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a b s t r a c t 

Artificial intelligence (AI) is developing rapidly and has found widespread applications in medicine, especially 

radiotherapy. This paper provides a brief overview of AI applications in radiotherapy, and highlights the research 

directions of AI that can potentially make significant impacts and relevant ongoing research works in these 

directions. Challenging issues related to the clinical applications of AI, such as robustness and interpretability of 

AI models, are also discussed. The future research directions of AI in the field of medical physics and radiotherapy 

are highlighted. 
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. Introduction 

In recent years, artificial intelligence (AI) is revolutionizing medical

cience and healthcare. 1 , 2 The deep learning applications in radiation

ncology and medical physics appeared in the 2016 Annual Meeting of

merican Association of Physicists in Medicine. 3 , 4 Since the pioneer-

ng applications of deep learning in radiation therapy in 2016 and 2017

y the Stanford group, 3-8 there has been surging interest in the appli-

ations of AI in radiation oncology. 9-11 Indeed, in the area of medical

hysics and radiation oncology, data-driven solutions are quickly evolv-

ng and promise to change our practice. The implication of AI to our field

s enormous and all indications suggest that AI will transform the ways

hat many tasks are done in the clinic. The clinical workflow of radiation

herapy is shown in Fig. 1 . In general, the process includes imaging sim-

lation, contouring, treatment planning, quality assurance (QA), treat-

ent delivery, and follow-up assessment. In each of the steps, there exist

ultiple difficult decisions to be made and the decision-making process

an be either manual or automatic with AI assistance. In this paper,

e provide an overview of the applications of AI in radiation oncology

nd medical physics. We also discuss the potential clinical benefits and

hallenges of AI-based approaches. 
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.1. AI for target delineation and organ segmentation 

Clinically, one of the important tasks is for radiation oncologists to

ecide on the volume of the tumor target. 12 , 13 Because the boundary be-

ween normal and tumor tissues in the images can be unclear or blurred

or various reasons, it is sometimes difficult for radiation oncologists

o determine the clinical target volume (CTV) and decide on how much

argin to include for treatment planning. Additionally, the delineations

f organs at risk (OARs) are also problematic as the process is labor

ntensive and time consuming. 5 , 13 Automated segmentation of OARs

ould greatly improve the efficiency and operator dependency of the

rocess. Some studies involving AI for target delineation and organ seg-

entation are summarized in Table 1 . 

Technically, segmentation is the process of clustering an image into

everal coherent sub-regions according to the extracted features and

lassifying each sub-region into one of the pre-determined classes. Seg-

entation techniques are divided into supervised and unsupervised

echniques. The former approach incorporates prior knowledge about

he image processing task through training samples. 22 The latter relies
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Fig. 1. Clinical workflow of radiation therapy. The image provides a comprehensive overview of the process, starting with the acquisition of medical images which 

are then utilized for modeling. Following this, a treatment plan tailored to the patient’s needs is developed. This plan is then implemented, delivering radiation to 

the patient with the aid of image-guided setup. The final stage involves providing the patient with follow-up care. 

Table 1 

Studies involving artificial intelligence for target delineation and organ segmentation. 

Reference Year Site Architecture Supervision Dataset Performance measure 

Men et al. 14 2017 Rectal 2D CNN Supervised CT of 278 patients DSC 

Men et al. 15 2017 Nasopharyngeal 2D CNN Supervised CT of 230 patients DSC 

Ermi ş et al. 16 2020 Brain 2D DenseNet Supervised T1w and T2w MRI of 30 patients DSC 

Jin et al. 17 2020 Esophageal 3D CNN Supervised CT and PET of 148 patients DSC, ASD 

Guo et al. 18 2019 Head and neck 3D DenseNet Supervised CT and PET of 250 patients DSC, HD, MSD 

Ma et al. 19 2022 Thoracic 3D U-Net Supervised 4D-CT of 70 patients DSC, HD 

Momin et al. 20 2021 Thoracic 3D R-CNN Supervised 4D-CT of 49 patients DSC, HD95, MSD, VD 

Zhou et al. 21 2022 Abdominal 2D ResNet Supervised 2500 kV X-ray images DSC, 3D error 

Abbreviations: 2D, two dimensional; 3D, three dimensional; ASD, average surface distance; CNN, convolutional neural network; DSC, Dice similarity coefficients; HD, 

Hausdorff distance; MRI, magnetic resonance imaging; MSD, mean squared difference; PET, positron emission tomography; T1w, T1-weighted; T2w, T2-weighted; 

VD, volume difference. 
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n the intensity or gradient analysis of the image via various strate-

ies such as thresholding, graph cut, edge detection, and deformation,

o delineate the boundaries of the target object in the image. With

he advances in deep learning techniques, significant progress has been

ade in image segmentation. Noteworthy, deep convolutional neural

etworks (CNNs) have achieved the state-of-the-art performance for the

emantic segmentation of natural images. 23-25 For example, the pioneer

tudies of Men et al, 14 , 15 applied fully connected network (FCN) for

omputed tomography (CT), CTV and OARs segmentation of rectal can-

er and nasopharyngeal cancer. They claimed that the deep learning

odels could complete the segmentation within one minute, facilitating

adiotherapy workflow while improving the contouring consistency. In

ddition to CT, promising results were also achieved on other imaging

odalities, including magnetic resonancing imaging (MRI) of various

ontrasts 16 , 26 and positron emission tomography (PET). 17 , 18 Readers

re recommended for the seminal paper of Litjens et al., 27 which re-

iewed the major concepts of deep learning and over 300 contributions

o medical image analysis including image classification, object detec-

ion, segmentation, registration and other tasks per application area:

euro, retinal, pulmonary, digital pathology, breast, cardiac, abdomi-

al, musculoskeletal. In addition, Seo et al. 13 reviewed the applications

f machine learning techniques, including deep learning, 7–12 kernel

upport vector machines (SVMs), Markov random fields (MRFs), ran-

om forests (RFs), etc., in medical image segmentation only. 

In summary, AI-assisted target delineation and organ segmentation

howed great potential in improving clinical efficiency and consistency.

owever, there are also challenges of such method that require future

ork of the community. First, the scarcity and inconsistency of anno-

ated data may hinder the development of AI models. Preparing large

raining dataset is not only labor-intensive, but also vulnerable to inter-

hysician variability. Building benchmark datasets from multiple clini-

al centers might be a solution to standardizing the model development

nd performance. Second, AI models usually predict target definition

ased on a single image modality, while in the clinic physicians usu-
212 
lly combine the information from several image modalities. Integrating

natomical and functional images in AI models can also be an interesting

esearch topic for the community. 

.2. AI for image registration 

Image registration is a common tool in the clinic and has been widely

pplied in various tasks, including motion tracking and modeling, 28 seg-

entation, 29 image-guided treatment, 30 and adaptive radiation ther-

py. 31 Despite those promising applications, conventional image regis-

ration, especially deformable image registration (DIR), replies on itera-

ive optimization algorithms and can take hours for an accurate registra-

ion. 32 AI-assisted image registration takes a single forward calculation

n implementation, which greatly accelerates the progress. Some studies

nvolving AI for image registration are summarized in Table 2 . 

Specifically, AI in image registration can be classified into three

ajor categories: deep iterative registration models, supervised reg-

stration models, and unsupervised registration models. 52 For deep

terative registration models, CNNs are utilized to replace conventional

ntensity-based cost function, which is robust to image artifacts and ca-

able of capturing underlying image features. For example, Simonovsky

t al. 33 trained a CNN model to distinguish whether two images were

ell-aligned, and then replaced the intensity-based cost function in

rain MRI registration with the CNN model, resulting in significantly

mproved accuracy. For supervised registration models, they follow the

traightforward idea of AI, which utilizes annotated data for training.

owever, as ground truth deformation is usually not available, the

upervision of AI models can also sometimes be artificial, indirect, or a

ixture of multiple components. For example, Teng et al. 37 developed

 patch-based CNN model for lung 4D-CT and 4D-cone-beam computed

omography (4D-CBCT) registration, whose reference deformations

ere from VelocityAI (Varian). To overcome the shortage and inaccu-

acy of reference deformations, Sokooti et al. 38 , 40 trained AI models

ith artificially generated deformations and achieved comparable accu-
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Table 2 

Studies involving artificial intelligence for image registration. 

Reference Year Site Architecture Supervision Dataset Performance measure 

Simonovsky et al. 33 2016 Brain 3D CNN Deep metrics IXI, 34 ALBERTs 35 DSC 

Sedghi et al. 36 2020 Brain 3D DenseNet Deep metrics IXI 34 FRE, DSC 

Teng et al. 37 2021 Thoracic 3D CNN Supervised 4D-CBCT and 4D-CT of 6 patients RMSE, SSIM, CC 

Sokooti et al. 38 2017 Thoracic 3D CNN Supervised SPREAD 39 TRE, Jaco. Det. 

Sokooti et al. 40 2019 Thoracic 3D CNN Supervised SPREAD 39 TRE, Jaco. Det. 

Li et al. 41 2019 Brain 3D CNN Semi-supervised Brain MRI of 3 249 patients MI, DSC 

Fan et al. 42 2019 Brain 3D CNN Supervised LONI LPBA40 43 DSC 

Balakrishnan et al. 32 2019 Brain 3D U-Net Unsupervised OASIS, 44 ABIDE, 45 ADHD200, 46 

MCIC, 47 PPMI, 48 HABS, 49 

Harvard GSP, 50 FreeSurfer 

Buckner40 51 

DSC 

Abbreviations: 2D, two dimensional; 3D, three dimensional; 4D, four dimensional, CBCT, cone-beam computed tomography; CC, cross-correlation coefficient; CNN, 

convolutional neural network; CT, computed tomography; DSC, Dice similarity coefficients; FRE, fiducial registration error; Jaco. Det., Jacobian determinant; MI, 

mutual information; MRI, magnetic resonance imaging; RMSE, root mean squared error; SSIM, structure similarity index measure; TRE, target registration error. 
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acy with conventional methods across multiple datasets. As for indirect

upervisions, Li et al. 41 developed hybrid CNNs that predicts image seg-

entation and registration together, while the segmentation can in turn

id the registration process. In addition, Fan et al. 42 utilized a mixture

f reference deformation and image similarity as supervision, achieving

p to a 4% higher average Dice score and more than 30 times faster

mplementation speed compared with conventional methods like SyN.

nsupervised registration models omitted the time-consuming data

reparation process and showed a more convenient way for registration

odel training. For example, Balakrishnan et al. 32 trained a U-Net-like

odel for brain MRI registration using intensity-based loss functions,

ncluding mean square error and normalized cross-correlation, and

chieved comparable Dice score with conventional methods like Syn

nd NiftyReg, but with more than 20,000 times faster implementation

ith graphics processing unit (GPU) acceleration. However, without

he guidance of reference deformations, the regularization of the deep

earning model could be challenging and folding voxels might be more

han those in conventional methods if inappropriate loss functions were

hosen. 

In summary, AI-assisted models can greatly accelerate the implemen-

ation of image registration while keeping comparable or even better

ccuracy. However, there also remains several challenges that need to

e addressed. First, shortage of high-quality training data is always a

hallenge for AI models, and this is even more severe for registration

odels since ground truth deformation is usually not available. Second,

he plausibility of the deformation is another challenge. Deformation

egularization is usually just smoothness, which may not be enough for

liding motions. Some conventional methods have tried to solve this, 53 

ut few AI-assisted models touched this topic. Further research on these

s needed to facilitate the AI-assisted registration model development

nd implementation. 

.3. Deep learning-based image reconstruction 

Deep learning is used to extract the features difficult to find by hu-

an beings and achieve state-of-the-art performance in many imaging

asks. Reconstruction of images (CT, MRI, PET, and so forth) can be im-

roved by deep learning. For example, Zhu et al. developed a deep learn-

ng model named AUTOMAP for image reconstruction from k-space. 54 

heir findings indicate that their model outperformed conventional re-

onstruction methods, including compressed sensing, by achieving a

ore than twice higher signal-to-noise ratio, halving the root mean

quared error, and exhibiting fewer artifacts. In current image recon-

truction, the sensory or measurement data are converted to an image

y model-based method or analytical inversion. For CT imaging, for ex-

mple, one measures 800 to 1 000 projections from different directions

nd then performs the reconstruction. With deep learning, we are pro-

ided with a wonderful framework to leverage prior patient data for
213 
parse and artifacts-free CT imaging. 55-58 Some studies involving AI for

mage reconstruction were summarized in Table 3 . 

In deep learning-based sparse image reconstruction, the demand for

easurement data can be reduced substantially without compromising

he quality of resultant images. Different from the conventional image

econstruction method, in which every patient is a new patient with the

mage reconstruction starting from the very beginning without consider-

tion of prior imaging data, the information extracted from prior data to

acilitate the imaging of a new patient is considered. In this way, high-

uality imaging with fewer measurements become possible. Recently,

hen, Zhao and Xing 58 have developed a novel deep neural network for

ltra-sparse CT image reconstruction. They demonstrated the feasibility

f CT imaging by using a single projection. They firstly proposed a deep

earning model to generate volumetric tomographic X-ray images from

 single projection view for upper-abdomen, lung and head-and-neck, as

hown in Fig. 2 . 58 Then they proposed a geometry-informed deep learn-

ng framework integrating geometric priors of the imaging system which

s essential to enhance the performance. 58 A team at Stanford Radiol-

gy developed an artificial intelligence-enabled PET imaging technique

o synthesize standard-dose amyloid PET images of high quality from

ltra-low dose PET images. The synthesized images have similar accu-

acy (around 90%) for amyloid status to intrareader reproducibility of

ull-dose images, 61 , 62 which may represent a significant step forward in

ET imaging with multiple-fold reduction of the radionuclide tracers. 

In summary, deep learning models have achieved great successes in

mage reconstruction, especially in the efficiency. However, reconstruc-

ion models also face similar challenges as other models. First, models

rained on data from a single or a few medical centers may not be gener-

lizable to other centers, and re-training for each center can be time- and

esource-consuming. Recently, federated learning has been introduced

o medical imaging, 63 which is promising for model development in

mall medical centers. Second, the reliability of reconstruction models

eeds thorough evaluation. Although image details can be reconstructed

y AI models, unrealistic or extra structures sometimes are also gener-

ted. Turing test might be a good way to evaluation the models before

pplications. 64 , 65 

.4. AI for dose prediction and automated treatment planning 

While numerous clinical studies have clearly shown the significant

enefit of tumor dose escalation and hypofractionation, how to effi-

iently deliver a tumoricidal radiation dose to the tumor without in-

reasing the radiation toxicity remains to be the single most significant

hallenge in radiation oncology. Treatment planning is an important

tep in radiation therapy and critically determines the quality of treat-

ent. Currently, the clinical treatment planning process is rather tedious

nd labor-intensive, yet has no guarantee of generating truly optimal

reatment plans. The deficiencies in treatment planning are caused by
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Table 3 

Studies involving artificial intelligence for image reconstruction. 

Reference Year Site Architecture Supervision Dataset Performance measure 

Zhu et al. 54 2018 Brain 2D CNN Supervised ImageNet, 59 MGH-USC HCP 60 SNR, RMSE 

Shen et al. 58 2019 Abdominal, thoracic 3D CNN Supervised CT of 3 patients MAE, RMSE, SSIM, PSNR 

Wu et al. 57 2019 Knee 3D CNN Supervised MRI of 360 patients SSIM 

Mardani et al. 56 2018 Pediatric, knee 3D GAN Supervised MRI of 350 pediatric patients and 19 knee patients SNR, SSIM 

Chen et al. 61 2018 Brain 2D U-Net Supervised PET and MRI of 39 patients PSNR, SSIM, RMSE 

Ouyang et al. 62 2019 Brain 2D GAN Supervised PET of 39 patients PSNR, SSIM, RMSE 

Abbreviations: 2D, two dimensional; 3D, three dimensional; CNN, convolutional neural network; CT, computed tomography; GAN, generative adversarial network; 

MAE, mean absolute error; MRI, magnetic resonance imaging; PET, positron emission tomography; PSNR, peak signal-to-noise ratio; RMSE, root mean squared error; 

SNR, signal-to-noise ratio; SSIM, structure similarity index measure. 

Fig. 2. Illustrative instances extracted from the abdominal-CT and lung-CT cases. The prediction using different numbers of 2D projections. Reconstructing images 

using 1, 2, 5, 10 projection views. In the abdominal-CT case, a total of 720 images were utilized for training, 180 for validation, and 600 for testing. Similarly, for 

the lung-CT case, 2400 images were used for training, 600 for validation, and 200 for testing. CT, computed tomography. 

214 



J. Liu, H. Xiao, J. Fan et al. Journal of the National Cancer Center 3 (2023) 211–221 

Fig. 3. The dose distribution and DVHs comparison between the 

predicted plan and the automatically generated plan for patient . 

The upper left (a, d, g, j) is the predicted plan, the upper middle 

is the automatically generated plan (b, e, h, k), and the upper 

right is the voxel-by-voxel difference maps (c, f, I, l). The color 

bars representing different dose levels are shown at the top of the 

figure. The bottom two plots (m, n) offer a comparative view of 

the DVHs for both plans, with color bars representing DVHs of 

different structures. The solid line represents the predicted plan, 

and the dashed line signifies the automatically generated plan. 

Used with permission of John Wiley and Sons, copyright 2018; 

permission conveyed through Copyright Clearance Center, Inc. 68 

DVHs, dose-volume histograms. 
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Table 4 

Studies involving artificial intelligence for dose prediction and automated treatment planning. 

Reference Year Site Architecture Supervision Dataset Performance measure 

Mardani et al. 3 2016 Prostate Auto-encoder Supervised 125 prostate patients Iso-dose surface overlap 

Ma et al. 66 2019 Prostate 3D CNN Supervised 70 prostate patients SAR 

Ma et al. 67 2019 Prostate 3D CNN Supervised 70 prostate patients SAR 

Fan et al. 68 2018 Head and Neck 3D CNN Supervised 270 head and neck patients DVH 

Dong et al. 69 2019 Lung, Brain, Abdomen, Pelvis 2D CNN Supervised 10 patients MSE, Gamma index 

Fan et al. 70 2020 Nasopharyngeal, Lung, Rectum, Breast 3D U-Net Supervised 247 patients Per-voxel bias, Clinical indices 

Abbreviations: 2D, two dimensional; 3D, three dimensional; CNN, convolutional neural network; DVH, dose-volume histogram; MSE, mean squared error; SAR, sum 

of absolute residuals. 
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Fig. 4. Visualization of meta-optimized workflow compared to manual treat- 

ment planning. Both the manual treatment planning and the meta-optimized 

workflow are structured as two nested loops of optimization. The inner loop in- 

volves inverse planning optimization, which includes processes such as fluence 

map optimization and direct aperture optimization. The outer loop, on the other 

hand, is where either meta-optimization or manual optimization of hyperparam- 

eters takes place. Used with permission of IOP Publishing Ltd, copyright 2022; 

permission conveyed through Copyright Clearance Center, Inc. 71 CT, computed 

tomography. 
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he involvement of multiple model parameters, which must be deter-

ined via manual trial-and-error as their influence on the final dose

istribution is patient-dependent and not known until optimization is

one. Thus, treatment planning remains to be one of the most labor-

ntensive and time-consuming tasks in current RT practice, with the

uality of the final plan depending heavily on the planner’s training and

kills. A more reliable, faster and more autonomous planning approach

s urgently needed to greatly improve the safety, quality, efficiency, and

ost-effectiveness of radiation therapy. Some studies involving AI for

ose prediction and automated treatment planning were summarized in

able 4 . 

AI-augmented autonomous treatment planning promises to miti-

ate the bottleneck to maximize the therapeutic ratio of modern radi-

tion therapy. Since the initial work on deep learning-based intensity-

odulated radiation therapy (IMRT) dose prediction by Mardani et al., 3 

any attempts have been made to automate treatment planning

 Fig. 3 ). 66-68 , 71 , 72 Technically, there are a number of important prob-

ems that must be resolved before the deep learning-based techniques

an be employed to facilitate clinical treatment. These include, for ex-

mple, 1) development and clinical implementation of AI-based dose

rediction with the incorporation of prior clinical knowledge. Zhao et al.

roposed a dose distribution prediction model integrating anatomic fea-

ures and dosimetric features based on deep learning method, as shown

n Fig. 3 66 , 67 ; 2) development of computer algorithm to mimic opera-

ions of a human planner to automatically update treatment plan param-

ters. One of the algorithm frameworks is shown in Fig. 4 71 ; 3) imple-

entation of deep learning-based dose calculation to speed up the plan-

ing process, as shown in Fig. 5 . 69 , 70 AI-augmented treatment planning

ill not only speed up the treatment planning process, but also improve

he quality of treatment plans, and help to standardize the treatment

lanning procedure. 

Several specific challenges still remain for AI-augmented treatment

lanning. First, the models usually treat the dose prediction to each

natomical structures as separate tasks and neglect the relationship be-

ween maximizing target dose and minimizing OAR doses. 73 , 74 Second,

ome studies focused on dose map prediction only, yet did not cover the

elivery parameters, including beam angles and fluencies. Research to

ddress these tasks are therefore encouraged. 

.5. Deep learning-augmented image guidance 

Another important example of AI is to provide better image guid-

nce tools for radiation therapy, where nearly real-time information

bout the tumor target as well as patient setup is necessary to achieve

ccurate beam targeting. Recent advances in radiotherapy techniques,

ncluding volumetric modulated arc therapy (VMAT), IMRT, stereotac-

ic radiosurgery (SRS), and stereotactic ablative radiotherapy (SABR),

rovide effective ways to generate steep dose distributions at the target

oundary while sparing the healthy issues. However, these steep dose

istributions call for stringent requirements for enhanced target posi-

ioning. 

Radiation treatment machine systems with image guidance have

een routinely used in clinical practice. 75-82 Deep learning enables
216 
earning semantic features and understanding complex relationships

rom data. 83 This has greatly augmented the applications of AI in image-

uided radiation therapy (IGRT). Zhao et al. employed deep learn-

ng to localize the prostate target on kV X-ray images, as shown in

ig. 6 . 10 Differences between the predicted target positions and their

ctual positions are 1.58 ± 0.43 mm, 1.64 ± 0.43 mm, and 1.67 ± 0.36 mm

n anterior-posterior, lateral, and oblique directions for prostate tu-

or, 10 , 84 , 85 which demonstrated highly accurate, markerless prostate

ocalization based on deep learning are achievable. AI also provides bet-

er solutions to motion management 86-88 and quality assurance 89-97 in

adiation therapy. 

Real-time target tracking requires a latency from motion to treatment

esponse of less than 500 ms, 98 and abovementioned studies all satisfied

his criterion. However, there are more potential latencies that have to

e considered. For example, although only a single slice was needed in

ome studies, image reconstruction of that slice can still take a while.

esides, the transfer of raw data from the image scanner to the work-

tation for processing is also a non-negligible component. Prospective

tudies including the entire treatment process is therefore encouraged

or evaluation. 
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Fig. 5. Dose distributions comparison in two axial planes for a lung patient. The figure displays the dose distributions as calculated by both the treatment planning 

system and deep learning, along with the pixel-wise differences between these two calculations. The left side of the figure represents the dose distribution as 

calculated by the treatment planning system, the middle section depicts the dose distribution as calculated by deep learning, and the right side illustrates the pixel- 

wise differences between the two calculations. Used with permission of IOP Publishing, Ltd, copyright 2020; permission conveyed through Copyright Clearance 

Center, Inc. 70 

Table 5 

Studies involving artificial intelligence for outcome prediction. 

Reference Year Site Architecture Supervision Dataset Performance measure 

Ibragimov et al. 99 2018 Liver 3D CNN Supervised 125 liver SBRT cases ROC curve 

Ibragimov et al. 100 2020 Liver 3D CNN Supervised 122 liver SBRT cases Accuracy, risk score 

Jean-Emmanuel et al. 101 2020 Colorectal Gradient-boosting Supervised 2 359 colorectal cancer patients ROC curve, accuracy 

Liu et al. 102 2021 Lung LSTM Supervised 104 lung cancer patients ROC curve 

Abbreviations: 3D, three dimensional; CNN, convolutional neural network; LSTM, long short-term memory; SAR, sum of absolute residuals; SBRT, stereotactic body 

radiation therapy; ROC curve, receiver operating characteristic curve. 
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.6. Deep learning-based outcome prediction 

Deep learning-based process prediction models gained much pop-

larity and led to breakthrough results in a variety of applications.

ome studies involving AI for outcome prediction were summarized in

able 5 . Ibragimov et al. 99 predicted the patient survival and local pro-

ression after stereotactic body radiation therapy using 3D dose anal-

sis based on deep learning. Moreover, they proposed a deep learning

ased model to recognize the toxicity risk map for the abdominal areas,

s shown in Fig. 7 . 100 Jean-Emmanuel et al. 101 provided an explain-

ble prediction of the 10-year death rate of colorectal cancer (CRC) us-
217 
ng XGBoost python package with tumor features, and patients’ medi-

al and demographic information. The area under the receiver operat-

ng characteristic (AUC) of this model was 0.84 ± 0.04 and the accuracy

as 0.83 ± 0.04. Liu et al. 102 developed an individualized deep-learning

ased model by using the whole dose information contained in dose-

olume histograms (DVHs) instead of some isolated index, like V20,

40, etc., to predict lymphopenia, which takes into account the isodose

istribution. 

With the increasing availability of high-quality clinical data and

tate-of-the-art deep learning infrastructure, we anticipate that exciting

nd clinically useful models will be readily available in the near future.
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Fig. 6. Overall flowchart of the proposed deep 

learning-based treatment target localization 

method. The method involves several steps: (1) 

The patient’s pCT images are placed in OBI ge- 

ometry. (2) A series of changes, including trans- 

lations, rotations, and deformations, are intro- 

duced to the pCT images to simulate differ- 

ent clinical scenarios. For each of the changes 

made, a DRR image that includes the corre- 

sponding prostate contour and bounding box is 

generated. These annotations are used to train 

a deep learning model for the subsequent lo- 

calization of the prostate target. (3) Valida- 

tion tests are performed using both DRR images 

and monoscopic X-ray projection images ob- 

tained from a kV OBI system. Used with permis- 

sion of Elsevier Science & Technology Journals, 

copyright 2019; permission conveyed through 

Copyright Clearance Center, Inc. 10 CT, com- 

puted tomography; CNN, convolutional neural 

network; DRR, digitally reconstructed radio- 

graph; kV, kilovoltage; OBI, onboard imager; 

pCT, planning computed tomography; pDRR, 

prostate digitally reconstructed radiograph. 

Fig. 7. Depiction of the deep learning framework for critical region identification in liver RT. A CNN is trained to discern consistent patterns in pre-RT computed 

tomography images and the administered RT doses, and to associate these patterns with post-RT toxicity manifestation. The properties of the CNN are then analyzed 

to identify anatomical regions, the sparing of which significantly correlates with a reduction in toxicity risk. This analysis culminates in the creation of a toxicity risk 

map for the liver area. Used with permission of John Wiley & Sons - Books, copyright 2020; permission conveyed through Copyright Clearance Center, Inc. 100 CNN, 

convolutional neural network; RT, radiation therapy. 
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A  
espite the promising future, some challenges need to be addressed be-

ore the clinical implementation of those models. First, the prediction is

sually discrete, like Grade I, II, III, etc. However, treatment response or

oxicity are always more complex than the discrete grades. 103 Second,

linical data are inherently multi-modality, including medical images,

reatment plans, patients’ physiological parameters, and even patients’

ife habits. Current models mostly focus on medical images and treat-

ent plans, which might lose useful information for prediction. 
218 
.7. Guidelines for development and clinical trials of AI 

Recently, it has become increasingly important to prospectively

ssess the impact of interventions involving artificial intelligence on

ealth outcomes. The Standard Protocol Items: Recommendations for

nterventional Trials-Artificial Intelligence (SPIRIT-AI) extension 104 is

 new guideline for reporting clinical trial protocols to evaluate the

I component interventions. The Consolidated Standards of Reporting
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rials-Artificial Intelligence (CONSORT-AI) extension 105 is a new guide-

ine for reporting clinical trials used to evaluate an AI component inter-

ention. A staged consensus process including a literature review and

xpert consultation was used for the development of both guidelines.

lear descriptions of AI intervention were recommended, including in-

tructions and skills for using, the integrated setting, input and output

ata handling, the human-AI interaction, and error case analysis. They

imed to increase the transparency and completeness of clinical trials of

I interventions. Luo et al. 106 proposed a set of guidelines for the use of

achine learning predictive models in clinical settings, including a re-

orting item list and practical steps to develop predictive models. They

imed to enable correct application and consistent reporting of machine

earning models in clinical settings. Most of the guidelines focus on data

rivacy and ethics. 107-110 Since we are mainly interested in the devel-

pment of artificial intelligence tools and the conduct of clinical trials

n clinical settings, we will not go into details. 

. Conclusions 

AI has made remarkable progress in the past decade. It has recently

hown expert-level accuracy in various applications and in improving

he clinical gain and therapeutic ratio. Deep learning represents one of

he most important advances in the history of radiation oncology. The

echnique holds significant potential to revolutionize radiation oncology

esearch and practice. Despite all the promises, potential pitfalls exist

ith the current implementation. Noteworthy, AI is still largely a black

ox with little interpretability, which limits its utility, especially in the

rea of healthcare. The development of interpretable AI is of paramount

mportance for the widespread adaptation of AI in healthcare. 
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