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ABSTRACT It has been reported that stressful events in early life influence behavior 
in adulthood and are associated with different psychiatric disorders, such as major 
depression, post-traumatic stress disorder, bipolar disorder, and anxiety disorder. 
Maternal separation (MS) is a representative animal model for reproducing child-
hood stress. It is used as an animal model for depression, and has well-known effects, 
such as increasing anxiety behavior and causing abnormalities in the hypothalamic-
pituitary-adrenal (HPA) axis. This study investigated the effect of MS on anxiety or 
aggression-like behavior and the number of GABAergic neurons in the hippocampus. 
Mice were separated from their dams for four hours per day for 19 d from postnatal 
day two. Elevated plus maze (EPM) test, resident-intruder (RI) test, and counted glu-
tamic acid decarboxylase 67 (GAD67) or parvalbumin (PV) positive cells in the hip-
pocampus were executed using immunohistochemistry. The maternal segregation 
group exhibited increased anxiety and aggression in the EPM test and the RI test. 
GAD67-positive neurons were increased in the hippocampal regions we observed: 
dentate gyrus (DG), CA3, CA1, subiculum, presubiculum, and parasubiculum. PV-
positive neurons were increased in the DG, CA3, presubiculum, and parasubiculum. 
Consistent with behavioral changes, corticosterone was increased in the MS group, 
suggesting that the behavioral changes induced by MS were expressed through the 
effect on the HPA axis. Altogether, MS alters anxiety and aggression levels, possibly 
through alteration of cytoarchitecture and output of the ventral hippocampus that 
induces the dysfunction of the HPA axis.

INTRODUCTION
Many lines of evidence, including epidemiologic studies from 

human beings and extensive animal experimental data, indicate 
that early life events play an essential role in influencing later be-
havioral and emotional responses to stressors [1-4]. Although the 

mechanism of how early life stress changes the behavioral and/or 
emotional outcome remains unclear, a recent explanation for this 
is that adverse early life experiences can change neural connectiv-
ity in the underlying brain network [5-9]. For example, abnormal 
maternal care and chronic early life stress change the number and 
function of neuronal synaptic activities in different brain areas, 
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including the hypothalamus, hippocampus, septal area, etc. [10-
13]. These lines of evidence suggest that maternal separation (MS) 
in early life may hinder the normal neural circuitry of the brain, 
resulting in emotional disorders such as anxiety and aggressive 
behavior.

The hippocampus, belonging to the limbic system, is a primi-
tive cortical structure that plays an essential role in memory 
processing and spatial cognition, including how mammals learn 
to understand and navigate the environment. For this reason, sev-
eral researchers have long focused on its role in spatial learning 
memory and dementia, especially concerning Alzheimer’s disease 
[14-18]. However, literature has also shown that the hippocampus 
takes part in memory and intimately in emotion to regulate a 
range of stress responses [19-21]. In humans, the decline in the 
volume of the hippocampus and its resulting dysfunction are re-
lated to psychological disorders, such as post-traumatic stress dis-
order, bipolar disorder, and depression [22-26]. These two distinct 
functional roles of the hippocampus can be explained by dividing 
it into two separate regions, namely, the dorsal hippocampus 
and the ventral hippocampus [10,27-29]. The dorsal hippocam-
pus receives polymodal sensory inputs from the cortical areas. 
It is involved mainly in learning and memory, while the ventral 
hippocampus is more closely linked to subcortical limbic areas 
(hypothalamus, amygdala, etc.) and is mainly associated with the 
modulation of reward circuitry and emotional behavior [10,30-32].

Many lines of evidence have shown that hippocampal GAB-
Aergic interneurons are associated with mood disorders’ develop-
ment [33-35]. The interneurons control the activity levels of prin-
cipal neurons by gating the information flow at the synaptic cleft 
[10,36-38]. Although interneurons possess the largest diversity 
in morphology and physiological properties, Most interneurons 
in the central nervous system are inhibitory interneurons, which 
characteristically release gamma-aminobutyric acid as their 
neurotransmitter [39]. The hippocampus is a very susceptible 
structure to the effects of different stressors and is known to be 
involved in fear, anxiety, or aggression through direct projection 
reaching multiple areas of the brain, such as the hypothalamus, 
prefrontal cortex, basal amygdala, and nucleus accumbens [40-
44]. Particularly, the hippocampus sends projections to the hy-
pothalamic paraventricular nucleus (PVN) for involvement in 
the regulation of the hypothalamic-pituitary-adrenal (HPA) axis 
[35,45,46].

It was previously shown that early life stress, especially MS, can 
decrease long-term potentiation and release probability of Mossy 
fiber-CA3 synapses at the ventral hippocampus in neonatal 
mice, which may result in behavioral disorders in the adolescent 
period [47]. These electrophysiological and behavioral data hint 
at a correlation between developmental changes in the ventral 
hippocampus caused by early life stress and psychiatric illness. In 
this study, we aimed to determine whether adolescent behavioral 
disorders following early MS were caused by alterations in the 
cytoarchitecture of the ventral hippocampus.

METHODS

Animals

The adult male C57BL/6 and Balb/c mice (Samtako Inc., Osan, 
Korea) were used. The C57BL/6 mice were used for all experimen-
tal procedures, and the Balb/c mice were used only as an intruder 
in the RI test. All animals were housed in a standard cage with 
sterilized food and tap water available ad libitum and maintained 
on a 12-h:12-h light-dark cycle (light on from 7:00 AM) under 
constant room temperature (21°C ± 2°C). All experimental proce-
dures were conducted in accordance with the National Institutes 
of Health Guide for the Care and Use of Laboratory Animals (NIH 
Publication No. 80-23, revised 1996) with the approval of the In-
stitutional Animal Research Ethics Committee of Eulji University 
(approval No. EUIACUC14-13).

Maternal separation

The MS experiments were performed using the same pro-
cedures as in our previous study [47,48]. Briefly, the male and 
female mice were mated to produce litters of 8–12 pups. After 
birth, the pups were randomly divided into two groups: the MS 
group and the handling (HD) group. The pups in the MS group 
were separated from their dams for four hours (10:00–14:00) per 
day from the postnatal day (PND) 2–20. During the separation, 
the pups were placed in another isolated room with heated, clean 
sawdust (29°C ± 1°C) to avoid communicating with their dams 
through ultrasound vocalization and their dams. The pups in 
the HD group remained in their home cage with their dams and 
littermates during the four-hour separation, except briefly mov-
ing them to a clean cage and returning to their home cage. This 
HD procedure, never lasting for more than five minutes per litter, 
simulates the handling undergone by MS pups and serves as a 
control [49,50]. Only one proficient researcher conducted all the 
MS procedures to prevent potential experimental bias. Other re-
searchers were blocked from accessing the cages.

Experimental procedures

After weaning at PND 21, all pups were regrouped by gender 
at PND 22, and all subsequent procedures were conducted using 
males only. The behavioral changes of MS during the adoles-
cence period were evaluated by accessing the elevated plus maze 
(EPM) test and RI test. EPM test was conducted between PND 42 
and PND 46. RI test was conducted at PND 49 following single-
housing of animals for two weeks from PND 35. Corticosterone 
(CORT) assay and immunohistochemistry (IHC) for GAD67 and 
parvalbumin (PV) experiments were conducted between PND 
42 and 49 (Fig. 1). A total number of 68 MS and 68 HD was used 
in this study: EPM test (10 MS and 10 HD), RI test (10 MS and 10 
HD), CORT assay (10 MS and 10 HD), IHC (13 MS and 13 HD).
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Elevated plus maze test

The EPM apparatus is a plus-shaped acryl maze with two op-
posite open arms and two opposite closed arms, extending out 
from a central platform. The open arm is 65 × 5-cm, the closed 
arm is 65 × 5-cm, and the height is 15-cm. Animals were placed 
in the center platform of the maze facing one of the open arms 
and then allowed to explore the open or closed arms for ten min-
utes. The time spent in the different arms was recorded with the 
Ethovision Video Tracking System (Noldus Inc., Wageningen, 
Netherlands).

Resident-intruder test

For the RI test, from PND 35, each MS and HD mouse was sin-
gle-housed in an individual home cage for 14 days. The bedding 
was not changed for four days (from PND 45 to PND 49) before 
testing. On the test day (at PND 49), the other mouse species (Balb/
c) of the same age were placed into the home cage as an intruder. 
For ten minutes, aggressive behavior of the host mice were re-
corded using the Ethovision Video Tracking System. The latency, 
total duration, and the number of attacks on the host mouse were 
observed and assessed.

Blood collection and corticosterone assay

Anesthesia was induced using isoflurane (Isoflurane; Hana 
Pharm Co., Hwaseong, Korea) in an empty induction chamber. 
Following rapid decapitation, trunk blood was immediately ob-
tained from animals, and the obtained blood (about 0.7-ml) was 
allowed to clot at room temperature for 30 min. After centrifu-
gation (2,300 rpm, five min), plasma was transferred into fresh 
tubes and stored at –80°C until used for CORT analysis. Blood 
sampling occurred between 09:00 AM and 11:00 AM.

The serum levels of CORT were measured using Cayman’s 
Corticosterone EIA Kit according to the manufacturer’s instruc-
tions (Cayman chemical, Ann Arbor, MI, USA) as described 
previously by research groups [51-55]. Briefly, 100-µl standards 
or samples were added in duplicate to the wells of the microtiter 
plate. Assay buffer (200-µl) was added to the nonspecific bind-
ing (NSB) wells, and 100-µl assay buffer was added to wells to act 
as maximum binding wells. Then, 50-µl conjugate and 50 µl of 
CORT antibody (except the NSB wells) were added to each well 
and the plate was incubated for two hours at room temperature 
on a horizontal orbital microplate shaker (450–550-rpm). After 
the plate was washed thrice using the Washing Solution and the 
remaining Washing Solutions were completely removed by de-
cantation and aspiration. Then, 200-µl p-nitro phenyl phosphate 
substrate was added to each well and incubated for one hour at 
room temperature without shaking. The optical density of the en-
zyme products was read at 405-nm using a plate reader (SPECTRO 
star Nano; BMG Labtech, Ortenberg, Germany) within 15 min 
after the reaction was terminated by adding 50-µl Stop Solution. 
The values of samples were calculated according to the standard 
curve (BMG Labtech).

Immunohistochemistry

Animals were anesthetized through an intraperitoneal injec-
tion mixture of ketamine (70-mg/kg) and rompun (8-mg/kg) 
and transcardially perfused with physiological saline, followed by 
150-ml 4% paraformaldehyde in phosphate-buffered saline (PBS). 
Brains were eliminated immediately, post-fixed in the same fixa-
tive for two hours, and infiltrated with 30% sucrose solution over-
night at 4°C until they sank. The whole brains were rapidly frozen 
in 2-methylbutane chilled on dry ice and mounted in Tissue-Tek 
OCT compound (Sakura Finetechnical Co., Tokyo, Japan). Se-
rial horizontal sections of 40-µm-thicknesses were obtained on a 

Fig. 1. Experimental design. To characterize the effect of MS, pups were weaned at PND 21 and regrouped by gender at PND 22. The behavior 
changes by MS in the adolescence period were analyzed using an EPM test and RI test. EPM test was conducted between PND 42 and PND 46. RI test 
was conducted at PND 49 following single-housing of animals for two weeks from PND 35. CORT assay and IHC for GAD67 and PV experiments were 
conducted between PND 42 and 49. MS, maternal separation; PND, postnatal day; EPM, elevated plus maze; RI, resident-intruder; CORT, corticoste-
rone; IHC, immunohistochemistry; GAD, glutamic acid decarboxylase; PV, parvalbumin.
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Cryostat Microtome (Leica Microsystems Inc., Wetzlar, Germa-
ny). Every sixth section, at a periodicity of 240-µm, was obtained 
as one set, so six sets were prepared per brain. Before immuno-
histochemical staining, the sections of a set were scanned under a 
stereomicroscope (Nikon Inc., Tokyo, Japan) to select specimens, 
including a section passing through the ventral hippocampus 
between level Interaural 3.12–2.04-mm according to Paxinos and 
Watson [56]. A total of six specimens per brain were selected, and 
immunostaining was conducted.

IHC staining was executed using the free-floating method. The 
horizontal sections were washed for ten minutes in 0.1 M PBS, and 
endogenous peroxidase activity was quenched by incubating the 
tissue sections with 0.3% hydrogen peroxide in PBS for 30 min. 
After washing, the sections were incubated in PBS containing 0.1% 
Triton X-100 (PBST) and 10% normal horse serum for one hour 
to reduce nonspecific staining. The sections were then incubated 
with primary antibodies at 4°C overnight. The primary antibod-
ies used in this study were mouse anti-GAD67 monoclonal anti-
body (1:1,000; Chemicon, Temecula, CA, USA) and mouse anti-
PV monoclonal antibody (1:1,000; Sigma-Aldrich, St. Louis, MO, 
USA). The sections were washed thrice with PBST and incubated 
for two hours with biotinylated horse anti-mouse immunoglobu-

lin G (1:200; Vector Laboratories Inc., Burlingame, CA, USA), fol-
lowed by incubation for one hour with Avidin-Biotin Peroxidase 
Complex (Vector Laboratories Inc.). Antigens were visualized with 
3, 3’-diaminobenzidine tetrahydrochloride (Sigma-Aldrich) solu-
tion containing 0.01% hydrogen peroxide. Sections were mounted 
on Vectabond (Vector Laboratories Inc.) coated slides, counter-
stained with hematoxylin, dehydrated through a graded ethanol 
series, cleared in xylene, and covered with coverslips using para-
mount (Fisher Scientific, Pittsburgh, PA, USA).

Cell count and semi-quantitative analysis

The number of GAD67- or PV-immunoreactive (-ir) neurons 
in the ventral hippocampus was counted using a researcher blind 
to the experimental conditions. Light photomicrography images 
were collected on an Olympus Ax 70 microscope (Olympus Inc., 
Tokyo, Japan) equipped with a Carl Zeiss AxioCam MRC digital 
camera (Carl Zeiss Inc., Jena, Germany) and AxioVision image 
capture software (version 4.6; Carl Zeiss Inc.). The researcher 
traced contours within the boundaries of each ventral hippocam-
pal subfield (dentate gyrus [DG], CA3, and CA1) at 4× magnifica-
tion. The border between each region was defined by Cappaert’s 
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method [57]. Its coiled structure can distinguish the DG with an 
opened concave part directed towards the hippocampus proprius. 
The hippocampus proprius is subdivided into two subfields, CA1 
and CA3, according to the density, size, and branching of axons 
and dendrites of pyramidal cells. CA3 is the region with large, 
less densely packed cells, and CA1 is the region with densely 
packed medium-sized cells. In this study, we did not include the 
field CA2, a narrow transitional field between CA3 and CA1.

Cells of GAD67-ir or PV-ir were then counted at 10× magni-
fication using a meander scan profile counting technique. The 
meander scan profile counting method is a semi-automated scan-
ning method that allows the user to view and count all cells with-
in the traced contour. For a more precise comparison, we further 
divided each hippocampal subfield into several layers [57]. The 
DG was further divided into three layers: granular cell layer (gcl), 
hilus, and molecular cell layer (mcl). CA3 was further divided 
into five layers: stratum oriens (so), stratum pyramidale (sp), stra-
tum lucidum (sl), stratum radiatum (sr), and stratum moleculare 
(slm). The CA1 was also further divided into four layers: so, sp, sr, 
and slm. To determine the density of immunoreactive cells in a 

given region of interest, we divided the total number of immuno-
reactive cells in that region by the total size of the traced contour 
(in mm2). Our cell counts are expressed as the average number of 
cells per mm2.

Statistics

Data were presented as the means ± standard error of the 
mean. Student’s t-test was used for comparisons of the means be-
tween the two groups. Asterisks indicate statistical significance (*p 
< 0.05, **p < 0.01, ***p < 0.001).

RESULTS

Neonatal MS induces elevated basal CORT and 
anxiety/aggressive-like behavior

To examine the effect of neonatal MS on behavioral charac-
teristics in the adolescent period, two groups were assessed using 
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the EPM test and the RI test. In the EPM test, the MS mice spent 
significantly less time in the open arms (HD: 65.28 ± 11.06 sec; 
MS: 35.29 ± 7.49 sec, p = 0.035; Fig. 2A) and spent more time in 
the closed arms (HD: 466.95 ± 14.02 sec; MS: 515.85 ± 15.75 sec, 
p = 0.030; Fig. 2B) compared to the HD group. Simultaneously, 
the ratio of entries into the closed arm section in the MS group 
was more than that of the HD mice (HD: 68.04 ± 1.73; MS: 78.24 
± 3.956, p = 0.034; Fig. 2D). These behavioral features show more 
anxiety-like properties in the MS mice. No significant differences 
were observed in the duration time in the center between the two 
groups (HD: 40.7 ± 3.23 sec; MS: 33.11 ± 6.13 sec, p = 0.297. data 
now shown). Moreover, no differences were shown in the total 
number of entries into all arms (HD: 27.3 ± 2.14 sec; MS: 20.77 ± 
2.68 sec, p = 0.071. data now shown). These results indicate that 
the behavioral effects are probably unrelated to changes in activ-
ity levels.

In the RI test, the MS mice exhibited a short latency to attack 
intruder mice (latency: HD: 448.20 ± 96.90 sec; MS: 323.20 ± 
65.62 sec, p = 0.028; Fig. 2E). Meanwhile, the MS mice exhibited 
significant elevated time in the total duration of attacks (HD: 

8.12 ± 10.22 sec; MS: 42.23 ± 15.32 sec, p = 0.007; Fig. 2F) and in-
creased the number of attacks (HD: 4 ± 2.84 sec; MS: 23.67 ± 5.38 
sec, p = 0.001; Fig. 2G) compared with the HD mice. These results 
show that MS mice have more aggressive behavior than HD mice.

Based on the observed behavioral phenotypes in the MS group, 
basal CORT was examined to determine whether neonatal MS 
leads to an alternation of it. Fig. 2H showed elevated baseline 
CORT levels in MS mice compared to HD mice (HD: 66.14 ± 
6.77-mg/ml; MS: 88.00 ± 8.89 mg/ml, p = 0.031).

Increased number of GAD67-ir neurons in the 
adolescent MS mice

The numerical densities of GAD67-ir neurons in vHipp were 
estimated, and their differences between MS and HD mice were 
statistically assessed (Figs. 3 and 4). The total number of GAD67-
ir neurons per unit area (mm2) in DG, CA3, and CA1 (Fig. 3), su-
biculum, presubiculum, parasubiculum (Fig. 4) was significantly 
higher in MS mice than in HD mice (DG: HD: 222.92 ± 6.54; MS: 
333.17 ± 10.46, p < 0.001; CA3: HD: 268.95 ± 3.24; MS: 387.62 ± 
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3.60, p < 0.001; CA1: HD: 189.53 ± 3.29; MS: 261.86 ± 6.61, p < 
0.001; subiculum: HD: 156.39 ± 5.15; MS: 211.45 ± 6.91, p < 0.001; 
presubiculum: HD: 348.78 ± 9.185; MS: 589.95 ± 13.048, p < 0.001; 
parasubiculum: HD: 124.22 ± 6.57; MS: 184.50 ± 8.07, p < 0.001). 
The values for GAD67-ir neurons of each sublayer are presented 
in Figs. 3 and 4.

Increased number of PV-ir neurons in the adolescent 
MS mice

PV IHC staining of the ventral hippocampus indicated that 
the number of immune-reactivity cells per hippocampal area was 
significantly higher in the MS than the HD designed (Figs. 5 and 
6). Similar results to GAD67, in the most regions the total num-
ber of PV-ir neurons in the MS group showed significantly higher 
than the HD group (DG: HD: 222.92 ± 1.12; MS: 333.17 ± 2.37, p 
< 0.001; CA3: HD: 90.48 ± 1.74; MS: 160.76 ± 3.59, p < 0.001; CA1: 
HD: 87.15 ± 3.09; MS: 109.91 ± 3.93, p < 0.001; presubiculum: HD: 
282.43 ± 13.75; MS: 452.79 ± 18.97, p < 0.001; parasubiculum: 
HD: 42.45 ± 3.99; MS: 132.37 ± 13.22, p < 0.001). However, in the 

subiculum region (Fig. 6), there were no significant differences 
between the two groups (CA1: subiculum: HD: 72.27 ± 6.03; MS: 
86.29 ± 6.87, p = 0.133).

DISCUSSION
In this study, the mice with neonatal MS exhibited increased 

anxiety-like/aggressive behavior in adolescence. This behavioral 
change was accompanied by an increase in the CORT level, sug-
gesting that MS-induced anxiety and aggressive behavior may 
be because of changes in the HPA axis. Additionally, GAD67-
positive cells increased in most hippocampus regions, such as 
DG, CA3, CA1, and subiculum, and parvalbumin-positive cells 
increased in DG and CA3.

There are five types of rodent models have been used to in-
vestigate the mechanisms linking early life stress to behavioral 
outcomes (mood disorders) in adulthood; 1) prenatal stress ex-
posure, 2) acute maternal deprivation procedures, 3) chronic or 
periodic MS model, 4) chronic early life stress, 5) early weaning of 
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the pups [58]. Among them, the most widely used manipulation 
to manufacture a rodent model of early life stress is MS. When 
tested in adults, rodents subjected to MS show enhanced anxiety 
and/or depressive behavior, deficits in learning and memory, 
enhanced expression of corticotropin-releasing factor, and 
alterations of mossy fiber density in the CA3 region of the hip-
pocampus [59]. Because the adolescent period is a vital period for 
physical and mental development, the behavioral, hormonal, and 
neuro-architectural changes caused by MS could be facilitated 
and entrenched in this period. Although this is important, only a 
few studies have directly examined MS effect on adolescents [60]. 
This study aimed to examine the impact of MS on the behav-
ioral, hormonal, and neuro-architectural changes in adolescent 
C57BL/6 mice.

Since rodents have innate fear of open spaces [61], the EPM is 
considered a gold-standard behavioral assay for anxiety-like be-
havior. Meanwhile, the RI test is widely used to evaluate aggres-
sive tendencies because many species display territorial aggression 
against intruders in defense of mates and/or offspring [62]. In the 
EPM test and RI test, the MS exhibited increased anxiety and ag-

gression in the adolescent period. These behavioral features of MS 
agree with other studies, showing MS-induced increased emo-
tionality in male rodents [47]. There are a considerable amount 
of experimental evidence, which indicates the gender differences 
in the anxiety-like behavior and stress responses [63]. Usually, 
male rodents are more vulnerable to early life stress, specifically 
in anxiety-like behavior, than females. For example, Ito et al. [64] 
showed the sexually dimorphic patterns in stress responses by 
showing higher autonomic and anxiety-like behavior in male 
than in female rodents. They exhibited a lower frequency of entry 
into and shorter stay in the open arms in the EPM test and an ex-
acerbation of autonomic responses, such as stress-induced hyper-
thermia and tachycardia, in the early-weaned male rats compared 
with the normally weaned or early-weaned female rats. For these 
reasons, this study was conducted using only male mice to avoid 
confounding issues due to sex.

Although the MS has also been proposed as a depression 
animal model [65-67], phenotypes other than anxiety, such as 
depression, did not appear in our MS study (data not shown). It is 
unclear why MS causes different behavior phenotypes (anxiety/
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aggression vs. depression) based on the researchers. This dif-
ference may be because of a different species background, the 
duration of separation time, feeding environment and housing 
conditions, and so on [68]. Therefore, efforts were made to rule 
out possible factors, such as temperature, ultrasound vocalization, 
and odors, by keeping many qualifications. We used warm bed-
ding and an isolated room when pups were separated from their 
dams, and only one proficient researcher was allowed access to 
the area. As a result, our MS model has consistently shown stable 
and reliable behavioral results, so this work focuses on increasing 
anxiety and aggression using MS during the adolescent period. 
Following these behavioral results, the CORT serum level in ado-
lescent MS mice was compared with the MD.

Excitation-inhibition imbalance (E-I imbalance) is frequently 
associated with a range of neurological diseases and disorders, 
such as epilepsy [69], schizophrenia [70], Alzheimer’s disease [71], 
and autism spectrum disorder [72]. The long-lasting changes in 
brain interneuron populations have been proposed to contribute 
to the pathophysiology of many important neuro-psychiatric 
disorders [73] since it causes E-I imbalance. Furthermore, inhibi-
tory interneurons have been thought to affect the net output of 
the projection and influence local neural circuits, and contribute 
to precise regulation of the timing of action potentials. It has been 
reported that changes in the ventral hippocampal activity owing 
to changes in E-I balance are related to physiological or patho-
logical anxiety and fear [74-76]. Particularly, the projection from 
the ventral CA1 and subiculum to the PVN has an anxiolytic ef-
fect by inhibiting the HPA axis [77,78], and it has been reported 
that projection to the lateral septum also decreases anxiety when 
activated [79]. Alternatively, the excitation of projection neu-
rons to the lateral hypothalamus [80] or DG granule cells [81] 
increases anxiety, and the hippocampus plays a vital role in the 
overall anxiety level. The role varies based on the region and the 
projection pathway. Therefore, there was an attempt to investigate 
whether the behavioral change was caused by the alteration of the 
GABAergic population and whether the effect on the population 
differs for each hippocampus region.

Among different types of GABAergic interneurons, changes 
were examined in GAD67-expressing interneurons since differ-
ent kinds of literature have noted GAD67 protein as the molecule 
most associated with different types of neuropsychiatric disorders 
[82]. To explore this issue, the number of GAD67 interneurons 
was investigated in other subfields of the ventral hippocampus 
of MS and HD. The IHC data showed that the populations of 
GAD67 interneurons in the ventral hippocampus in MS were 1.3-
fold higher than in the HD (Figs. 3 and 4).

Among the diverse subtypes of GABAergic interneurons (PV, 
somatostatin, calbindin, and neuropeptide-Y) populating the hip-
pocampal formation, PV-positive interneurons play a critical role 
in emotional states, stress response, and cognitive functions [83]. 
The PV interneurons are mostly fast-spiking inhibitory neurons 
that control the circuitry activity of pyramidal cells [10]. Many 

lines of evidence indicated that the number or density of PV 
interneurons in the hippocampus is significantly reduced in de-
pression animal models [84,85]. This study showed that the num-
ber of PV interneurons in the ventral hippocampus, especially in 
the DG and CA3 regions, was significantly increased about 2.0-
fold in MS compared with HD (Figs. 5 and 6). In the subiculum 
region, which greatly influences the HPA axis, the change in PV 
interneurons was insignificant and GAD67-expressing neurons 
increased. This suggests that the increase in CORT level and 
anxiety caused by MS is likely due to GABAergic neurons other 
than PV interneurons.

The hippocampal formation includes the hippocampal gyrus 
(CA1, CA3, etc.) and the DG. Different subfields of the hippo-
campus may perform different functions and may also be linked 
with various mental dysfunctions [30,86,87]. Furthermore, each 
subfield of the hippocampus has a distinct topographical layer 
organization and layer-specific connections [88]. In this study, 
there is an attempt to accurately estimate the number of GAD67 
and PV interneurons in different subfields of the hippocampus 
and each layer. As a result, an increase in the GABAergic popula-
tion was observed in regions known to reduce anxiety, such as the 
subiculum, and in regions, such as DG, which increase anxiety 
when excitability is increased.

Most reports on the effects of each hippocampus on anxiety 
have only investigated the contribution to the anxiety of a specific 
population through resection of that region or inhibition of a spe-
cific projection using optogenetics. In this study, overall changes 
in hippocampal GABAergic or PV-positive neuron populations 
caused by MS were observed. For more physiological condition-
ing events, such as MS, it is challenging to determine the extent of 
the effects of projection pathways or neuron subtypes on anxiety 
for now. The ventral subiculum sends projections to the para-
ventricular nucleus, a component of the HPA axis that produces 
corticotropin-releasing hormone, and suppresses the HPA axis 
activity directly [77] or indirectly [46,89]. The HPA axis is a cru-
cial neuroendocrine stress response system linking the brain with 
cortisol secretion from the adrenal cortex [90,91]. If the output 
of the subiculum is inhibited, it can be expected that the HPA 
axis function will be enhanced and the anxiety and aggression 
levels will be altered upward [92]. Our data showed an increased 
number of GAD67 and PV interneurons in MS (Figs. 3–6). The 
disinhibition circuits to the HPA axis from the hippocampus 
and/or subiculum can be attributed to increased inhibition of 
GABAergic interneurons in MS, leading to the increased basal 
level of serum cortisol and anxiety- and aggressive-phenotype 
in adolescence. DG act as the main gateway for input in the hip-
pocampus. Regarding anxiety and fear, DG distinguishes context 
and helps to selectively display fear and anxiety responses in ap-
propriate contexts [81]. When the activity of DG is reduced, the 
ability to discriminate context is decreased, and fear and anxiety 
can be generalized [93,94], so it can be expected that an increase 
in anxiety response will be observed. However, this role of the DG 
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in anxiety is less direct than the subiculum’s function of buffer-
ing anxiety responses through the HPA axis. Alternatively, when 
the physiological conditions of MS are applied, the reduction in 
output owing to the increase in the GABAergic population of the 
subiculum directly affects anxiety and aggression through the 
HPA axis, so it may overwhelm the reduction in output in other 
parts and have a decisive effect on the behavioral change. In fu-
ture studies, it is expected that this hypothesis can be confirmed 
through selective inhibition experiments through techniques, 
such as optogenetics for the subiculum region with MS. Addition-
ally, it is expected that the description of the GABAergic and PV 
populations by region and layer will be used in subsequent stud-
ies.

Compared with anxiety, little has been reported so far on the 
effect of the hippocampus on aggression. An association between 
hippocampal atrophy and increased aggressive behavior has 
been reported in patients with borderline personality disorder 
[95]; recently, it has been reported that the ventral hippocampus 
increases aggression via the ventromedial hypothalamus (VMH) 
[44]. However, our data indicate an association between an in-
crease in inhibitory neurons and an increase in aggression in 
the ventral hippocampus, unlike previously reported. It is well 
known through several reports that the ventral hippocampus, es-
pecially the subiculum region, inhibits the activation of the PVN 
and HPA axes. Alternatively, the recent report that the ventral 
hippocampal activity increases aggression [44] suggests a role 
for excitatory projections from the ventral hippocampus to the 
VMH. This difference may be induced by the difference between 
the indiscriminate inhibition of the entire ventral hippocampal 
projection toward the VMH and physiological conditioning, such 
as MS. Alternatively, it can be explained that when MS is applied, 
as in anxiety, the inhibition of the subiculum-PVN pathway plays 
the most decisive role, leading to increased aggression. It is ex-
pected that this study will clarify the role of the hippocampus in 
physiological or pathological changes in aggression, as the effects 
of the output of numerous pathways starting from the hippocam-
pus on aggression are demonstrated in subsequent studies.

As mentioned in INTRODUCTION, it was previously shown 
that decreased LTP at the ventral hippocampus CA3 in neonatal 
MS mice [47], and proposed the possibility that early life stress 
may influence the developmental neural network of the ventral 
hippocampus. This study revealed the effect of MS on neural 
circuits through changes in the number of GABAergic neurons 
in each region of the hippocampus. In the future, to investigate 
the functional effects of these changes, it is necessary to examine 
changes in excitatory and inhibitory signals and changes in syn-
aptic plasticity through electrophysiological recordings in each 
hippocampal region, especially in the subiculum. Additionally, 
the increase in IPSC and subsequent decrease in LTP are usually 
accompanied by changes in the electrophysiological microen-
vironment in the brain region, particularly alterations in the 
kinetics of interneurons [96]. Therefore, there is a requirement to 

look at alterations in the kinetics of interneurons in the ventral 
hippocampus because the migration and distribution of the brain 
interneurons can be affected during brain development by early 
life stress [97].
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