
Citation: Li, C.; Lu, H.; Geng, C.;

Yang, K.; Liu, W.; Liu, Z.; Yuan, F.;

Gao, T.; Wang, S.; Wen, P.; et al.

Epidemic and Evolutionary

Characteristics of Swine Enteric

Viruses in South-Central China from

2018 to 2021. Viruses 2022, 14, 1420.

https://doi.org/10.3390/v14071420

Academic Editor: Douglas Gladue

Received: 11 May 2022

Accepted: 27 June 2022

Published: 28 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Article

Epidemic and Evolutionary Characteristics of Swine Enteric
Viruses in South-Central China from 2018 to 2021
Chang Li 1,2,† , Hongyu Lu 1,2,†, Chao Geng 1,2, Keli Yang 1,2, Wei Liu 1,2, Zewen Liu 1,2, Fangyan Yuan 1,2,
Ting Gao 1,2, Shuangshuang Wang 1,2, Ping Wen 1,2, Haofei Song 1,2, Yongxiang Tian 1,2,* and Danna Zhou 1,2,*

1 Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and
Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences,
Wuhan 430064, China; lichang1113@hbaas.com (C.L.); luhongyu053901@163.com (H.L.);
a18163131821@163.com (C.G.); keliy6@hbaas.com (K.Y.); liuwei@hbaas.com (W.L.);
liuzwen2004@hbaas.com (Z.L.); fyyuan@hbaas.com (F.Y.); gaoting2017@hbaas.com (T.G.);
wss20220422@163.com (S.W.); 18229001077@163.com (P.W.); 17861509838@163.com (H.S.)

2 Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan 430064, China
* Correspondence: tyxanbit@hbaas.com (Y.T.); zdn66@hbaas.com (D.Z.)
† These authors contributed equally to this work.

Abstract: Swine enteric viruses are a major cause of piglet diarrhea, causing a devastating impact on
the pork industry. To further understand the molecular epidemiology and evolutionary diversity
of swine enteric viruses, we carried out a molecular epidemiological investigation of swine enteric
viruses (PEDV, PDCoV, PoRVA, and TGEV) on 7107 samples collected from pig farms in south-central
China. The results demonstrated that PEDV is the predominant pathogen causing piglet diarrhea,
and its infection occurs mainly in relatively cold winter and spring in Hunan and Hubei provinces.
The positive rate of PEDV showed an abnormal increase from 2020 to 2021, and that of PoRVA and
PDCoV exhibited gradual increases from 2018 to 2021. PEDV-PoRVA and PEDV-PDCoV were the
dominant co-infection modes. A genetic evolution analysis based on the PEDV S1 gene and ORF3
gene revealed that the PEDV GII-a is currently epidemic genotype, and the ORF3 gene of DY2020
belongs to a different clade relative to other GII-a strains isolated in this study. Overall, our results
indicated that the variant PEDV GII-a is the main pathogen of piglet diarrhea with a trend of outbreak.
G9 is the dominant PoRVA genotype and has the possibility of outbreak as well. It is therefore
critical to strengthen the surveillance of PEDV and PoRVA, and to provide technical reserves for the
prevention and control of piglet diarrhea.

Keywords: swine enteric viruses; porcine epidemic diarrhea virus; epidemic and evolutionary
characteristics; south-central China

1. Introduction

Swine diarrhea is a pathological symptom caused by multi-factor disorders, including
pathogenic microorganisms, feeding environment, and the immune level. Viral diarrhea
is a prevalent form of piglet diarrhea in farms, which is mainly manifested as anorexia,
vomiting, watery diarrhea, and then body failure and even death [1]. At present, the
most common viral pathogens causing piglet diarrhea include porcine epidemic diarrhea
virus (PEDV), porcine Group A rotarvirus (PoRVA), porcine deltacoronavirus (PDCoV),
transmissible gastroenteritis virus (TGEV), etc. [2]. Both PEDV and TGEV have caused the
pandemic of swine diarrhea [3,4].

PEDV can cause acute contact infectious diseases characterized by watery diarrhea
and dehydration. Pigs of all ages are susceptible to PEDV, particularly suckling piglets
within 7 days of age, which tend to have the most severe symptom with an infection fatality
rate up to 90–100% [5]. The clinical symptoms caused by TGEV are similar to those caused
by PEDV. TGEV mainly infects piglets within 10 days of age, and the infection rate has
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been maintained at a relatively low level in recent years [6,7]. PoRVA causes diarrhea,
vomiting, and other symptoms, and mainly infects piglets within 60 days of age [8]. PoRVA
is distributed worldwide, and its prevalence has shown a steady upward trend in these
years, which has aroused the attention of many countries. Moreover, the PoRVA is also a
main cause of severe diarrhea in human infants and other young animals through zoonotic
transmission [9–11]. It has been reported that rotavirus infection kills between 454,000 and
705,000 children under the age of 5 each year in developing countries [12].

After 2010, large-scale outbreaks of porcine epidemic diarrhea (PED) have frequently
occurred worldwide. Etiological studies have demonstrated that the PEDV epidemic
strains that cause this epidemic have greater genetic variations than the PEDV vaccine
strain CV777. The homology of the S gene between the PEDV epidemic strains and CV777 is
only 91% to 94% [5,13]. With the commercialization of the PEDV-TGEV inactivated vaccine,
PEDV-TGEV-PoRVA (G5 type) live vaccine, and some other antiviral products [14–18], the
PEDV epidemic has been better controlled. However, mutation still frequently occurs in the
PEDV gene. Therefore, it is highly necessary to monitor the PED epidemic trend and PEDV
gene mutation for the timely prevention and control of the epidemic [14,18]. In this study,
we conducted an epidemiological investigation and genetic evolution analysis of swine
enteric viruses in major pig-producing provinces in China, aiming to clarify the genetic
variation trend of PEDV and PoRVA epidemic strains in recent years. The findings are
expected to provide technical and material support for the prevention and control of PEDV
and PoRVA epidemics.

2. Materials and Methods
2.1. Collection and Pre-Treatment of Clinical Samples

A total of 7107 intestinal and fecal samples were collected from diseased piglets
during the outbreak of diarrhea on immunized farms in Henan, Hubei, Jiangsu, Shandong,
Guangdong, and Hunan, Jiangxi, and Sichuan provinces of China from 2018 to 2021. The
specific source information of the samples is presented in Table 1. The samples were frozen
and thawed three times to release the virus after homogenization with phosphate-buffered
saline (PBS, Gibco, Thermo Fisher Scientific, Waltham, MA, USA). After centrifugation at
15,000 rpm for 10 min, the supernatants were collected for the extraction of viral nucleic
acid and the isolation of the virus.

Table 1. The information of the samples collected from each province from 2018 to 2021.

Year
Number of Samples

Henan Hubei Jiangsu Shandong Guangdong Hunan Jiangxi Sichuan

2018 241 242 201 220 231 257 211 298
2019 225 217 177 211 203 221 197 271
2020 317 266 232 259 254 286 237 322
2021 188 147 141 167 153 171 148 196

2.2. Reverse Transcription PCR (RT-PCR)

The viral RNA was extracted by using MolPure® Viral DNA/RNA Kit (Yeasen, Shang-
hai, China) following the manufacturer’s instructions. The quantity and quality of the
extracted RNA were measured by using a Nanodrop spectrophotometer (Thermo, Waltham,
MA, USA). Viral RNA was then transcribed into cDNA by utilizing reverse transcription
using the HiScript II 1st Strand cDNA Synthesis Kit (Vazyme, Nanjing, China). The primers
targeting the PEDV M gene, PDCoV M gene, PoRVA VP7 gene, and TGEV N gene were
designed and shown in Table 2. The cDNA was screened by RT-PCR using the 2 × Taq Mas-
ter Mix (Dye Plus) (Vazyme, Nanjing, China) on SimpliAmpTM Thermal Cycler (Thermo
Fisher Scientific, Waltham, MA, USA).
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Table 2. Primers for swine enteric virus gene detection.

Primer
Name Sequence Product Length Target Gene

PDCoV-P1 CCAGCAACCACTCGTGTTA 620 bp M gene
PDCoV-P2 GTCCTTAGTTGGTTTGGTGGGT
PEDV-P2 GTCTAACGGTTCTATTCCCG 460 bp M gene
PEDV-P3 ATAGCCCTCTACAAGCAATG
TGEV-P5 TTACAAACTCGCTATCGCATGG 528 bp N gene
TGEV-P6 TCTTGTCACATCACCTTTACCTGC

PORVA-P7 CCCCGGTATTGAATATACCACAGT 333 bp VP7 gene
PORVA-P8 TTTCTGTTGGCCACCCTTTAGT

2.3. Sanger Sequencing

For amplification of the PEDV S gene and ORF3 gene, the primers against the S1, S2,
and ORF3 genes were designed by using Primer 5.0. The sequences of primers are shown
in Table 3. Then, the cDNA of 96 clinical samples and five isolated PEDV strains was used
to amplify the PEDV S1, S2, and ORF3 genome by using 2 × Phanta Max Master Mix (Dye
Plus) (Vazyme, Nanjing, China). The PCR products were observed and acquired under
ultraviolet after electrophoresis in 0.01–0.03% YeaRed (Yeasen, Shanghai, China) stained
agarose gel. Subsequently, the PCR products were extracted by E.Z.N.A.® Gel Extraction
Kit (OmegaBio-tek, Inc., Norcross, GA, USA) and sent to Tsingke Biotechnology Co., Ltd.
(Beijing, China) for sanger sequencing.

Table 3. Primers for PEDV S gene and ORF3 gene sequencing.

Primer
Name Sequence Product Length Purpose

S1-F ATGAAGTCTTTAACGTACTTCTGG 2208 bp

PEDV gene
sequencing

S1-R TAGAAGAAACCAGGCAACTCC
S2-F ATGCATTCTAATGATGGCTCTAAT 1953 bp
S2-R CTGCACGTGGACCTTTTCAAAAAC

ORF3-F ATGTTTCTTGGACTTTTTCAGTACA 675 bp
ORF3-R ACTAATTGTAGCATACTCGTCTAG

2.4. Phylogenetic and Evolution Analysis

A total of 213 PEDV S gene sequences, 208 PEDV ORF3 gene sequences, 59 VP7
gene sequences of human RVA strains, and 61 VP7 gene sequences of PoRVA strains
uploaded after 2010 in China were downloaded from GenBank. In addition, the PEDV S1
gene of 96 clinical samples were sequenced. The genomic sequences of each gene were
aligned by using MAFFT v7.4.02 [19], respectively. The phylogenetic tree was generated
by the neighbor-joining method in MEGAX software with a p-distance model, using 1000
bootstrap replicates [20]. Potential recombination events in the complete genomes of
PEDV DY2020 strains isolated in this study and other PEDV strains were assessed by the
Recombination Detection Program v4.39 (RDP4), which included nine detection algorithms
(RDP, GENECONV, Bootscan, Maxchi, Chimaera, SiSscan, PhylPro, LARD, and 3Seq) [21].

2.5. Cell Culture and Virus Isolation

Vero-E6 cell lines (Purchased from ATCC, Manassas, VA, USA) were cultured in
Dulbecco’s modified Eagle medium (DMEM, Gibco, Thermo Fisher Scientific, Waltham,
MA, USA) supplemented with 10% heat-inactivated fetal bovine serum (FBS, Natocor,
Cordoba, ARG), and antibiotics (100 units/mL of penicillin, 100 µg/mL of streptomycin,
and 0.25 µg/mL of Fungizone®, Thermo Fisher Scientific, Waltham, MA, USA), at 37 ◦C in
a humidified incubator containing 5% CO2.

For PEDV isolation, 90%-confluent Vero cell monolayers were washed with PBS twice.
Next, 200 µL of inoculum per well for a 6-well plate was added. After incubation at
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37 ◦C for 2 h, 2 mL of PEDV growth medium (DMEM supplemented with antibiotics, and
10 µg/mL of trypsin (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) was added with
the removal of the inoculum. After 48–72 h, the plate was frozen at −80 ◦C and thawed
twice. The cells and supernatants were mixed by pipetting and stored at −80 ◦C. These
samples were used as seed stocks for the next passage. For serial passaging, the culture
scale was gradually increased, until finally T75 flasks were used for propagation and serial
passage of PEDV strains. Virus RNA was extracted every 5 passages for RT-PCR detection
of the virus nucleic acids.

2.6. Viral Growth Kinetics

The growth kinetics of isolated PEDV strains was determined by using a one-step
growth curve and the 50% tissue culture infective dose (TCID50) assay. Monolayers of
Vero cells were inoculated with isolated PEDV strains at a volume ratio of 1:10. After
2 h, the monolayers were washed twice with PBS, and 2 mL of DMEM containing 2%
FBS was added. The culture supernatant was collected at 0, 2, 6, 12, 18, 24, 30, and 36 h
post-inoculation and was then used to calculate the TCID50 of the virus after being frozen
at −80 ◦C and thawing twice.

For TCID50 determination of PEDV strains, Vero cell monolayers in 96-well plates
were inoculated with the culture supernatants of each strain serially diluted in DMEM at
37 ◦C for 1.5 h. Then, the infected cells were cultured in DMEM supplemented with 10%
heat-inactivated FBS at 37 ◦C with 5% CO2 for 48 h. The cytopathic effect (CPE) on Vero
cells was determined to calculate the TCID50 based on the Reed–Muench formula [21].

2.7. Swine Enteric Virus Investigation

The positive rate of four swine enteric viruses from 2018 to 2021 was used to calculate
the co-infection rate of each virus in the positive samples. According to the climate in
south-central China, the 12 months of the year were divided into four seasons, namely
spring (March to March), summer (June to August), autumn (September to November), and
winter (December to February), and statistical analysis was performed on the positive rate
of PEDV in different seasons to determine the seasonality of PEDV infection. By referring
to the conserved sequences of the PEDV reference strains, Primer 5.0 was used to design
primers for the main virulence genes of PEDV (S gene and ORF3 gene) and PoRVA (VP4,
VP6, and VP7 genes).

2.8. Statistical Analysis

All the data were analyzed using GraphPad Prism 8.0.1 software (GraphPad Software
Inc., La Jolla, CA, USA), and presented as means ± standard error of the mean (SEM).
The student’s t-test was used for difference analysis between groups, and p < 0.05 was
considered a significant difference. All experiments were repeated more than thrice [22].

3. Results
3.1. Positive Rate of Swine Enteric Viruses from 2018 to 2021

RT-PCR assay was performed to detect PEDV, PDCoV, PoRVA, and TGEV in the
intestinal and fecal samples collected from 2018 to 2021. The detection rate of each virus
was statistically analyzed and represented by a line graph. The results are shown in Table 4
and Figure 1a. PEDV was found to be the dominant cause of diarrhea in piglets, whose
average positive rate was 56.09% during the investigation period. The positive rate of
PEDV showed a sustained decreasing trend from 2018 to 2020. Surprisingly, it increased
and reached 56.44% (740/1311) in 2021. PoRVA was the second major cause of diarrhea in
piglets, whose positive rate increased gradually, reaching 10.45% (137/1311) in 2021. TGEV
and PDCoV were the minor causes of diarrhea and remained at low levels, but the positive
rate of PDCoV showed a slight increase in 2021.
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Table 4. Positive rates of swine enteric virus from 2018 to 2021.

Year
Positive Rate (%) and (Number of Positive Samples/Number of Samples)

PEDV TGEV PoRVA PDCoV

2018 61.02
(1160/1901)

1.05
(20/1901)

4.00
(76/1901)

1.10
(21/1901)

2019 57.03
(982/1722)

0.93
(16/1722)

9.06
(156/1722)

2.56
(44/1722)

2020 50.81
(1104/2173)

0.87
(19/2173)

9.94
(216/2173)

1.89
(41/2173)

2021 56.44
(740/1311)

0.76
(10/1311)

10.45
(137/1311)

3.36
(44/1311)
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Figure 1. Positive rate of swine enteric viruses from 2018 to 2021. (a) Variation trend of the positive
rate of diarrhea virus from 2018 to 2021. The X-axis represents the year, and the Y-axis represents the
positive rate of PEDV, TGEV, PoRVA, and PDCoV. (b) Co-infection rate of swine enteric viruses in
samples collected from 2018 to 2021. The X-axis represents the pattern of co-infection, and the Y-axis
represents the co-infection rate.

The information of all PCR positive samples was used to determine the co-infection
of PEDV, PoRVA, TGEV, and PDCoV. As shown in Figure 1b, a total of 125 samples were
infected by multiple enteric viruses. About 77.6% (97/125) of PEDV positive samples were
found to be co-infected by PoRVA, followed by 17.6% (22/125) by PDCoV and 2.4% (3/125)
by TGEV. The positive rate of PoRVA and PDCoV co-infection was 1.6% (2/125). The
co-infection of PEDV, PoRVA, and PDCoV was extremely rare, accounting for only 0.8%
(1/125).

3.2. Seasonal Characteristics and Distribution of PEDV

According to the climatic conditions of south-central China, the 12 months were
divided into four seasons, namely spring (March–May), summer (June–August), autumn
(September–November), and winter (December–February). The information of all PCR
positive samples was used to calculate the positive rate of PEDV for each reason. As shown
in Table 5, the positive rate of PEDV reached the highest in spring and winter, which was
71.79% (313/436) and 58.76% (191/325), respectively, while it was relatively low in the other
two seasons, with the lowest level of 36.88% (97/263). The standard deviation of the PEDV
positive rate in the four seasons from 2018 to 2021 was calculated. As shown in Figure 2a,
the standard deviation from 2018 to 2021 was 3.81, 2.35, 1.70, and 17.72, respectively. The
seasonality for the prevalence of PEDV tended to decrease from 2018 to 2020, and high
positive rates may be present in any season in south-central China, however, the standard
deviation in winter and spring in 2021 increased significantly, which may be due to the
PEDV pandemic.
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Table 5. Positive rates of swine enteric virus from 2018 to 2021.

Year
Positive Rate (%) and (Number of Positive Samples/Number of Samples)

Spring Summer Autumn Winter

2018 63.14
(322/510)

55.56
(210/378)

59.34
(244/411)

63.79
(384/602)

2019 57.54
(271/471)

54.76
(190/347)

54.86
(209/381)

59.66
(312/523)

2020 52.87
(276/522)

49.28
(239/485)

49.60
(249/502)

51.20
(340/664)

2021 71.79
(313/436)

36.88
(97/263)

48.43
(139/287)

58.76
(191/325)

Viruses 2022, 14, 1420 7 of 17 
 

 

 

Figure 2. Seasonal characteristics and distribution of PEDV. (a) The standard deviation of PEDV 

in samples collected in different seasons from 2018 to 2021. The X-axis represents the year, and the 

Y-axis represents the standard deviation of the PEDV positive rate in the four seasons from 2018 to 

2021. (b) Distribution of PEDV detection rate in eight major pork-producing provinces of China 

from 2018 to 2021. The yellow area indicates a low positive rate from 2018 to 2021; the red area 

indicates the highly endemic areas; a darker color indicates a higher positive rate. Percentages rep-

resent the overall positive rate from 2018 to 2021. The histogram indicates the positive rate in each 

province, and the point indicates the positive rate of PEDV in that year (Note: the map does not 

represent the true borders of administrative regions of China). 

3.3. Phylogenetic and Recombination Analysis of PEDV 

The S gene is the main virulence gene of PEDV, whose mutation leads to significant 

variations in PEDV virulence. A genetic evolution analysis was performed on the refer-

ence strains within each gene subgroup of PEDV, and the S1 gene sequences of 50 clinical 

samples were determined in this study. As shown in Figure 3, the S1 genes in this study 

all belonged to the new variant strain of PEDV, with 43 falling into the GII-a subgroup, 

four belonging to the GII-b subgroup, and three belonging to the GII-c subgroup.  

Figure 2. Seasonal characteristics and distribution of PEDV. (a) The standard deviation of PEDV
in samples collected in different seasons from 2018 to 2021. The X-axis represents the year, and the
Y-axis represents the standard deviation of the PEDV positive rate in the four seasons from 2018 to
2021. (b) Distribution of PEDV detection rate in eight major pork-producing provinces of China from
2018 to 2021. The yellow area indicates a low positive rate from 2018 to 2021; the red area indicates
the highly endemic areas; a darker color indicates a higher positive rate. Percentages represent the
overall positive rate from 2018 to 2021. The histogram indicates the positive rate in each province,
and the point indicates the positive rate of PEDV in that year (Note: the map does not represent the
true borders of administrative regions of China).

We identified the incidence of PEDV infection in major pork-producing provinces
in China from 2018 to 2021. As shown in Figure 2b, the incidence of PEDV infection
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varied in different provinces of China. Cases occurred in south-central China provinces,
like Henan, Hubei, Jiangsu, Shandong, Guangdong, Hunan, Jiangxi, and Sichuan, with
the overall incidence of 56.44% (548/971), 59.98% (523/872), 54.46% (409/751), 54.38%
(466/857), 52.79% (444/841), 60.75% (568/935), 54.10% (429/793), and 47.38% (515/1087).
In 2018, 2019, 2020, and 2021, the provinces with the highest PEDV positive rate were
Hubei (65.70%), Hubei (68.20%), Hunan (61.89%), and Hunan (73.10%), respectively. These
results revealed that the provinces of central China, such as Hunan and Hubei, are the most
severely affected areas by PED, while Sichuan, the largest province of pig production in
China, has the lowest detection rate of PEDV.

3.3. Phylogenetic and Recombination Analysis of PEDV

The S gene is the main virulence gene of PEDV, whose mutation leads to significant
variations in PEDV virulence. A genetic evolution analysis was performed on the reference
strains within each gene subgroup of PEDV, and the S1 gene sequences of 50 clinical
samples were determined in this study. As shown in Figure 3, the S1 genes in this study all
belonged to the new variant strain of PEDV, with 43 falling into the GII-a subgroup, four
belonging to the GII-b subgroup, and three belonging to the GII-c subgroup.
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genetic tree was generated by the neighbor-joining method in MEGAX software with a p-distance
model, using 1000 bootstrap replicates. The triangles represent the strains isolated in this study, and
those without triangles represent the reference strains.

The S genes of the five viruses isolated in this study were compared with the reference
sequences. As shown in Figure 4a, the phylogenetic tree constructed based on the S gene
genome revealed that the PEDV strains in China could be mainly divided into two major
groups (GI group and GII group). The GI group mainly included classic PEDV strains and
recombinant strains, while most of the PEDV epidemic strains in China emerging in recent
years belong to the GII group (variant strains). The strains of the GII group can be divided
into two subgroups, GII-a and GII-b. In recent years, the strains of the GII-a subgroup
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have increased rapidly and tend to become a dominant subgroup. The five isolates isolated
in this study were in different branches from the classic strain CV777, and all belonged
to the GII-a subgroup, among which DY2020, HB2020, and HB2021 were located in the
same branch.
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was divided into two categories: A group (Blue) and B group (Green). The strains isolated in this
study are highlighted in red color. The phylogenetic trees were generated by the neighbor-joining
method in MEGAX software with a p-distance model, using 1000 bootstrap replicates.

ORF3 gene is an important virulence gene of PEDV. We compared the ORF3 gene
sequenced in this study with the ORF3 gene sequences of PEDV strains isolated from
multiple regions in China and constructed a phylogenetic tree. As shown in Figure 4b, the
PEDV strains were clustered into two groups based on the ORF3 gene, namely the A group
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and B group. The A group mainly included part of members in the GI group and GII-a
subgroup, while the B group mainly comprised part of members in the GI group and GII-b
subgroup. The ORF3 gene of the HB2018, HB2019, HB2020, and HB2021 strains was in the
same branch as the GII-a strain, and that of the DY2020 strain was in the same branch as
the GII-b subgroup strain, indicating that there is gene recombination between strains in
the GII-a subgroup and GII-b subgroup.

A complete genome recombination analysis was performed between the DY2020
strains and 125 reference strains by using RDP4 software. As shown in Figure 5, the
PEDV DY2020 strain might arise from the recombination of MT787025.1 (major parent,
GII-a) and MZ342899.1 (minor parent, GII-a), which was supported by six detection algo-
rithms (RDP, p-values ≤ 1.121 × 10−27; GENECONV, p-values ≤ 2.441 × 10−25; Maxchi
p-values ≤1.125 × 10−13; Chimaera, p-values ≤ 5.111 × 10−15; SiSscan,
p-values ≤ 2.409 × 10−16; 3Seq, p-values ≤ 1.374 × 10−35). Further analysis indicated
that the position 23,522–27,644 of the complete genome of the DY2020 strain was the
predicted genetic recombination fragment, and the identified putative breakpoints were
located in the S gene, ORF3 gene, and the genes encoding envelope protein, membrane
protein, and part of nucleocapsid proteins of the PEDV DY2020 strain.
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Figure 5. The recombination analysis of the complete genome of PEDV DY2020 strains isolated
in this study. The results were described using the RDP method, which was supported by ≥6
programs to further characterize the potential recombination events. The pink box indicates the
regions for the occurrence of recombination events. The Y-axis represents the pairwise identity
between the recombinant and its putative parents. The X-axis represents the position in alignment
with a 30 nt sliding window. The comparison of the recombinant-major parent, recombinant-minor
parent, and major-minor parent was indicated by cyan, purple, and yellow lines, respectively.

3.4. Isolation and Titer Analysis of PEDV

The growth kinetics of the five isolated PEDV strains was evaluated by measuring
TCID50 at different infection time points. As shown in Figure 6a, the PEDV titers showed
significant time-dependent increases and the DY2020 strain had the fastest growth in the
first 12 h after infection. The titers of PEDV DY2020 strains were significantly higher than
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those of the other four PEDV strains at each infection stage, reaching a peak value of 106.2

TCID50/0.1 mL at 24 h post-infection. The phylogenetic analysis based on the S gene of
PEDV strains isolated in this study revealed that the DY2020 strain and the other four
strains belonged to the GII-a subgroup. However, based on ORF1gene, the other 4 strains
belonged to the A group, and the DY2020 strain belonged to the B group, which was
similar to the case of HM2017 and CH/HLJ/18 strains [23,24]. The growth characteristics
of HM2017 and CH/HLJ/18 strains were similar to those of DY2020 isolates (Figure 6b).

Viruses 2022, 14, 1420 11 of 17 
 

 

 

Figure 6. The growth kinetics of isolated PEDV strains and titer analysis. (a) Growth curves of 

isolated PEDV strains in Vero cells. (b) The relationship between PEDV strain titer and ORF3 gene 

clustering. The dots represent HB2018, HB2019, HB2020, and HB2021 strains, and the triangles rep-

resent DY2020, HM2017, and CH/HLJ/18 strains [23,24]. 

3.5. Phylogenetic Analysis of PoRVA 

The G genotype of PoRVA is determined by its VP7 gene [11]. VP7 nucleotide with 

homology higher than 80% can be identified as the same genotype (G type). The phyloge-

netic analysis based on VP7 genes of porcine PoRVA strains demonstrated that G9 is al-

ways the most common G genotype of PoRVA in China (Figure 7a,b). The phylogenetic 

analysis based on VP7 gene of human rotaviruses strains showed that before 2017, human 

rotaviruses in China were mainly G1 and G3 types, while the G9 type only accounted for 

a small proportion. However, after 2018, the G9 type strain became the dominant geno-

type of human rotavirus (Figure 7c,d). 

Figure 6. The growth kinetics of isolated PEDV strains and titer analysis. (a) Growth curves of
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represent DY2020, HM2017, and CH/HLJ/18 strains [23,24].

3.5. Phylogenetic Analysis of PoRVA

The G genotype of PoRVA is determined by its VP7 gene [11]. VP7 nucleotide with
homology higher than 80% can be identified as the same genotype (G type). The phylo-
genetic analysis based on VP7 genes of porcine PoRVA strains demonstrated that G9 is
always the most common G genotype of PoRVA in China (Figure 7a,b). The phylogenetic
analysis based on VP7 gene of human rotaviruses strains showed that before 2017, human
rotaviruses in China were mainly G1 and G3 types, while the G9 type only accounted for a
small proportion. However, after 2018, the G9 type strain became the dominant genotype
of human rotavirus (Figure 7c,d).
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4. Discussion

Piglet viral diarrhea is an important cause of piglet death, leading to serious production
reduction and huge economic loss in the pork industry. PEDV, PoRVA, PDCoV, and TGEV
are the most common pathogens causing piglet diarrhea [25,26]. In this study, a total
of 7107 diarrhea-related samples collected from pig farms in south-central China from
2018 to 2021 were examined to identify the major diarrhea pathogens. As a result, PEDV
was identified as the most important cause of diarrhea, and its detection rate decreased
from 2018 to 2020, which may be due to the wide use of the PEDV vaccine (GII-b) in
China [18,27–29]. In addition, in 2018, the outbreak of African swine fever (ASF) in pigs
was first reported in China, and was transmitted rapidly through the legal trade of live pigs,
which led to the development of ASFV monitoring and control plans and the upgrading
of the biosecurity system of pig farms [30–32]. These may be important reasons for the
decline in the PED positive rate after 2018, and also provide some useful data for pig
farms and the government to develop a bio-safety system for more efficient prevention and
control of infectious diseases. In 2019, the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) was first reported in Wuhan city of China, causing the coronavirus disease
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2019 (COVID-19). As a result, strict nationwide prevention and control of COVID were
implemented in China, which significantly restricted the flow of pedestrian, logistics, and
animal products [33,34]. Due to the impact of COVID-19, the number of samples collected
each year was inconsistent between 2018 and 2021, with the smallest number in 2021.
However, our results still showed that the detection rate of PEDV increased sharply in
2021, indicating the potential risk of another outbreak and therefore the need to develop
new PEDV vaccine strains. In addition, the detection rate of TGEV has been at a low
level without a trend of large-scale epidemics, while the detection rate of PoRVA and
PDCoV have had a rising tendency in recent years. The detection results of co-infection
revealed that PEDV and PoRVA co-infection is currently the most important form of co-
infection rather than the previous PEDV and TGEV co-infection [35,36], indicating that
the monitoring and prevention of PoRVA should be strengthened. The seasonality for the
prevalence of PEDV has been gradually decreasing [37,38], and many provinces showed
high incidence throughout the year, suggesting that the prevention and control of the
epidemic should be strengthened in the summer and autumn when PEDV was low in the
past. Furthermore, we found that Hunan and Hubei were the provinces with the most
severe PEDV epidemics in south-central China, which is consistent with the study of He
et al. [39]. In addition, our results revealed that the GII-a subgroup has been increasing
rapidly and has become dominant in recent years. The PEDV epidemic has been circulating
many times and there is a trend of re-emergence [40–42]. Therefore, more attention should
be paid to the PEDV GII-a subgroup [43]. The epidemiological investigation and research
on the latest PEDV variants will provide theoretical guidance for the prevention and control
of PED and provide vaccine reserves for preventing the outbreak of PED epidemics.

In this study, five PEDV variants were isolated from diarrhea samples using a Vero-E6
cell line, and primers were designed to sequence their main virulence genes (S gene and
ORF3 gene) [18]. According to the genetic evolution analysis of the S gene, these five PEDV
strains belong to the GII-a subgroup, which is closely related to the PEDV variant strains
isolated in China in recent years, and possesses relative low homology to the commercial
vaccine strain CV777 [44–49]. According to the genetic evolution analysis of the ORF3
gene, other four PEDV strains, except for DY2020 isolated in this study, are in the same
branch as the strains of the GII-a subgroup, and these four strains form a small branch
independently with the PEDV variant strains isolated in China in recent years, which may
be caused by mutations at multiple loci. In addition, the ORF3 gene of one PEDV variant
strain was in the same branch as that of the GII-b subgroup, indicating that the strains of
the GII-a subgroup and the GII-b subgroup of PEDV might have undergone recombination
in the natural environment. In addition, the recombinant DY2020 strain exhibited earlier
and more obvious CPE on Vero cells, suggesting that mutation in the ORF3 protein may
have altered its infectivity [23,24], which needs further verification. A comparison of the
nucleotide and amino acid homology between the five strains and the commercial vaccine
strains revealed that they have rather low homology. In recent years, the re-emergence
of PEDV may be caused by these genetic variants [18]. Further research on the variant
strains will help to understand the mechanisms for the re-emergence of PEDV and help the
prevention of PED.

The gene sequences of PEDV epidemic strains at present are significantly different
from those of previous classic strains and vaccine strains, and the nucleotide sequences
of the S gene and ORF3 gene are also significantly different from those of PEDV epidemic
strains and the classic strains CV777 reported previously [18]. Since 2010, large-scale PED
outbreaks have frequently occurred in China due to the variation of PEDV. In addition,
PEDV tends to have continuous mutations, posing new challenges to the prevention and
control of PED. It is therefore necessary to strengthen the epidemiological study of PEDV
mutant strains and pay close attention to the genetic variation of the pathogens. There are
great differences between PEDV and existing commercial vaccine strains, and more PEDV
mutant strains are emerging [43,50]. Therefore, China is in urgent need for vaccine strains
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corresponding to the epidemic strains, and research on the characteristics of epidemic
strains will provide technical reserves for the control of PED epidemics.

The prevalent PoRVA G genotypes mainly include G9, G11, G2, G3, G4, and G5, among
which G5 and G9 are the main genotypes in China [51]. The wide application of commercial
vaccines, such as the TGEV-PEDV-PoRVA (G5) triple live vaccine, has effectively controlled
the epidemic of the PoRVA G5 genotype in China. However, at the same time, we found
that more G9-type PoRVAs were isolated from piglet diarrhea samples in China and other
regions of Asia, which also demonstrates that G9-type PoRVA has been increasing in China
and other Asian countries and has become the most predominant G type [52,53]. The
G5 strains of PoRVA may be gradually reduced under the selection pressure of PoRVA
(G5) vaccines, while the G9 strains slowly emerged through the results of epidemiological
investigations. The typical sequences of the VP7 gene of human rotavirus strains (59)
and pig PoRVA strains (61) from 2010 to 2021 were downloaded from GenBank. The
evolutionary analysis revealed that rotavirus G1 and G3 strains were dominant before 2017,
while after 2018 there was a surge of human G9 strain. The G9 strain, meanwhile, has
been present and dominant in swine and dogs [51,54]. Previous studies have revealed that
the G3 and G9 strains of RAV cause diarrhea in human infants and young children, and
the recombination of RVA in humans and animals causes the generation of new PoRVA
genotypes [55–59]. Therefore, we hypothesize that the wide application of related vaccines
may largely reduce the prevalence of human G1 and G3 and pig G5 genotypes, while
the rotavirus G9 genotype will eventually become the dominant genotype, which will
undoubtedly increase the pressure on the prevention and control of porcine rotavirus. In
addition, the G9 genotype also has the risk of infecting infants and young children, and
thus calls for more attention [51,57,60–62]. By analyzing the prevalence of PoRVA and
human rotavirus in China and studying the genetic evolution relationship of its genotypes,
this study facilitates a better understanding of the trend of the G9 subtype and provides
some important implications for the control of the rotavirus epidemic.
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