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In the era of immune checkpoint blockade cancer therapy, cytokines have become an
attractive immune therapeutics to increase response rates. Interleukin 21 (IL21) as a single
agent has been evaluated for cancer treatment with good clinical efficacy. However, the
clinical application of IL21 is limited by a short half-life and concern about potential immune
suppressive effect on dendritic cells. Here, we examined the antitumor function of a half-life
extended IL21 alone and in combination with PD-1 blockade using preclinical mouse
tumor models. We also determined the immune mechanisms of combination therapy. We
found that combination therapy additively inhibited the growth of mouse tumors by
increasing the effector function of type 1 lymphocytes. Combination therapy also
increased the fraction of type 1 dendritic cells (DC1s) and M1 macrophages in the
tumor microenvironment (TME). However, combination therapy also induced immune
regulatory mechanisms, including the checkpoint molecules Tim-3, Lag-3, and CD39, as
well as myeloid derived suppressor cells (MDSC). This study reveals the mechanisms of
IL21/PD-1 cooperation and shed light on rational design of novel combination cancer
immunotherapy.
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INTRODUCTION

Recently, immune checkpoint blockade (ICB) has showed therapeutic efficacy and greatly prolonged
survival in cancer patients. However, the response rates of ICB treatment are low for most
carcinomas and new approach is needed to further improve cancer immune therapy (Chae
et al., 2018; Li et al., 2018). ICB therapy has removed a major roadblock of cancer treatment by
targeting molecules that hinder T cell-mediated immune responses (Hodi et al., 2010; Brahmer et al.,
2012; Topalian et al., 2012). This new development has ushered in rich opportunities for using
immune agonists as combination therapies. Cytokines drive T cell-mediated immune responses by
enhancing proliferation, promoting type 1 differentiation, increasing the effector function, and
directing the memory generation (Shourian et al., 2019; Zander et al., 2019; Xue et al., 2021). In
contrast, molecules such as PD-1 impose “brakes” to an adaptive immune response. Therefore, the
cytokine-based immunotherapy is in theory in concert with ICB therapy and promises to further
improve clinical response rates.

Interleukin 21 (IL21) is an immune agonist that is an attractive cancer immunotherapeutic (Ma
et al., 2003; Ugai et al., 2003; Di Carlo et al., 2004; Sivakumar et al., 2004; Spolski and Leonard, 2008;
Xu et al., 2015; Lewis et al., 2017; Deng et al., 2020). Administration of IL21 in vivo directly increases
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the expression of effector molecules on CD8+T and NK cell,
including granzyme B, perforin and IFN-γ (Kasaian et al., 2002;
Brady et al., 2004; Zeng et al., 2005; White et al., 2007). Recently,
IL21 was shown to promote the generation of memory stem
CD8+T cells, thereby should promote a sustained antitumor
immune response (Zhang et al., 2005; Klebanoff et al., 2011;
Wölfl et al., 2011; Chen et al., 2018). IL21 also synergizes with IL-
15 or IL-7 in vitro to promote the proliferation of central memory
CD8+ T cells (Kasaian et al., 2002; Brady et al., 2004; Zeng et al.,
2005). Other studies show that Th17 cells produce significantly
higher levels of IL21 than either Th1 or Th2 cells and that IL21 is
required for the generation of Th17 cells (Korn et al., 2007;
Nurieva et al., 2007; Zhou et al., 2007). Th17 cells afford strong
antitumor activities by stimulating CD8+T cells (Martin-Orozco
et al., 2009). In addition to its direct effect on conventional T
(Tconv) cells, IL21 inhibits the suppressive function of regulatory
T cells (Tregs) and disrupts their homeostasis (Peluso et al., 2007;
Clough et al., 2008; Attridge et al., 2012; Van Belle et al., 2012).

Whether IL21 induces other immune regulatory pathways
remain to be investigated. All in all, the existing data shows
that IL21 strongly promotes the anti-tumor immune response.
Indeed, administration of IL21 has shown strong antitumor
efficacy in multiple preclinical mouse tumor models (Spolski
and Leonard, 2008). Recent preclinical studies showed that
recombinant IL21 synergizes with CTLA-4 and PD-1 blockade
to inhibit cancer. These results validate the ability of IL21 to be
combined with current ICB therapies (Lewis et al., 2017). Since
many new checkpoint inhibitors are being evaluated in the clinics,
it remains to be studied whether IL21 can be further combined
with additional immune checkpoint inhibitors, such as anti-Lag-3
and anti-Tim-3 monoclonal antibodies (mAbs).

Recombinant IL21 has been tested as an antitumor agent in
various clinical trials (Davis et al., 2007; Thompson et al., 2008;
Davis et al., 2009; Schmidt et al., 2010; Petrella et al., 2012; Bhatia
et al., 2014). The clinical program has advanced to phase II with
promising antitumor activities and acceptable toxicity. However,

FIGURE 1 | IL21Rwas differentially expressed among tumor-infiltrating immune cells (A)Cluster analysis. Immune cells from vaccinated MC38mice were drawn by
unified manifold approximation and projection (UMAP) dimensionality reduction of scRNA-seq data, and were colored by the expression of IL21R. (B) Violin plot shows
the expression of IL21R in different immune cell subsets. Each dot represents a single cell. (C)Representative flow cytometry scatter plots of IL21R expression on tumor-
infiltrating lymphocytes. (Foxp3-CD4+: CD45+CD4+Foxp3-, Foxp3+CD4+: CD45+CD4+Foxp3+, CD8+: CD45+CD8+, NK cell: CD45+CD8-CD4-NK1.1+, B cells:
CD45+CD8-CD4-B220+). (D) Quantitative percentage of IL21R in various immune cells. (E) Representative flow cytometry analyses of IL21R expression on tumor-
infiltrating myeloid cells (CD103+DC: CD45+Gr1-MHCII+CD24+CD103+, CD103-DC: CD45+Gr1-MHCII+CD24+CD103-CD11b+, MDSC: CD45+CD11b+Gr1+, CD206-

Mφ: CD45+Gr1-MHCII+F4/80+CD206-Arg-1-, CD206+Mφ: CD45+Gr1-MHCII+F4/80+CD206+Arg-1+). (F) Quantitative percentage of IL21R in various immune cells.
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the short half-life of IL21 reduces the in vivo levels of IL21 and
requires frequent dosing, which limits its clinical application. In
this study we first examined the therapeutic efficacy of a half-life-

improved IL21 in preclinical mouse tumor models. We then
investigated the immune mechanisms of combination therapy.
Next, we determined whether IL21 induced the expression of

FIGURE 2 | HSA-IL21 and PD-1 blockade combination therapy additively inhibited tumor growth. (A,B)MC38 tumor cells (1 × 106) were injected intradermally to
B6 mice, monitored tumor volume (A) and body weight (B) of tumor-bearing mice treated with IgG, HAS-IL21, α-PD-1, HSA-IL21/α-PD-1. Data were presented as
mean ± SEM, n � 4–5, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, two-way ANOVA test were performed. (C) Graphic schematics of the mouse experiment. MC38
tumor cells (1 × 106) were injected intradermally to B6 mice, 9 days after tumor inoculation, MC38 tumor-bearing mice were treated with IgG, HSA-IL21, α-PD-1,
HSA-IL21/α-PD-1.96h later, tumor-infiltrating lymphocytes were analyzed by flow cytometry. (D) Representative flow plots of IL21R expression on tumor-infiltrating
CD8+, Foxp3-CD4+, Foxp3+CD4+ T and NK cells. (E–H)Quantitative analysis of IL21R expression depicted in (D). Data were presented as mean ± SEM, n � 5, *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001, one-way ANOVA test were performed. (I) Representative flow plots showing the percentage of main immune populations. (J–O)
Quantitative percentage of tumor infiltrating CD45+ lymphocytes, percentages of CD8+ T, CD4+ T cells, Foxp3+CD4+, Foxp3-CD4+ T and NK cells. Data were presented
as mean ± SEM, n � 5, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, one-way ANOVA test was performed.
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additional immune checkpoint molecules, such as Lag-3, Tim-3,
and CD39. Lastly, we examined whether targeting these
molecules in triple and quadruple combinations therapies
would further increase therapeutic efficacy.

RESULTS

IL21R Was Differentially Expressed Among
Tumor-Infiltrating Immune Cells
The cellular response to IL21-based therapy is dependent on the
expression of its receptor IL21R. We examined IL21R expression
on immune cells in the tumor microenvironment (TME). First,
we analyzed published single-cell RNA-sequencing (scRNA-seq)
data of mouse MC38 tumors (Figures 1A,B) (Zhang et al., 2020).
IL21R was highly expressed on a broad range of tumor-
infiltrating immune cells, including CD4+ Tconv cells, T
regulatory cells (Tregs), CD8+ T cells, B cells, NK cells,
macrophages, monocytes, and dendritic cells (DCs) but
minimally expressed in neutrophils and mast cells (Figures
1C,D). We confirmed IL21R expression at the protein level by
analyzing MC38 tumors with flow cytometry. IL21R was
expressed on 41% of CD4+ Foxp3- T cells, 18% of Tregs, 38%
of CD8+ T cells, 15% of NK cells, and 54% of B cells (Figures
1C,D and Supplementary Figure S1A). IL21R was also expressed
on a smaller fraction of myeloid cells (16% of type 1 DCs (DC1s),
6% of type 2 DCs (DC2s), 3% of myeloid-derived suppressor cells
(MDSCs), 8% of M1 macrophages, and 14% of M2 macrophages
(Figures 1E,F). Interestingly, we observed that IL21R was
expressed on more than 79% of T and B lymphocytes in
lymph nodes and spleen (Supplementary Figures S1B,C).
These data show that IL21 can directly act on multiple
immune cell types in the TME and the secondary lymphoid
system.

HSA-IL21 and PD-1 Blockade Combination
Therapy Additively Inhibited Tumor Growth
In order to improve pharmacologic property of IL21, an anti-
HSA nanoantibody was fused to IL21. The half-life of IL21 was
extended less than 30 min to more than 15 h in the mouse (Zhong
et al., 2020). We then tested the efficacy in vivo of HSA-IL21
administration alone and in combination with PD-1 blockade.
HSA-IL21 alone significantly inhibited the growth of MC38
tumors at comparable levels to PD-1 blockade (Figure 2A).
The weight of the mice stayed constant, showing that HSA-
IL21 has no apparent toxicity (Figure 2B). Combination therapy
completely stunted tumor growth (Figure 2A and
Supplementary Figure S2A). Administration of recombinant
IL21 at the same dose and frequency did not produce any
antitumor effect (Supplementary Figures S2C,D).

To uncover the mechanisms of HSA-IL21/PD-1 blockade
combination therapy, we studied the composition and
functional states of immune cells in the TME using multi-
color flow cytometry. Combination therapy additively
increased the expression of IL21R on Foxp3- CD4+ T cells,

Tregs, CD8+ T cells, and NK cells in the TME (Figures
2C–H). HSA-IL21 or PD-1 blockade alone increased the
fraction of total immune cells (CD45+) out of all cells in the
TME, though combination therapy did not cause any further
increases (Figures 2I,J). Within the CD45+ immune cell
compartment, HSA-IL21 treatment increased the fraction of
CD8+ T cells and decreased the fraction of Treg cells (Figures
2K,L). In contrast, combined therapy decreased the fraction of
CD4+ T cells (Figures 2M,N). Combination therapy shifted the
T cell compartment towards the HSA-IL21 phenotype. The
fraction of NK cells was not significantly altered by HSA-IL21
or PD-1 blockade alone. However, combination therapy
significantly increased the fraction of NK cells (Figure 2O).
These data show that HSA-IL21/PD-1 blockade combination
therapy might act via IL21R to increase the immune response
in the TME and thereby inhibit tumor growth.

Combination Therapy Enhances the
Effector Function of Tumor-Infiltrating
Lymphocytes
To determine whether combination therapy affects the effector
function of tumor-infiltrating lymphocytes (TILs), we examined
the effector and activation molecules GzmB, IFN-γ, and CD69 on
CD8+, Foxp3-CD4+, Foxp3+CD4+ T cells and NK cells in the
TME at 96 h after treatment by using multi-color flow cytometry
(Figures 3A,I). The production of both IFN-γ and GzmB by
CD8+ T cells and CD4+ T cells was additively increased by
combination therapy (Figures 3B–H). Combination therapy
also additively increased IFN-γ production on NK cells. GzmB
production was enhanced by combination therapy or PD-1
blockade, but not HSA-IL21 alone (Figures 3G,H). The
expression of CD69, a marker for activated and tissue resident
T cells (Radulovic et al., 2013), was additively increased in Foxp3-

CD4+ T cells, Tregs, CD8+ T cells, and NK cells following
combination therapy. However, the expression of CD103,
another marker for tissue resident T cells (Topham and Reilly,
2018), was unchanged. (Figures 3B,J–Q). Overall, HSA-IL21/
PD-1 blockade combination therapy increases TIL effector
function.

Combination Therapy Induces Expression
of Immune Checkpoint Molecules on
Tumor-Infiltrating Lymphocytes
Since the expression of immune checkpoint molecules
characterizes T and NK cell exhaustion and may limit the
efficacy of combination therapy (Wherry, 2011; Wherry and
Kurachi, 2015; Yang et al., 2020; Moesta et al., 2020; Bastid
et al., 2015; Zhang et al., 2019; Sade-Feldman et al., 2019; Haas
and Obenauf, 2019; Sun et al., 2021), we next looked at the
expression of checkpoint molecules Tim-3, Lag-3, and CD39 by
multi-color flow cytometry. The expression of all three inhibitory
receptors was significantly enhanced on Foxp3-CD4+ T cells,
Tregs, CD8+ T cells, and NK cells after combination therapy
(Figures 4A–N). In addition, the fraction of Tim-3+CD39+ CD8+
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T cells was significantly enhanced after combination treatment
(Figures 4J,O–R). These results indicate that HSA-IL21/PD-1
blockade combination therapy may drive TILs into a
hyperactivated state that is controlled by multiple immune
checkpoint molecules (Yang et al., 2020).

Combination Therapy Promoted DC1 and
M1 Cells and Decreased DC2 and M2 Cells
in the TME
We next investigated whether combination therapy affected the
myeloid compartment of the TME using multi-color flow
cytometry. We found an increase in the fraction of DC1 and
M1 macrophages in the immune compartment following
combination therapy (Figures 5A–E). In contrast, the fraction

of M2 macrophages and DC2 was decreased. These results are
consistent with the observed increases in the CD8+ T cell-mediated
immune response. Interestingly, we found that combination
therapy increases the fraction of immunosuppressive MDSCs in
the TME (Figures 5A,F,G). These data show that the myeloid
compartment mainly promotes the anti-tumor lymphocyte
response following combination therapy, but that some
immunosuppression also occurs via MDSCs.

Combination Therapy Promotes the
Tumor-antigen-specific T Cell Response in
Peripheral Lymphoid Organs
We also examined T cells in the spleen to determine changes in
the peripheral lymphoid organs following combination therapy.

FIGURE 3 | Combination therapy enhances the effector function of tumor-infiltrating lymphocytes. (A–Q)MC38 tumor cells (1×106) were injected intradermally to
B6 mice, 9 days after tumor inoculation, MC38 tumor-bearing mice were treated with IgG, HSA-IL21, α-PD-1, HSA-IL21/α-PD-1, 96 h later, tumors were resected and
analyzed by flow cytometry. (A and I) Representative flow plots showing IFN-γ, GzmB, CD69 and CD103 staining in CD8+, Foxp3-CD4+, Foxp3+CD4+ and NK cells.
(B–H)Quantitative percentage of IFN-γ and GzmB expression in CD8+, Foxp3-CD4+, Foxp3+CD4+ T and NK cells. Data were presented as mean ± SEM, n � 5, *p
< 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, one-way ANOVA test was performed. (J–Q) Quantitative percentage of CD69 expression in CD8+, Foxp3-CD4+,
Foxp3+CD4+ T and NK cells. Data were presented as mean ± SEM, n � 5, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, one-way ANOVA was performed.
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We found no difference in the percentages of Foxp3- CD4+ T cells
and CD8+ T cells. However, combination therapy additively
decreased the fraction of naïve CD62L+ CD8+ and CD62L+

Foxp3- CD4+T cells (Figures 6A–C). The fraction of CD62L-

CD44-CD8+ or CD62L-CD44-Foxp3-CD4+ T cells were increased
in the combination therapy group (Figures 6A,D,E). There data
suggest that the combined treatment with HSA-IL21 and PD-1
mAbs resulted in a systemic decrease in naive T cells. In order to
further determine tumor-antigen-specific T cells, we performed
the enzyme-linked immunosorbent spot (ELISpot) assay. We
found that tumor antigen-specific effector T cells in the spleen
were significantly increased upon combination therapy
(Figure 6F). These data show that HSA-IL21/PD-1 mAbs
combination therapy leads to both systemic T cell activation
and an increase in the number of tumor-antigen-specific T cells in
the peripheral lymphoid organs.

Combination Therapy Sustains Anti-Tumor
Immune Responses in TME and Periphery
Given the strong anti-tumor immune response induced by
combination therapy, we decided to test whether the therapy
could sustain these responses overtime. We repeatedly
administered of the combination therapy over four times at a
4-day interval, and performed multi-color flow cytometry of the
TME (Figure 7). We found moderate increases in the fraction of
total immune cells in the TME (Figures 7A,B). Within the
immune compartment, we found a significant increase in the
fraction of CD8+ T cells in the TME of the IL21 treatment group
(Figures 7A,B,D,E). The fraction of CD4+ Foxp3- T cells and
Tregs significantly decreased in all treatment groups (Figures
7A,C,F). We also found that combination therapy additively
increased the fraction of IFN-γ+ CD4+ T cells, IFN-γ+ CD8+

T cells, GzmB+ CD8+ T cells, and GzmB+ NK cells (Figures

FIGURE 4 | Combination therapy induces expression of immune checkpoint molecules on tumor-infiltrating lymphocytes. (A–I) MC38 tumor cells (1 × 106) were
injected intradermally to B6 mice, 9 days after tumor inoculation, MC38 tumor-bearing mice were treated with IgG, HSA-IL21, α-PD-1, HSA-IL21/α-PD-1, 96 h later,
tumors were resected and analyzed by flow cytometry. (A) Representative flow plots showing Tim-3 and Lag-3 staining in CD8+, Foxp3-CD4+, Foxp3+CD4+ T and NK
cells. (B–I) Quantitative percentage of Tim-3 and Lag-3 expression in CD8+, Foxp3-CD4+, Foxp3+CD4+ T and NK cells. Data were presented as mean ± SEM, n �
5, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, one-way ANOVA test was performed. (J) Representative flow plots showing Tim-3 and CD39 staining in CD8+,
Foxp3-CD4+, Foxp3+CD4+ and NK cells. (K–R) Quantitative percentage of CD39 and CD39/Tim-3 double positive expression in CD8+, Foxp3-CD4+, Foxp3+CD4+ T
and NK cells. Data were presented as mean ± SEM, n � 5, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, one-way ANOVA test was performed.
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7G–K). The number of tumor antigen-specific T cells in the
spleen were also increased upon treatment with combination
therapy (Figure 7L). Collectively, these data demonstrate that
combination therapy continually promotes the type 1 immune
response over time and IL21 in particular greatly increases the
tumor-antigen specific T cell in the periphery.

HSA-IL21 Combined With Tim-3, Lag-3, and
PD-1 Blockade Additively Inhibits Tumor
Growth
Given that HSA-IL21/PD-1 blockade combination therapy
increases the expression of checkpoint molecules Tim-3 and
Lag-3 expression on TILs, we next determined whether the
efficacy the therapy could be improved by combination
with ICB therapies targeting Tim-3 and Lag-3. Our results
indicate that both HSA-IL21/PD-1/Tim-3 or Lag-3 blockade
triple combinations produced a greater antitumor effect
without apparent toxicity (Figures 8A–D). Moreover, HSA-
IL21/PD-1/Tim-3/Lag-3 blockade quadruple therapy
produced an even greater antitumor effect, again without
apparent toxicity (Figures 8E,F and Supplementary Figures
S3A–C). Our study shows that HSA-IL21 can be combined
with multiple checkpoint inhibitors to improve current cancer
immunotherapies.

DISCUSSION

Our work demonstrates that the half-life-extended HSA-IL21
retains the antitumor effect of WT IL21 and produces superior
efficacy when combined with PD-1 blockade in vivo. The cellular
mechanisms behind the additive effect of combination therapy
involve increases in the fraction and effector functions of CD8,
Th1 and NK cells, decreases in the fraction of Treg cells, increases
in the fraction of DC1 and M1 macrophages, and increases in the
number of tumor-antigen-specific T cells in the peripheral
lymphoid organs. The additive effect provided by combination
therapy shows that IL21 as a cancer immunotherapeutic is limited
by the immune checkpoint molecule PD-1. We found that the
effect of IL21 is also limited by multiple checkpoint molecules,
including Tim-3 and Lag-3—combination therapies involving
blockade of these molecules further improved therapeutic efficacy
without causing severe toxicity.We found that the effect of IL21 is
further limited by MDSCs. Our findings chart pathways for
further improvement of IL21-based therapy.

We found that IL21 and PD-1 blockade alone or in
combination act on T and NK cells. Combination therapy
additively increases IL21R expression on T cells and NK cells
in the TME. This finding suggests that IL21R might be an
important molecular hub that integrates the signaling
pathways of both IL21 and PD-1 blockade on TILs. We also

FIGURE 5 | Combination therapy induced myeloid cells that promote the CD8+ T cell-mediated immune response against cancer. (A–G) MC38 tumor cells (1 ×
106) were injected intradermally to B6mice, 9 days after tumor inoculation, MC38 tumor-bearing mice were treated with IgG, HSA-IL21, α-PD-1, HSA-IL21/α-PD-1, 96h
later, tumors were resected and analyzed by flow cytometry. Representative flow plots showing the percentage of myeloid populations. (B–G)Quantitative percentage of
tumor infiltrating dendritic cells, macrophage, MDSC. Data were presented as mean ± SEM, n � 5, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, one-way
ANOVA test was performed.
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showed that combination therapy synergistically increases the
production of GzmB and IFN-γ by TILs. This is likely due to
direct regulation of these genes by IL21 because a previous study
showed that GzmB is an IL21 target gene (Shourian et al., 2019).
Consistent with our conclusions, this study found that IL21
sustains the cytotoxic functions of CD8 T cells and increases
their cytokine secretion capacities (Shourian et al., 2019). It has
been shown that IL21 increases the number of central memory
T cells and T memory stem cells in vitro (Kasaian et al., 2002;
Brady et al., 2004; Zeng et al., 2005; Zhang et al., 2005; Klebanoff
et al., 2011; Wölfl et al., 2011; Chen et al., 2018). Here, we found
that IL21 increases the number of tumor-antigen-specific T cells
in the spleen in vivo. These results show that IL21/PD-1 blockade
combination can increase both effector function as well as the
number of tumor antigen-specific T cells.

IL21/PD-1 blockade combination therapy activates TILs, but
also induces the expression of immune checkpoint molecules
Lag-3, Tim-3 and CD39. The strong stimulation provided by IL21
and PD-1 blockade on effector T cells may result in
hyperactivation, a state that is characterized by the expression
of multiple immune inhibitory receptors. These receptors prevent
immune-mediated pathology, but limits the antitumor activity
(Alvarez-Fernández et al., 2016; Haas and Obenauf, 2019; Sade-
Feldman et al., 2019; Sun et al., 2021). We showed that triple
combination therapy with Tim-3 or Lag-3, and quadruple

therapy, further increases the efficacy of double therapy.
Combination therapies should be tested in the clinic to further
improve patient outcomes.

We showed that HSA-IL21/PD-1 blockade combination
therapy increases the fraction of DC1 cells in the TME.
Consistent with this finding, we observed an increase in the
fraction and function of CD8+ T cells. Our results on DC1
contrast previous studies showing that IL21 has a potent
inhibitory effect on DCs(Brandt et al., 2003; Wan et al., 2013).
One study showed that addition of IL21 during generation of
mouse bone marrow-derived DCs (BMDCs) reduces the
expression of major histocompatibility complex II (MHCII)
and the ability to induce antigen-specific CD4+ T cell
proliferation (Brandt et al., 2003). IL21 added during
lipopolysaccharide (LPS) stimulation inhibits DC activation
and maturation, as well as the production of proinflammatory
cytokines IL-1β, IL-12, IL-6, and tumor necrosis factor α (TNF-
α). Another study showed that IL21 induces apoptosis of splenic
conventional dendritic cells (cDCs) via induction of Bim (Wan
et al., 2013). Consistent with these results, we also found that
combination therapy decreases the fraction of DC2s in the TME.
IL21 might act on DC2s in order to decrease the fraction of CD4+

Foxp3- T cells or Tregs in the TME. Our findings suggest that
IL21 differentially acts on DC1s vs DC2s to promote the CD8+ T
cell-mediated anti-tumor immune response.

FIGURE 6 | Combination therapy promotes the tumor-antigen-specific T cell response activation in peripheral lymphoid organs. (A–F)MC38 tumor cells (1 × 106)
were injected intradermally to B6 mice, 9 days after tumor inoculation, MC38 tumor-bearing mice were treated with IgG, HSA-IL21, α-PD-1, HSA-IL21/α-PD-1, 96 h
later, immune cells from spleen were analyzed by flow cytometry. Splenocytes were applied to IFN-γ ELISpot assay. (A) Representative flow plots showing CD62L and
CD44 staining on CD8+ and Foxp3-CD4+T cells in spleen. Quantitative expression of CD44, CD62L expression on T cells gated on CD8+ (B–D) and Foxp3-

CD4+T cells (E) in spleen. Data were presented as mean ± SEM, n � 3, *p < 0.05, **p < 0.01, ***p < 0.001, one-way ANOVA test was performed. (F) Numbers of tumor-
antigen specific IFN-γ producers in the splenocytes. Data were presented as mean ± SEM, n � 3, *p < 0.05, **p < 0.01, ***p < 0.001, one-way ANOVA test was
performed.
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Consistent with activation of CD8+, Th1 cells, and NK
cells, we found that combination therapy increased the
fraction of M1 macrophages and decreased the fraction of M2
macrophages in the TME. Again, we found increased the effector
function of CD4+ Foxp3- T cells, CD8+ T cells, and NK cells.
Combination therapy primarily shifts the immune response to a
type 1 phenotype that is anti-tumor. However, we also observed
increases in the fraction of immunosuppressive mMDSCs and
nMDSCs out of all immune cells. The mechanism by which IL21
acts on MDSCs requires further work to be uncovered.

Nonetheless, our findings highlight the opportunity to
combine IL21 with immunotherapies that target MDSCs.

Recombinant IL21 as a single agent has been evaluated in clinical
trials with encouraging efficacy. However, there are no published
results about combination therapies using both IL21 and ICB in
human cancer patients. The requirement for frequent dosingmight be
an obstacle to the success of IL21-based therapies in cancer patients.
Our study demonstrates that the half-life extended HSA-IL21 has
potential to be combined with existing ICB therapies as well as
multiple additional checkpoint inhibitors in the clinic.

FIGURE 7 |Combination therapy sustains anti-tumor immune responses in TME and periphery. (A–L)MC38 tumor cells (1 × 106) were injected intradermally to B6
mice, 5 days after tumor inoculation, MC38 tumor-bearing mice were treated with IgG, HSA-IL21, α-PD-1, HSA-IL21/α-PD-1 for total 4 times, after last treatment 48h,
tumors were resected and analyzed by flow cytometry (n � 4). (A) Representative flow plots showing the percentage of main immune populations. (B–F) Quantitative
percentage of tumor infiltrating CD45+ lymphocytes, percentages of CD8+, CD4+, Foxp3-CD4+, Foxp3+CD4+T cells and NK cells. Data were presented as mean ±
SEM, n � 4, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, one-way ANOVA test was performed. (G) Representative flow plots showing IFN-γ and GzmB staining in
CD8+, Foxp3-CD4+ T cells and NK cells. (H–K) Quantitative percentage of IFN-γ and GzmB expression in CD8+, Foxp3-CD4+T cells and NK cells. Data were presented
as mean ± SEM, n � 4, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, one-way ANOVA test were performed. (L)Numbers of tumor-antigen specific IFN-γ producers
in the splenocytes. Data were presented as mean ± SEM, n � 3, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, one-way ANOVA test was performed.
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MATERIALS AND METHODS

Mouse
C57BL/6J and BALB/c mice were purchased from The
Jackson Laboratory and housed in the specific pathogen-
free animal facility of University of Pittsburgh School of
Medicine. All mice experiments have been approved by
Institutional Animal Care and Use Committee of
University of Pittsburgh.

Cell Culture and Tumor Model
MC38 tumor cell line was cultured in complete DMEM
medium plus with 10% fetal bovine serum (FBS) and 1%
penicillin-streptomycin (P.S). CT26 cancer cells are
transfected with plasmid coding MSLN ORF, and selected
by surface marker MSLN using fluorescenec-activated cell
sorting (FACS). CT26-MSLN tumor cell line was cultured
in complete DMEM medium plus with 10% fetal bovine
serum (FBS) and 1% penicillin-streptomycin (P.S). For
MC38 tumor model, C57BL/6 mice were injected with 1
million cells intradermally (i.d.). For CT26-MSLN tumor

model, 1 million cells were injected intradermally (i.d.) into
BALB/c mice. MC38 and CT26 bearing mice were randomized
into four treatment cohorts: control IgG, HSA-IL21, α-PD-1
(clone J43, BioXCell) or HSA-IL21/α-PD-1. HSA-IL21 was
injected by intraperitoneally (i.p.) 25 μg per mouse, α-PD-1
were injected by intraperitoneally (i.p.) 200 μg per mouse. All
mice were administered on the 5th day after tumor
inoculation. Tumor sizes were monitored every 2–3 days,
and the tumor volume was calculated as L× W2/2.

Reagents and Antibodies
HSA-IL21 (the half-life extended IL21 was kindly provided by
Anwita Biosciences, CA, USA), PD-1mAb (clone:J43), hamster
IgG were purchased from Bioxcell company (catalog no.
BE0091) for tumor therapy. For Flow cytometry, CD45
(clone: 30-F11), CD4 (clone: GK1.5), CD8 (clone: 53–6.7),
NK1.1 (clone: PK136), B220 (clone: RA3-6B2), Foxp3 (MF-
14), PD-1(29F.1A12), Tim-3 (clone: RMT3-23), Lag-3 (clone:
C9B7W), CD39 (clone: 24DMS1), CD62L (clone: MEL-14),
CD44 (clone: IM7), CD103 (clone: M290), CD69 (clone:
H1.2F3), IFN-γ (clone: XMG1.2), GzmB (clone: QA16A02),

FIGURE 8 | HSA-IL21 combined with Tim-3, Lag-3, and PD-1 blockade additively inhibits tumor growth. (A,B) MC38 tumor cells (1×106) were injected
intradermally to B6 mice, 5 days after tumor inoculation, MC38 tumor-bearing mice were treated with IgG, HSA-IL21, α-PD-1, α-Tim-3, HSA-IL21/α-PD-1, HSA-IL21/
α-Tim-3, α-PD-1/α-Tim-3, HSA-IL21/α-PD-1/α-Tim-3, for total 4 times. Tumor size (A) and body weight (B)were measured every 2 days. (n � 4–5). Data were presented
as mean ± SEM, n � 5, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, two-way ANOVA test was performed. (C,D) MC38 tumor cells (1×106) were injected
intradermally to B6 mice, 5 days after tumor inoculation, MC38 tumor-bearing mice were treated with IgG, HSA-IL21, α-PD-1, α-Lag-3, HSA-IL21/α-PD-1, HSA-IL21/
α-Lag-3, α-PD-1/α-Lag-3, HSA-IL21/α-PD-1/α-Lag-3, for total 4 times. Tumor size(C) and body weight(D) were measured every 2 days. (n � 3–5). Data were presented
as mean ± SEM, n � 5, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, two-way ANOVA test were performed. (E–F) MC38 tumor cells (1 × 106) were injected
intradermally to B6 mice, 5 days after tumor inoculation, MC38 tumor-bearing mice were treated with IgG, HSA-IL21/α-PD-1/α-Tim-3, HSA-IL21/α-PD-1/α-Lag-3,
α-PD-1/α-Tim-3/α-Lag-3, HSA-IL21/α-PD-1/α-Tim-3/α-Lag-3, for total 4 times. Tumor size (E) and body weight (F) were measured every 2 days. (n � 3–5). Data were
presented as mean ± SEM, n � 5, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, two-way ANOVA test was performed.
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CD11b (clone: M1/70), Ly6C (clone: HK1.4), Ly6G (clone:
1A8), Gr-1 (clone: RB6-8C5), CD24 (clone: M1/69), F4/80
(clone: BM8), CD11C (clone: N418), CD206 (clone: MR6F3),
Arginase 1 (clone: A1exF5) were purchased from Biolegend
ebioscience or BD Bioscience. Zombie NIR dye was purchased
from Biolegend.

Processing of Tissues and Flow Cytometry
Mice were sacrificed, TDLN, spleen and tumors were removed.
We placed the spleens and lymph nodes between the frosted
surfaces of two glass slides and applied force to disrupt these
organs to release immune cells, spleen was need to treated with
ACK lysis buffer to remove red blood cells. Single-cell
suspensions were filtered through a 40-μm cell strainer,
washed, and resuspended in 1%FBS HBS for analysis. Tumor
were cut into small pieces, digested in serum free RPMI with
0.25 mg/ml Liberase TL (Roche) and 0.33 mg/ml Dnase 1
(Sigma) in 37° for 30 min. Single-cell suspensions were filtered
through a 40-μm cell strainer, washed, and resuspended in 1%
FBS HBS for staining. For IFN-γ or Granzyme B staining, tumor
cells were stimulated with leukocyte activation cocktail
(Biolegend) for 6 h, then stained surface marker and
intracellular markers. by the standard staining protocol
described before (Chen et al., 2020). Flow cytometry analysis
were applied to LSRII or Aurora (Cytek Biosciences) and
analyzed by using Flowjo software (BD).

IFN-γ ELISpot Assay
15 μg/ml capture antibody anti-IFN-γ (clone:AN18, MabTech)
was coated and incubated overnight at 4°. On the other day,
5*105 splenocytes were co-cultured with 5*104, 200Gy
irradiated MC38 tumor cells at 37° incubator. Forty-8 hours
later, Wash the plate 5 times with wash buffer (PBS/0.05%
Tween 20) and incubated with 1.5 μg/ml biotinylated
secondary antibody (clone: R4-6A2-biotin, MabTech) for
1 h, and then washed and developed with VECTASTAIN
Elite ABC HRP Kit (Vector Labs) and incubated with AEC
Peroxidase (HRP) Substrate Kit (Vector Labs). The plate was
read and counted using the ImmunoSpot Analyzer (Cellular
Technology).

Single-Cell RNA-Seq Data Processing
Zhang et al. (2020) scRNA-seq data of MC38 tumor
downloaded from ENA website (ArrayExpress: E-MTAB-
8832) was aligned and quantified using the Cellranger
Software (Version 4.0.0) against the mm10 mouse reference
genome. The preliminary filtered data generated from
Cellranger were used for a Seurat object created by the R
package Seurat (Version 3.2.3). Doublets were removed by
DoubletFinder package. Further quality control was applied
to cells based on four metrics step by step, including the
total UMI count, number of detected genes and proportion
of mitochondrial gene count per cell, and proportion of
ribosomal gene count per cell. Specifically, cells with more
than 50,000 UMI count and 10% mitochondrial gene count
were filtered, as well as cells with more than 50% ribosomal
gene count.

Integration of Multiple scRNA-Seq,
Dimension Reduction and Unsupervised
Clustering
Single cell data were processed for dimension reduction and
unsupervised clustering by following the workflow in Seurat. In
brief, 2,000 highly-variable genes were selected for downstream
analysis by using FindVariableFeatures function with parameter
“nfeatures � 2000.” Subsequently, IntegrateData function was used
to integrate data and create a newmatrixwith 3,000 features, inwhich
potential batch effect was regressed out. To reduce the dimensionality
of the scRNA-seq dataset, principal component analysis (PCA) was
performed on an scaled integrated data matrix. With ElbowPlot
function of Seurat, top 40 PCs were used to perform the downstream
analysis. The main cell clusters were identified with the FindClusters
function offered by Seurat, with resolution set as default (res � 0.2).
And then they were visualized with 2D UMAP plots. Conventional
markers described in a previous study were used to categorize every
cell into a known biological cell type.

Statistical Analysis
We used the one-way ANOVA test for comparisons between
different treatment groups. Two-way ANOVA was used for
comparing tumor growth curves. Statistical analyses were
performed with Graphpad Prism.
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Supplementary Figure S1 | Characterization of IL21R+ peripheral immune
cells. (A) Representative flow cytometry gating strategy for identification of immune
cell population. (Foxp3-CD4+: CD45+CD4+Foxp3-, Foxp3+CD4+:
CD45+CD4+Foxp3+, CD8+: CD45+CD8+, NK cell: CD45+CD8-CD4-NK1.1+, B
cells: CD45+CD8-CD4-B220+, CD103+DC: CD45+Gr1-MHCII+CD24+CD103+,
CD103-DC: CD45+Gr1-MHCII+CD24+CD103-CD11b+, MDSC:
CD45+CD11b+Gr1+, CD206-Mφ: CD45+Gr1-MHCII+F4/80+CD206-Arg-1-,
CD206+Mφ: CD45+Gr1-MHCII+F4/80+CD206+Arg-1+, M-MDSC:
CD45+CD11b+Ly6c+, G-MDSC: CD45+CD11b+Ly6G+). (B,C) Representative
flow plots showing IL21R staining on CD8+, CD4+, Foxp3-CD4+,
Foxp3+CD4+T cells and NK cells in TDLN (B) and spleen (C).

Supplementary Figure S2 | Administration of HSA-IL21 and PD-1 mAbs
additively inhibited tumor growth. (A) CT26-MSLN tumor cells (1×106)

were injected intradermally to BALB/c mice, monitored tumor volume of
tumorbearing mice treated with IgG, IL21, HSA-IL21, α-PD-1, HSA-IL21/
α-PD-1. (B) Individual tumor curves of mice depicted in Figure S2A. Data were
presented as mean±SEM, n�5, *p<0.05, **p<0.01, ***p<0.001,
****p<0.0001, two-way ANOVA test were performed. (C,D) MC38 tumor
cells (1×106) were injected intradermally to B6 mice, monitored tumor
volume (C) and individual tumor curves (D) of tumor-bearing mice treated
with IgG, rIL21, HAS-IL21. Data were presented as mean±SEM, n�5,
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, twoway ANOVA test were
performed.

Supplementary Figure S3 | Administration with Tim-3 or Lag-3, PD-1 mAbs
and HSA-IL21 additively inhibited the tumor growth. (A–C) Individual tumor
curves of mice depicted in Figures 8A,C,E.
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