or stimuli, and then secrete TGF-β and endothelin (ET)-1 to produce an abundant
extracellular matrix (ECM), which together lead to liver fibrosis [49–51]. LSECs have a
unique pore structure with loose intercellular connections and are highly permeable to
substance exchange, due to the lack of basement membranes [52]. Liver injury or other
pathological conditions disrupt the homeostasis of LSECs, causing capillarization and
dysfunction and further activating KCs and HSCs, which plays a crucial role in steato-
sis, inflammation, and fibrosis and promotes the development of NAFLD [53–56]. It has
been reported that NASH patients have an abnormal liver mitochondrial function and
significantly higher cytoplasmic mtDNA content than healthy individuals [57]. When
the Kupffer cells engulf apoptotic or dead hepatocytes, their self-DNA enters the cyto-
plasm and then activates cGAS–STING [58]. The activated KCs secrete cytokines such as
TGF-β, TNF-α, and IL-1β, which activate HSCs and promote the proliferation of HSCs
to drive liver fibrosis [59]. In addition, activated HSCs secrete large amounts of collagen,
pro-inflammatory cytokines, chemokines, and inflammasome, which amplify inflammation
and hepatic fibrosis [60]. Numerous studies have shown that these cells may be involved
in the cGAS-STING signaling pathway to regulate the innate immune response [61,62].

The formation of p62 inclusions in hepatocytes is a key marker to distinguish simple
fatty liver disease from NASH and predicts a poor prognostic outcome for subsequent liver
carcinogenesis. The lipotoxic activation of TBK1 and p62 phosphorylation are critical steps
in the accumulation of protein inclusion in hepatocytes. In the phase of NAFL, hepatic
steatosis often provokes lipotoxic injuries to hepatocytes. A previous study showed that
cGAS and STING, as upstream regulators, were involved in the lipotoxic activation of
TBK1 and subsequent p62 phosphorylation in hepatocytes, leading to the formation of
ubiquitin-p62 aggregates. The inclusions in hepatocytes promoted the development of
steatohepatitis and liver cancer [63]. The evidence also demonstrates that STING activation
promotes fat deposition by regulating lipid metabolism [22]. A study in Drosophila showed
that the STING protein regulates lipid metabolism [64]. Furthermore, p62 was reported to
mediate the autophagy pathway without differentiation between NASH and normal tissues.
In contrast, the high expression of p62 in HCC suggests an impairment of autophagic flux
and promotes tumor cell migration.

The expression of STING is also upregulated in NAFLD. Previous studies showed
that the STING-positive cells in the hepatic tissues of patients with NAFLD were mainly
KCs/monocyte-derived macrophages and endothelial cells but not hepatocytes [22,24].
Moreover, the phosphorylation levels of TBK1 and IRF3 were observably up-regulated
in mouse liver tissues after a high-fat diet (HFD) [22]. The pro-inflammatory effect of
macrophages was enhanced by STING activation [23], producing IFNs, αSMA, TGF-β,
and collagen A1, which strengthened fat deposition in hepatocytes and promoted HSC
activation (Figure 3). In addition, the phosphorylation of STING downstream signals, such
as TBK1, IRF3, JNK, and NF-κB was significantly increased in NAFLD, which induced
more severe inflammation and fibrosis in the liver. In contrast, HFD-induced NAFLD
was restrained in STING-deficient mice [17,22,65]. Another report also demonstrated that
the lack of STING ameliorated NAFLD and reformed the gut bacterial community [66].
These pieces of evidence suggest that the activation of STING is indeed responsible for the
development of NAFL/NASH. However, there are concerns regarding the translation from
rodent findings to humans, which requires further investigation [67].
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Figure 3. Role of the cGAS-STING pathway in HFD-induced NAFLD [22]. HFD-induced NAFLD
manifests as steatosis, which leads to mitochondrial stress injury and the release of mitochondrial
DNA (mtDNA) into the cytosol. Subsequently, the mtDNA is recognized by cGAS and produces
cGAMP to activate the STING downstream pathways, including STING-TBK1-IRF3 and STING-NF-
κB, which trigger the transcription of type-I IFNs and the production of pro-inflammatory cytokines,
resulting in the hepatic inflammatory response. In addition, pro-inflammatory cytokines activate
the function of macrophages/KCs and produce TGF-β, which activates HSCs and aggravates liver
fibrosis in NASH.

4. NASH-Associated HCC and STING

NASH is the primary risk factor for HCC, with approximately 10%–20% of patients de-
veloping cirrhosis and its potentially evolving to HCC within 5–10 years [68,69]. Currently,
inflammation, oxidative stress, ER stress, and metabolic disorders have been reported as
the pathogenesis of NASH-related HCC [70–74]. Among them, chronic liver inflammation
is a mark of HCC, which evolution induces cell death and leads to the compensatory
proliferation of hepatocytes [75]. Therefore, inflammation suppression may be beneficial
in delaying disease progression. In hepatocellular carcinoma, studies show that two con-
tradictory effects exist in STING activation-induced anti-tumor responses. Some studies
have shown that STING activation mitigated HCC by enhancing anti-tumor immunity [76].
Once STING is activated in DCs and macrophages, cytokines are produced to initiate the
innate immune effects directly and mediate adaptive immunity through the recruitment
and activation of T cells [77]. During carcinogenesis, chromosomal instability (CIN), a per-
sistent genomic change, including the expansion or deletion of chromosome copy number
or structure, leading to micronucleus rupture and the leakage of genomic DNA into the
cytoplasm, exacerbates tumor evolution [78–81]. As a cytosolic DNA sensor, cGAS links
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CIN to innate immunity by recognizing ruptured micronuclei and leads to the activation
of STING and downstream NF-κB signaling, which suppresses cancer cell proliferation
via producing IFNs, pro-inflammatory factors such as IL-6 and TNF-α, and chemokines,
including CCL2, CCL5, and CXCL10 [82,83]. In addition, these cytokines or chemokines
recruit NKs and DCs around the cancer tissues, to form a suppressive microenvironment
that is responsible for the pro-defense role in tumor immunity. In addition, the clearance
of tumor DNA also occurs as a consequence of STING activation, through non-immune
functions such as autophagy, apoptosis, and necrosis [84]. In the mutagen-induced HCC
model, the activation of STING allows cross-talking between hepatocytes and immune
cells such as KCs. Further study showed that the deletion of STING accelerated HCC
progression, whereas the application of a STING agonist resulted in suppressed tumor
activity and increased T cell infiltration [76]. However, the literature also showed that
aberrant activation of the STING pathway led to weakened immunity and promoted onco-
genesis and metastasis [85]. The STING–TBK1–IRF3 pathway stimulated the production of
immune checkpoint molecules, such as IFNβ, cytotoxic T-lymphocyte-associated protein
4 (CTLA-4), and programmed cell death ligand 1 (PD-L1), and inhibited T-cell activation,
resulting in immune evasion [86].

Other reports showed that the hypoxic microenvironment within HCC inhibited
the expression of cGAS. Therefore, cGAS-mediated DNA recognition and STING-TBK1-
IRF3 pathway activation were inhibited [87,88]. Moreover, some tumors can evade the
immune system by suppressing STING. For example, the MYC oncogene in triple-negative
breast cancer inhibits STING expression by directly binding to the STING1 enhancer
region, leading to tumor immune evasion [89]. Indeed, low levels of STING were found
to be associated with poor prognosis in HCC patients [90]. Taken together, these studies
indicate that STING agonists may have therapeutic values for HCC as monotherapy or/and
adjuvants, in combination with immune checkpoint inhibitors.

5. STING Inhibitors and Agonists

As a pattern recognition receptor, STING recognizes foreign and self-DNA and changes
its conformation to accomplish its activation and mediate the immune response. However,
excessive STING activation is associated with inflammatory diseases. Meanwhile, the
activation of STING shows surprising potential in the immunotherapy of tumors. Therefore,
the development of inhibitors and agonists that modulate STING activity holds great
promise for clinical treatment.

5.1. Covalent Inhibitors

The palmitoylation of STING in the Golgi apparatus is necessary for its activation [19].
Based on the previous study and a chemical screen, numerous compounds including
C176, C178, and H151 have been identified. These compounds suppress palmitoylation
modifications through covalent binding, which blocks the formation of STING polymers to
regulate the STING signaling pathways [29]. H151 remarkably decreased the STING and
IFN levels and systemic inflammation in pristane-induced lupus (PIL) mice, but clinical
trials have not been conducted.

5.2. Noncovalent Inhibitors

Since covalent bonds are more powerful than non-covalent interactions, such as hy-
drogen bonds and salt bridges, typical covalent inhibitors are considered to have potential
off-target effects and toxicity. Consequently, exploring reversible covalent or non-covalent
inhibitors is essential. Astin C, isolated from Aster tataricus, is thought to inhibit STING via
the specific binding between it and the C-terminal domain of STING. In addition, astin C
breaks the recruitment of IRF3 onto the STING signalosome and suppresses the expression
of IFN-β mediated by natural variations, including STING R232- and STING H232- [30].
Furthermore, Hong et al. [91] reported that SN-011 competes with CDN for the binding
pocket of the STING dimer, thereby blocking CDN binding and activating STING. SN-011



Pharmaceuticals 2022, 15, 1241 8 of 16

is a potent and selective inhibitor of STING signal transduction, with an IC50 value of
76 nM. Elsewhere, palbociclib, an inhibitor of cyclin-dependent kinases (CDKs) 4/6, directly
targets the STING Y167 and intercepts STING dimerization to restrain its activation. In
dextran sulfate sodium salt-induced colitis and Trex1−/−-mediated autoinflammatory
diseases, Palbociclib reduces STING-mediated inflammation and tissue injury. In addition,
palbociclib can also block the formation of STING-TBK1 at the G166 locus [31]. Other
commonly used STING inhibitors are shown in Table 1. Although several noncovalent
STING inhibitors have been identified, none of them have been approved for clinical trials.

Table 1. Commonly used STING inhibitors.

Compound Mechanism Reference

Tetrahydroisoquinoline
derivatives (Compound 18) Target CBD binding pocket [92]

Astin C Inhibits STING-IRF3 interaction via the
binding of the C-terminal domain of STING [30]

SN-011 Target cyclic dinucleotide binding pocket [91]

NO2-FAs Suppresses STING palmitoylation [93]

C-176, C-178 Suppresses murine STING palmitoylation
[29]C170, C-171 Suppresses murine STING palmitoylation

H-151 Suppresses human STING palmitoylation

Gelsevirine Targeting STING for K48 ubiquitination
and degradation [94]

Palbociclib Directly targets STING Y167 [31]

5.3. CDNs Agonists

CDNs agonists include natural agonists containing 2′3′-cGAMP, c-di-AMP, c-di-GMP,
and 3′3′-cGAMP, along with synthetic agonists such as 2′3′-cGAMP (PS)2 (Rp/Sp), 2′3′-c-
di-AM(PS)2 (Rp, Rp), cAIMP, cAIM (PS)2 Difluor (Rp/Sp), and other ramifications [95–98].
Native CDNs originate from mammalian cells or bacteria; they perform immune actions
and physiological functions by activating STING and mediating the TBK1-IRF3-dependent
pathway to produce type-I IFN [99,100]. In particular, 2′3′-cGAMP, as a second mes-
senger generated by cGAS, has a high affinity and potently induces the production of
IFNs [101,102]. For bacterial CDNs, the binding capacity of c-di-GMP and STING was
stronger than that of c-di-AMP. Although native CDNs are essential for immunological
study, their instability, negative charges, and hydrophilicity properties have limited their
application. Therefore, structural modifications targeting CDNs are ongoing and have been
shown to have an important influence on their efficacy and safety. Previous studies have
shown that the CDNs of thiophosphate, rather than parent phosphoric acid CDNs, have
higher bioactivity and a stronger activation of STING. MK-1454 is a CDNs of thiophosphate
with efficient STING agonistic activity obtained based on P(III) chemical synthesis and
structure optimization [103,104]. The phase-II clinical trials of MK-1454 applied to ad-
vanced solid tumors or lymphomas have been completed, showing inspiring effects when
combined with pembrolizumab (a PD-1 antibody). A phase-I clinical trial (NCT04220866)
of MK-1454 in combination with pembrolizumab for the treatment of head and neck squa-
mous cell carcinoma (HNSCC) is currently underway. In addition, clinical trials have been
allowed for MK-2118 from Merck, BMS-986301 from Bristol-Myers Squibb, SB 11285 from
Spring Bank Pharmaceuticals, and other CDN-derived STING agonists shown in Table 1.

5.4. Non-CDN Agonists

Compared to the CDNs, the non-nucleotide STING agonists are more readily available
in industrial production and application. Currently, widely used non-nucleotide agonists
are mainly flavonoids, such as 5,6-dimethylxanthenone-4-acetic acid (DMXAA), flavone
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acetic acid (FAA), α-Mangostin, 10-carboxymethyl-9-acridanonecell (CMA) and dimeric
amidobenzimidazole (diABZI) [105–107]. DMXAA, FAA, and CMA are only used for
non-human cells in vitro studies, as they cannot bind and activate human STING [108].
Moreover, an oral non-nucleotide STING agonist named MSA-2 has been reported, which
binds STING as a non-covalent dimer to generate a closed conformation. Studies have
shown that MSA-2 eliminates tumors in colorectal cancer mice and exhibits good antitumor
activity in combination with PD-1 antibody [109,110]. However, MSA-2 has not yet been
studied in clinical trials.

SR-001 was identified as a STING agonist, based on a cellular activity screen and
protein thermal shift assay. SR-001 is a pro-drug that functions via rapid conversion to
SR-012 in cells. Given the instability of SR-001 and the low cellular permeability of SR-012,
Wang et al. [111] identified SR-717 and found it to have cellular activity equivalent to that of
SR-001. Interestingly, X-ray diffraction crystal analysis showed that SR-717 activated STING
in the same manner as cGAMP and induced similar conformational changes in STING. In
an invasive malignant melanoma mouse model, SR-717 suppressed tumor growth, blocked
tumor metastasis, and promoted CD8+ T cell and NK cell recruitment around tumors to
enhance anti-tumor immune responses [111,112]. Another STING agonist named PC7A
is a PH-sensitive polymer, possessing a seven-membered ring with a tertiary amine [113].
The novel polyvalent STING agonist activates innate immunity and induces the prolonged
generation of pro-inflammatory cytokines, such as IL-6 and IL-1β, via forming STING-
PC7A condensates. Furthermore, there are many other STING agonists that are currently
in clinical trials, some of which have potential therapeutic effects, as shown in Table 2.

Table 2. Part of the STING agonists currently under study.

Compound Phase; Start Time; Notes Reference/Clinical Trials ID

MK-1454
I (2017): Intratumoral(IT); solid tumors or lymphomas NCT03010176; NCT04220866;

[103,104]II (2020): IT; HNSCC

MK-2118 I (2017): IT/SQ; solid tumors or lymphomas NCT03249792

BMS-986301 I (2019): IV; advanced solid cancers NCT03956680

BI-STING (BI1387446) I (2020): IT; advanced solid cancers NCT04147234

SB 11285 I (2019): IV; advanced solid tumors: melanoma, HNSCC,
and solid tumor NCT04096638

IMSA-101(GB492)
I/II (2019): IV; solid tumor NCT04020185;

CTR20211689I (2021): I.V.; adult advanced malignant tumor

E7766
I (2020): IT; advanced solid tumors or lymphomas NCT04144140;

NCT04109092Withdrawn (I(2020): urinary bladder neoplasms)

MIW815(ADU-S100)

Terminated: I (2016): advanced/metastatic solid tumors
or lymphomas

NCT02675439;
NCT03172936;
NCT03937141

Terminated: I(2017): advanced/metastatic solid tumors
or lymphomas)

Terminated: II (2019: head and neck cancer)

Compound 3 Preclinical: Support IV [106]

a-Mangostin Preclinical [114]

GSK3745417 I (2019): IV; advanced solid tumors NCT03843359

BMS-986301 I (2019): IT/IM; advanced solid cancers NCT03956680

SYNB1891 I (2019): IT; metastatic solid neoplasm lymphoma NCT04167137

TAK-676
I (2020): IV; advanced solid tumors NCT04420884;

NCT04879849;
NCT04541108Early phase I (2021): solid tumor
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Table 2. Cont.

Compound Phase; Start Time; Notes Reference/Clinical Trials ID

SNX281 I (2020): IV; solid tumors and lymphoma NCT04609579

MSA-1 Preclinical
No data

MSA-2 Preclinical: orally available; antitumor

SR-001 Preclinical: pro-drug

[111,112]
SR717

Preclinical: The compound was modified from the structure of
SR-012 and was combined with cGAMP at the same position on

STING; it could induce the same conformational change of STING
and had a stronger response when combined with STING

HG381

I (2021): advanced solid tumors
NCT04998422;
CTR20211765;I (2021): advanced solid tumors

Report: colorectal cancer; a better efficacy than ADB-S100

KL340399 IND (2022: NMPA): IV; advanced solid tumor CXHL2200223;
CXHL2200224

NOX-66

Completed: I/II (2017): Cancer
NCT02941523;
NCT04957290I/II (2021): metastatic castration-resistant prostate cancer and other

solid tumors

PC7A Preclinical; form biomolecular condensates;
intratumoral administration [113,115,116]

IACS-8779 Preclinical (2021); IT; Canine glioblastoma [117]

TAK-500 Recruiting:I(2022), IV, HCC/Pancreatic cancer NCT05070247

6. Conclusions and Future Perspectives

The main characteristic of the NAFL phase is hepatic fat accumulation without in-
flammation, leading to hepatic steatosis and lipotoxic injury to hepatocytes. At this stage,
STING is involved in the activation of TBK1 and p62 phosphorylation, which promotes
the formation of large protein inclusions in hepatocytes [63]. As the disease progresses
to NASH, the pathological features are inflammation, steatosis, hepatocyte injury, and
various degrees of fibrosis [118]. cGAS recognizes the aberrant DNA and activates STING
to trigger powerful immune responses that participate in the regulation of lipid metabolism
and inflammatory responses, resulting in hepatic fat deposition and hepatocyte injury [22].
Thus, the inhibition of STING is a potential treatment for NAFLD/NASH. However, during
HCC progression, STING activation has two contradictory effects: the enhancement of anti-
tumor immune response by exerting adaptive immunity, the recruitment and activation of
T cells [76], and the promotion of oncogenesis and metastasis by an exaggerated inflam-
matory response and the induction of PD-L1 expression [119]. Although STING agonists
aiming at HCC are currently not available in clinics, some preclinical reports have shown
that STING activation enhances anti-tumor responses and effectively reduces tumor size in
the mouse models of mutagen-induced HCC [76], suggesting STING agonists as a potential
treatment for HCC. Therefore, the modulation of STING and STING-mediated signaling
pathways may delay the occurrence and development of NAFL to NASH and even to HCC.
Due to the various forms of pathogenesis in the progression of NASH, research attention
also should be focused on whether the accompanying side effects influence the expected
treatments when STING or its pathway is activated or inhibited. Moreover, although
temporary STING activation shows anti-viral and anti-tumor activity, persistent activation
may promote cancer brought on by inflammation. Therefore, it is vital to perform more
preclinical and clinical investigations to determine the safety, stability, and therapeutic
efficacy of STING regulators.

To date, researchers have found or synthesized various inhibitors and agonists tar-
geting STING via multiple screening methods or structural modifications. Some of these
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compounds have shown promising biological activities and have been tested in clinical
trials. However, compounds targeting STING that are used to ameliorate NASH or reverse
NASH-associated HCC have not been reported. Moreover, the off-target effects of covalent
inhibitors and the species-specific problems found during screening compounds also limit
the clinical studies of STING inhibitors. Consequently, further studies on the function of
STING in the development of NASH and NASH-related HCC and exploring new STING
regulators are particularly necessary.
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