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Abstract

Objectives: Microfluidic perfusion systems are used for assessing cell and tissue

function while assuring cellular viability. Low perfusate flow rates, desired both

for conserving reagents and for extending the number of channels and duration of

experiments, conventionally depend on peristaltic pumps to maintain flow yet such

pumps are unwieldy and scale poorly for high-throughput applications requiring 16

or more channels. The goal of the study was to develop a scalable multichannel

microfluidics system capable of maintaining and assessing kinetic responses of

small amounts of tissue to drugs or changes in test conditions.

Methods: Here we describe the BaroFuse, a novel, multichannel microfluidics

device fabricated using 3D-printing technology that uses gas pressure to drive large

numbers of parallel perfusion experiments. The system is versatile with respect to

endpoints due to the translucence of the walls of the perifusion chambers, enabling

optical methods for interrogating the tissue status. The system was validated by the

incorporation of an oxygen detection system that enabled continuous measurement

of oxygen consumption rate (OCR).
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Results: Stable and low flow rates (1–20 μL/min/channel) were finely controlled

by a single pressure regulator (0.5–2 psi). Control of flow in 0.2 μL/min increments

was achieved. Low flow rates allowed for changes in OCR in response to glucose

to be well resolved with very small numbers of islets (1–10 islets/channel). Effects

of acetaminophen on OCR by precision-cut liver slices of were dose dependent and

similar to previously published values that used more tissue and peristaltic-pump

driven flow.

Conclusions: The very low flow rates and simplicity of design and operation of the

BaroFuse device allow for the efficient generation of large number of kinetic

profiles in OCR and other endpoints lasting from hours to days. The use of flow

enhances the ability to make measurements on primary tissue where some elements

of native three-dimensional structure are preserved. We offer the BaroFuse as a

powerful tool for physiological studies and for pharmaceutical assessment of drug

effects as well as personalized medicine.

Keywords: Bioengineering, Pharmaceutical Chemistry

1. Introduction

1.1. A need for a high throughput cell/tissue perfusion system

Assessing cell and tissue function is a key task for physiologists and is a critical

task for pharmacologists. Many approaches are being taken including cell-based

assays of cell viability (such as apoptosis and necrosis), morphology and function

[1] (as reflected by the activity of reporter genes [2], proteomics [3] and signaling

or regulatory pathways [4]) and a combination of these as in high-content analysis

[5]. Many static incubation methods are well suited to high throughput application

yet such methods are not capable of high-throughput kinetic measurements—on

time scales of minutes, hours and days—on well-maintained tissue with preserved

3D architecture. Dynamic flow-through methods offer a combination of optimal

tissue maintenance with assay endpoints yet such methods typically depend on

peristaltic or syringe pumps and complex “plumbing” schemes that scale poorly for

high-throughput applications. In addition, microfluidics approaches, such as those

based on soft lithography, have not provided pharmacologists with adequate and

disseminated tools that are practical to use [6]. For such applications as

pharmaceutical drug screening or toxicity testing we describe and validate a

simplified and scalable solution, the BaroFuse, that we have designed based on our

previous flow-through cell and tissue perfusion methods [7], and utilized powerful

but easy to implement 3D printing methods [8].

1.2. The BaroFuse prototype

We were motivated to develop the BaroFuse in order to scale our current flow-

through cell/tissue perfusion methods because using our peristaltic pumps and
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complex tubing systems scaled so poorly for high-throughput (e.g., to 96

channels) applications. In addition, we were also motivated to lower the flow

rates in order to use less media, test compounds, and tissue. We are now replacing

the cumbersome peristaltic pumps and perfusion chambers with our BaroFuse

prototype that offers stable and very low perfusate flows (1–10 μL/min) driven by

gauge pressures between 0 and ≈2 [2_TD$DIFF]psi of the physiological gas (5% CO2, balance

air) that overlies the separate perfusate reservoirs. While affording rapid changes

of perfusate composition (minutes) experiments can be extended from hours to

days while continuously recording a variety of biochemical and biophysical

responses.

We have taken an extensible approach with 8-channel BaroFuse modules that can

be multiplexed in parallel for high-throughput (e.g., to 96 channels) applications.

The BaroFuse is suitable for studying either cultured tissues (e.g., liver slices,

pancreatic islets) in microgram quantities, or cultured cells immobilized on, or

distributed within a slurry of, culture beads. Here we describe a prototype 8-

channel BaroFuse device and its fabrication using stereolithography (a form of 3D-

printing), and then validate its function by replicating our prior work for

physiological and drug testing. The testing and validation of the BaroFuse were

carried out by incorporating oxygen sensing at the outflow, so that the rate at which

a tissue sample absorbs oxygen from perfusate flowing through the tissue could be

monitored continuously. The measured oxygen consumption rate is an integrated

measure of energy generation that reflects changes in cell number, viability and

energy utilizing cellular processes, thereby providing an integrated and sensitive

reflection of tissue viability and function. We discuss these results in comparison to

other tissue incubation/perfusion methods, and by considering BaroFuse

technology for high-throughput pharmaceutical drug testing.

1.3. Barofuse design requirements

A practical multi-channel cell/tissue perfusion system for physiological and

pharmaceutical testing must satisfy, amongst others, the following basic design

criteria:

a Design must be modular and extensible—we chose an 8-channel module as our

basic building block that is amenable to multiplexing for high-throughput

operation.

b Perfusate flow must be pulse-free, invariant from channel-to-channel and stable

(less than 2% drift) for hours to days in the range spanning 1–20 μL/min per

channel to minimize demand for tissue, perfusate and test compounds,

particularly for experiments lasting days.

c Perfusate must be sterile, maintained at 37 °C while physiologically gassed with

5% CO2 balance air (for example) to sustain cellular bicarbonate (H2CO3). Key
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cell physiological functions are lost when using buffers void of CO2 (see

Discussion).

d Preparations and operations must be simple so as to allow for repeated use of the

system in a time-efficient and reproducible fashion.

2. Methodology

2.1. The BaroFuse: basic design and fluidic principles

The BaroFuse is a scalable throughput device for perfusing and assessing tissue

samples. The construction and operating principles for a single channel are

illustrated schematically in Fig. 1A and our assembled 8-channel prototype used

for validation testing is shown in Fig. 1B. Parts of the system are defined in the

glossary for reference. Each perfusion channel replicates the geometry and flow

characteristics of glass-tube perfusion channels where flow is driven by peristaltic

pumps that we have used for numerous published studies [7, 9]. The perfusion

chamber (1.5 mm diam.) holds tissue samples (e.g., liver slices or isolated

pancreatic islets; see below) or cultured cells on a polyethylene “frit” through

which perfusate flows. Samples of the effluent perfusate can be collected for off-

line assay—we routinely measure insulin release rate, or lactate production for

example. We can also simultaneously measure the tissue’s OCR using opto-

electronic sensing of the fluorescence decay rate of an oxygen-sensitive dye

painted either on glass beads or on the inner column surface as routinely used in

our prior studies [10]. Thus, the BaroFuse can combine conventional chemical and

radioimmunological assays with OCR as a powerful index of cellular health and

function.

The technical advances offered by the BaroFuse are two-fold. First, the BaroFuse

achieves very low perfusate flow rates (e.g., 1–20 μL/min) that are driven in a

pulseless manner by the pressure of the physiologic gas (5% CO2, balance air)

that overlies and equilibrates with perfusate in the reservoirs. Second, perfusate

flows can be simultaneously switched from control to test perfusate in all flow

channels simply by pressurizing the test compound compartment with a single

pressure regulator. In more detail, a “control” perfusate and a “test” perfusate

(e.g., drug-containing) are placed in glass test tubes placed in separately

pressurized compartments of the reservoir module (Fig. 1A). As described

below, experiments are started by pressurizing the source reservoir to fill the

flow tubes, and tissue samples are loaded into the perfusion chambers. After a

control period, the test perfusate chamber is pressurized sufficiently to drive

test perfusate (e.g., drug-containing) across the transfer channel and into the

source perfusate reservoir tube thus “doping” the control perfusate with test

compounds.
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2.2. BaroFuse prototype implementation

A Barofuse consists of a lower perfusate reservoir module and an upper tissue

perfusion module with a gasket seal at their interface (Fig. 1A). The perfusion

module sits atop the reservoir module and contains the tissue perfusion chambers

[(Fig._1)TD$FIG]

Fig. 1. BaroFuse parts and functions. (A) (top) Schematic diagram of the reservoir module topped by

the perfusion module that holds the tissue perfusion channels and response measurement. (bottom). (B)

An 8-channel BaroFuse prototype, consisting of a perfusion module with 8 vertical perfusion columns,

is mounted atop a reservoir module adjoined on a (black) silastic gasket. Ports for independently

pressurizing source and/or transfer reservoirs are shown at left, while the transfer conduits are visible as

the horizontal passages across the septum. High-resistance, low-resistance and transfer perfusate flow

tubes are not visible but one of each of these is associated with a perfusion channel and are contained

inside the reservoir module.
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that receive fluid flow from the source reservoir module. Another set of channels

mediate the transfer of test compound fluid from the test compound reservoirs to

the source reservoirs. The reservoir module is the lower part of the BaroFuse

system and is the source of either control- or test-perfusates contained in test tubes

in compartments that can be independently controlled to drive flow into perfusion

chambers in the perfusion module.

We fabricated the “plumbing” schema in Fig. 1A as a prototype BaroFuse using

stereolithography to 3D-print the 8 flow channels into a single perfusion module

that includes gasketed insertion points for high- and low-resistance tubes and a

transfer perfusate channel (1/16 in. outer diameter, as visible in Fig. 1B). High-

resistance source tubes are very small inner diameter PEEK tubing, through which

source perfusate flows into the base of a tissue perfusion chamber, driven by

pressure in the source reservoir chamber. The inner diameter of the tube, along

with the pressure in the chamber, determines the rate of flow in to the tissue

perfusion chamber. Low-resistance transfer tubes transfer perfusate containing test

compound from the transfer reservoir, through the perfusion module and into the

source reservoir. Tissue perifusion chambers are vertical cylindrical channels in the

perfusion module that houses tissue while it is continuously bathed in fluid from

the reservoir modules from below. The outflow discharges at the top of the

chambers, and through which tissue, support beads, and optical sensors are loaded

in to the chamber during the setup of the system.

The perfusion module was designed with Autodesk Inventor Pro 2015 software and

rendered by stereolithography (Proto Labs, Inc., Maple Plain, MN) in 0.004” layers
using a biocompatible (ISO 10993) transparent polymer (WaterShed XC 11122).

The reservoir module was machined from clear acrylic plastic, and finished with a

1/16” silastic gasket (GE Premium Silicone II Gasket and Seal) for sealing and

isolating the pressurized reservoir chambers, and separate ports for pressurizing

(0.5–2 psi) the O2/CO2/N [3_TD$DIFF][1_TD$DIFF]2 gas overlying the perfusate held in 8 test and 8 control

test tubes aligned in the reservoir chambers. Tissue effluent can be captured for

biochemical assays while perfusion chambers are transparent for optical sensing.

2.3. Chemicals and solutions

Krebs Ringer bicarbonate solution (KRB) containing 0.1% BSA, and 25 mM

sodium bicarbonate was used for the islet perifusion analyses, prepared as

described previously [9]. For the liver perifusions, Williams’ E Media (Sigma-

Aldrich, St. Louis, Missouri) supplemented with 10% heat-inactivated fetal bovine

serum (Atlanta Biologicals, Lawrenceville, Georgia), 2 mM glutamine, 1% Pen/

strep and 20 mM HEPES (Research Organics, Cleveland, Ohio) was used.

Glucose, potassium cyanide (KCN), and acetaminophen were purchased from

Sigma-Aldrich (St. Louis, MO).
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2.4. Rat islet isolation and culture

Islets were harvested from Sprague-Dawley male rats (weighing approximately

250 g) (Charles River, Wilmington, MA) anesthetized by intraperitoneal injection

of sodium pentobarbital (35 mg/230 g rat). All animal procedures were approved

by the University of Washington Institutional Animal Care and Use Committee and

all experiments were performed in accordance with relevant guidelines and

regulations. Islets were prepared and purified as described [11, 12], and then

cultured at 37 °C in RPMI Media 1640 supplemented with 10% fetal bovine serum

for 18 hours prior to the experiments.

2.5. Mouse liver slice preparation

Liver slices were harvested from male C57BL/6J mice, weighing approximately 20

g (age = 6–8 weeks) (Jackson Laboratory, Bar Harbor, ME) anesthetized by

intraperitoneal injection of sodium pentobarbital (3 mg/20 g mouse). All

procedures were performed under aseptic conditions in a laminar flow hood.

After anesthesia was induced, the midsection was opened up to expose the liver. A

piece of liver lobe (size = 4 cm3) was removed with surgical scissors. The piece

was laid out on a petri dish containing William’s E Media, and after cutting away a

layer of capsule, multiple slices were diced (approximately 0.25 × 1 mm (mass =

1–2 mg per piece)) with a scalpel. Two pieces were loaded in to each tissue

perifusion chamber for each analysis. After the end of each experiment, the liver

samples were weighed. OCR measurements were normalized to this mass.

2.6. Measurement of oxygen in outflow

Oxygen tension in the outflow of each tissue perfusion chamber was measured as

previously described [10], except that instead of painting the oxygen-sensitive dye

on the inside of the tissue perifusion chamber, glass beads (710–1180 microns,

Sigma-Aldrich, St. Louis, MO) coated with the dye were layered on top of the

tissue in the perifusion chamber. The flow was slow enough so that the beads did

not move during the experiment, and the oxygen sensors sampled a representative

cross section of perfusate that after passing by the tissue was delivered by

convection to the sensors. As previously described, oxygen quenches the amount of

phosphorescence emitted by the dye in response to excitatory light, and has a

response time of a few seconds [11, 13]. To coat the beads with dye, we submerged

them in 100 mL of a dichloromethane solution containing 5 g dimethylsiloxane-

bisphenol A-polycarbonate block copolymer (GE, Waterford, NY) and 25 mg of

platinum porphyrin (Porphyrin Products, Logan, UT). Coated beads are baked

overnight at >100 °C in an oven (Model 1310, VWR, Radnor PA) and the resulting

dried crystals are pulverized with a metal spatula. Dye excitation and detection of

emitted light from the dye was done via optical fibers, one that carried light from
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an LED (405 nm) and one that returned emitted light to the spectrometer (MFPF-

100 multifrequency phase fluorometer lifetime measurement system Tau Theta,

Boulder CO) as previously described [9]. The dye was calibrated by the use of an

artificial lung that allowed for rapid changes in oxygen content to be accomplished

[9], and the slope of the signal was 2.2 μs lifetime/(35 nmol O2/ml). Rather than

continuously measuring the inflow concentration of oxygen, we determined it by

temporarily altering the flow rate, typically by doubling it, and calculating the

inflow oxygen concentration using for each 2 flow rates (FR) in the equation OCR

= FR(O2in–O2out), and then solving the resulting 2 equations for O2in.

2.7. Analysis of outflow fractions

Fractions were collected by use of a FOXY R2 (Teledyne Isco, Inc., Lincoln, NE)

to collect outflow in to a 96 well plate. Flow rate was calculated by weighing the

contents of each well, and then dividing the measured mass by the time interval of

collection. Insulin in the outflow fractions was measured using an RIA kit (Linco

Research Inc., Billerica, MA). Trypan blue concentration in the outflow was

measured by absorption at 604 nm in a Synergy 4 microplate reader (BioTek,

Winooski, VT).

2.8. Procedures for perfusion experiments

For experiments, eight 13 × 100 mm test tubes (9 mL) are inserted into each side of

the reservoir chamber, and each filled with a test or control perfusate. Eight high-

resistance (i.e., small-bore) and eight low-resistance (i.e., large-bore) flow tubes,

≈100 mm long, are inserted into gasketed ports at the base of the perfusion module,

and a short, large-bore tube is inserted to complete the perfusate transfer path by

which test substances are transferred from the test compound test tube and diluted

to the desired experimental concentration in the “control” source test tube. The

inserted gaskets are cut from PharMed BPT tubing (Cole-Parmer Instrument Co.,

Vernon Hill IL). To control the temperature of the system, a thermostated

immersion circulator/heater (model 1122S, VWR, Radnor, PA) regulated a

plexiglass box (17 × 17 × 13 (w × d × h) inches) filled with water, into which the

BaroFuse system is submerged.

We placed 8 test tubes into each side of the fluid reservoir block and then filled the

source tubes with control fluid, and the test compound perfusate tubes with fluid

containing the selected test compounds at the desired composition. The tissue

perfusion block was then placed on top of the fluid reservoir block and screws

tightened. Tubing (Masterflex L/S 16 tubing, Cole-Parmer Instrument Co.) was

attached to the two source pressure ports on the fluid reservoir block and secured

without yet hooking these tubes up to the pressure regulators, and the device was

partially submerged into the water to a depth that allowed the top 1 inch of the
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fluidics systems to protrude. The immersion heater was turned on for 30 minutes

until the water temperature reached 37 °C. Then reservoir gas tubes were hooked

up to pressure regulators set to the desired pressure (0.5–2 psi) and both fluid

reservoir block chambers were purged with the 5% CO2/balance air for 5 minutes.

Once the vent ports are capped, the tissue perfusion chambers filled up with

perfusate, the perfusate was collected, and the flow rate was confirmed or adjusted

as needed. Next, tissue was loaded in to the tissue perfusion chambers and allowed

to settle to the bottom of the chamber. If islets or cells were used, a porous frit was

first inserted in to the perifusion chamber and pushed to 0.5 cm from the bottom of

the chamber prior to adding the islets. Finally, outflow tubes (1/16th inch OD

tubing (HPFA, IDEX)) were inserted into the tissue perfusion chambers to allow

submersion of the device beneath the surface of the water in the water bath and

collection of outflow if desired. For a typical experiment, sampling of the effluent

and recording control pO2 levels proceeded for 2–3 hours to establish a stable

baseline before transferring “test” solutions into test tubes in the source reservoir.

At this time, we transiently (10–15 s) pressurize the test reservoir to >2 psi to inject
the contents of test compound reservoirs through the transfer channel and into the

still-flowing control perfusate.

3. Results

3.1. Overview of validation

Calculating the increment or decrement of substances (e.g., oxygen, hormones,

metabolites) either extracted or released by the tissue demands that the perfusate

flow rate be known and stable. We first characterized the control and stability of

flow rates and their dependence on reservoir pressure and tubing resistance for

extended periods of time. We then validated the BaroFuse for biological testing

tasks by replicating our prior results showing changes in OCR in response to

increased glucose level by a small number of isolated islets, and to the drug

acetaminophen by precision-cut slices of rat liver tissue.

3.2. BaroFuse functional validation

The key to the BaroFuse design and function is that perfusate flow in all channels

is controlled directly by changing the gas pressure (0.5–2 psi) in the reservoir

chamber and very low and stable rates of flow are achievable. Fig. 2 demonstrates

that high-resistance flow tubes (1/16” OD PEEK tubing (IDEX, Lake Forest, IL))

with inside diameters of 0.0025”, 0.004” or 0.005” provide the required resistance

to produce the desired range of flows. Such small-bore tubes contribute such high

resistance that flow resistance from the reservoir to the perfusion chamber is

determined by the resistance tube, with little contribution from the larger flow

passages (ID > .025 in). Perfusate flow was collected and measured at each of
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several perfusate reservoir pressures from 0.5 to 2.0 psi and was finely controllable

over a range of <1 to 20 μL/min as desired for practical tissue perfusion tasks.

Thus we achieved our design goal that flow rate is linearly related to driving

pressure as expected of laminar (non-turbulent) fluid flow which depend on the

fourth-power of tube diameter as interpolated (the lines) according to the

Hagen–Poiseuille equation (F is proportional to ΔP x R4/L, where F is the flow

rate, P is pressure, R is the tube radius and L is the tube length). Furthermore,

extrapolation of the these lines shows that they intersect a common, no-flow

pressure of −0.2 psi that corresponds exactly to the back-pressure exerted by the

5.5-in column of perfusate fluid reservoir tubes and the top of the flow columns.

3.3. Tracking a change of perfusate composition

Flow rates were measured before, during and after the transfer of media from the

test source reservoirs. At the desired time, the pressure in the transfer pressure

reservoir was increased to 2.5 psi and the media had completely moved in to the

test tubes in the source reservoirs within 15 seconds, at which time the test

compound pressure regulator was shut back off. No fluctuation in flow rate was

observed in the outflow (data not shown). In order to assess the time it took for the

tissue chamber to be exposed to the second media composition, trypan blue

(0.008%) was added to the test tube in the second compartment and its

[(Fig._2)TD$FIG]

Fig. 2. Pressure-flow rate test confirms ability of the BaroFuse to control flow rates. Flow rates were

measured for different pressures generated by pressurized gas using 3 different resistance tubes with

inner diameters as indicated. Pressure was changed by adjustment of the pressure regulator. Lengths of

resistance tubes were all ≈ 100 mm. Due to gravitational forces, the flow continues even when there is

no added pressure from the gas tank, and would only become 0 if negative pressure of −0.2 psi would

be induced.
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concentration in the outflow was measured by light absorbance. The actual time it

takes for equilibrium to be reached, and the final composition of the outflow after

mixing, depend on the initial contents of the test tubes in the two chambers. When

the volumes in the source reservoir and the transfer reservoir were equal, it took 15

minutes for the outflow concentrations to reach steady state, (data not shown). The

concentration in the outflow at steady state was simply the weighted average of the

composition with respect to volume. More rapid changes in media composition

could be obtained by transferring a larger amount of media in the transfer reservoir

to a small amount of media in the perfusion reservoir.

3.4. Measuring islet OCR in response to glucose stimulation

To develop a system to assess islet function that is expandable to a large number of

channels, it is especially important to miniaturize the system to minimize the

number of islets required to produce a detectable endpoint. In the case of OCR

measured as the difference between inflow and outflow oxygen concentration, the

detection limit is linked to the number of islets and the flow rate. The lower the

flow rate, the lower the number of islets that are required. Islets (10/chamber) were

perifused at 7 μl/min, and OCR was stable, and the variability was only a few

percent of the glucose responses (Fig. 3A). The effects of glucose were very

similar for all channels. At the end of the experiment, the flow rate was doubled

(by doubling the pressure) two times and the actual OCR was calculated as

described in the methods (change in OCR = 0.63 ± 0.082 nmol/100 islets/min) in

response to 20 mM glucose). Outflow fractions were collected and the content of

insulin was measured. Both OCR and insulin secretion responses to glucose were

consistent with previous, larger scale perifusion systems [7]. To determine if the

system could resolve glucose responses with very small amounts of tissue, 3

channels were loaded with only 1 islet, and a flow rate of 1.5 μL/min was selected

(using a high resistance tube of 0.0025” ID, and pressure of 2 psi). Again, glucose

responses were well-resolved and similar to that obtained with higher numbers of

islets, although the data was noisier than that obtained with 10 islets (Fig. 3B).

These examples demonstrate the ability of the system to generate 6 real time OCR

responses with only 60 islets, and even less if only steady state changes are needed.

3.5. Response of hepatic OCR to acetaminophen

To support the utility of the BaroFuse to the pharmaceutical industry, we replicated

our prior characterization of the effects of the drug acetaminophen on liver OCR.

We cultured liver slices overnight, loaded two 1 mg liver slices into each tissue

perfusion chamber and perfused them for 3 hours to measure baseline OCR. We

then switched six channels to acetaminophen-containing perfusates (2 concentra-

tions in triplicate) and were able to demonstrate the reproducibility of OCR

inhibition (Fig. 4). OCR in the two channels that were not exposed to
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[(Fig._3)TD$FIG]

Fig. 3. Functional response of pancreatic islets in the BaroFuse. (A) (top) OCR by 10 isolated rat islets

was measured in response to glucose simultaneously in 3 of the 8 channels (flow rate was 7 μL/min).

(bottom) Outflow fractions were collected in three of the channels and assayed for insulin. (B) OCR by

1 isolated rat islet was measured in response to glucose simultaneously in 3 of the 8 channels (flow rate

was 1.5 μL/min). Data for both curves are averages ± standard error of the mean (n = 3).

[(Fig._4)TD$FIG]

Fig. 4. Effect of acetaminophen on liver oxygen consumption in the pressure-driven micro-perifusion

system. OCR by 1 mg slices of mouse liver was measured in response to acetaminophen. Data are

plotted as averages ± standard error of the mean (n = 3).
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acetaminophen remained flat, whereas the OCR was lowered 40 and 60% by 6 and

15 mM acetaminophen. These results were similar to those obtained in a previous

study with our larger peristaltic pump-driven perifusion system [10].

4. Discussion

4.1. Features of the BaroFuse high throughput perifusion system

It is well recognized that flow systems offer distinct advantages over non-flowing

systems for maintaining and assessing cell function [13, 14]. Oxygen delivery is

better, especially for tissue and multi-cellular structures, and flow allows for exact

determination of consumption or production of chemical entities (based on the

conservation of mass as the difference between the contents of the outflow minus

the inflow). Thus, we measured OCR with very high sensitivity and high run-to-

run reproducibility so we could record the dynamic responses to test compounds in

ways not available with static incubation systems. A key BaroFuse feature is that

the pressurized gas that drives perfusate flow contains 5% CO2 so that BaroFuse

perfusates are pH-buffered physiologically. This is important because bicarbonate/

CO2 buffering is essential for a variety of biochemical functions including

gluconeogenesis [15], fatty acid synthesis [16], insulin secretion [17, 18], and the

citric acid cycle [19] as well as for cell growth and replication [20, 21]. In addition,

the near physiological, flow-through conditions enable experiments of long

duration (hours to days) and can be used for studying both acute and slow drug

effects.

4.2. Ease of use, the technical challenge

We seek to develop a continuous perfusion method that is easy-to-use, reliable and

scalable for high-throughput applications. The BaroFuse design is modular and

consists of only two mating parts, and flow in all channels is accomplished by a

single gas regulator that controls the pressure in the reservoir modules as described.

Since the assembly time of the system is brief, tissue and perfusate preparation and

allocation accounts for most of the set up time, and it took about 20 minutes to load

the tissue in to the 8 channels and fill the chambers with the selected media.

Although we did not directly scale our system up from 8 channels, our system is

modular and through put can readily be increased by placing multiple devices next

to each other. Future versions will incorporate higher numbers of channels in to a

single 3D printed module, and we estimate that throughput can be increased

significantly with a 2–4 hour set up time.

4.3. BaroFuse miniaturization

By miniaturizing the BaroFuse for high-throughput tissue testing, we have

significantly reduced the requirement and expense of a) isolating large amounts of
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tissue and b) preparing large amounts of drug-containing perfusates. For example,

a typical study of OCR by perfused islets required 500–750 islets per channel with

perfusate flows of 50–100 μL/min [7, 22] while static incubation systems such as

SeaHorse require 50–80 islets per well [23]. However, we have used the BaroFuse

for robust and reproducible OCR measurements using only 1–10 islets per channel

which is very practical for high-throughput studies given the islet counts in a

mouse (n ≈ 250) or rat (n ≈ 750). Thus, a 96-channel experiment could be carried

out with a few hundred islets, obtainable with a single mouse or rat. In its current

configuration, we tested stable flow rates of 3 μL/min that would run for 48 h from

a 9-mL perfusate reservoir, or much longer simply by increasing the capacity of the

perfusate reservoir module.

4.4. Options for assessing functional endpoints

We illustrated the use of the BaroFuse by measuring OCR using highly sensitive

sensors yet other sensors and assay can be applied to the BaroFuse technology.

Whereas we demonstrated here optical detection of OCR, we have previously used

optical fluorescence measure of the cell or tissue to directly assay cellular NAD(P)

H and calcium as well as genetically expressed sensors for H2O2 and ATP.

Furthermore, we envision that the BaroFuse design can be adapted to the practical

implementation of a perfusate fraction collector method by which hormones,

metabolites and signaling molecules can be measured simultaneously with the

above optical methods.

4.5. Comparison of BaroFuse with other fluidic approaches to
assessment of intact tissue

We have designed the BaroFuse system with specific operational requirements in

mind that are not easily implementable with previous approaches to microfluidics.

For instance, microfluidic systems are historically made by lithography out of

materials such as polydimethylsiloxane (PDMS) that are gas permeable [24], and

in some cases this property is utilized for controlling oxygen levels in the

microfluidics device [25, 26]. However, gas permeability also makes it difficult to

measure OCR although oxygen tension can be measured [27]. Resins used with

stereolithographic 3D printers such as the WaterShed XC 11122 formulation used

in our fabrication are gas impermeable.

Very sophisticated microfluidics systems can be configured with a high number of

channels, and with flow control by multiple microvalves [28, 29]. For instance, a

single tissue sample has been treated sequentially with many different drugs [30].

However, the goal of having a large number of tissue perifusion chambers each

with its own perfusate supply to facilitate the testing of for instance 96 drugs on 96

separate tissue samples using lithography has not been previously developed. The
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BaroFuse has a macrosystem for media reservoirs that are easy to load and can

contain required amounts of gas-equilibrated media for extended protocols.

Assessing effects of drugs on tissue with respect to OCR and cellular acidification

(a combined reflection of CO2 and lactate production) has been carried out with

two commercially available systems, one with a 6-channel stop flow analysis

(Bionas 2500 analyzing system [31]) and a multi-well static system designed for

monolayers of cells (SeaHorse XF Extracellular Flux Analyzer, [32]. Fluidics

systems are positioned to study interorgan relationships, for instance as was carried

out with a two-microchamber biochip to investigate the interaction between

intestine and liver [33]. Future changes in the 3D printed plumbing for the

BaroFuse could readily facilitate perfusion of tissue chambers in series.

4.6. Summary and conclusions

We have introduced, described and evaluated BaroFuse, a flow-through tissue

perfusion method that is based on our prior work and is scalable for high-

throughput, multichannel operation for physiological and pharmaceutical applica-

tions. The BaroFuse is based on a simple principle applied in a novel fashion so

that very small tissue samples can be perfused at very low flow rates by simply

replacing the mechanics of peristaltic pumps by increments of the gas pressure in

perfusate reservoirs. We have implemented this simple, but novel, approach using

state-of-the-art 3D-printing of our extensible fluidic device. We anticipate that the

BaroFuse can be deployed and used in a broad range of laboratory settings that

require low- or high-throughput testing of tissues exposed to physiological,

pharmacological and toxicological substances and application in personalized

medicine.
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