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Abstract

Aims: Ephrin-B1 (EfnB1) was selected among genes of unknown function in adipocytes or adipose tissue and
subjected to thorough analysis to understand its role in the development of obesity.

Methods and Results: EfnB1 mRNA and protein levels were significantly decreased in adipose tissues of obese
mice and such reduction was mainly observed in mature adipocytes. Exposure of 3T3-L1 adipocytes to tumor
necrosis factor-a (TNF-a) and their culture with RAW264.7 cells reduced EFNB1 levels. Knockdown of adipose
EFNB1 increased monocyte chemoattractant protein-1 (Mcp-1) mRNA level and augmented the TNF-a-mediated
THP-1 monocyte adhesion to adipocytes. Adenovirus-mediated adipose EFNB1-overexpression significantly reduced
the increase in Mcp-1 mRNA level induced by coculture of 3T3-L1 adipocytes with RAW264.7 cells. Monocyte
adherent assay showed that adipose EfnB1-overexpression significantly decreased the increase of monocyte
adhesion by coculture with RAW264.7 cells. TNF-a-induced activation of extracellular signal-regulated kinase 1/2
(ERK1/2) was reduced by EFNB1-overexpression.

Conclusions: EFNB1 contributes to the suppression of adipose inflammatory response. In obesity, reduction of
adipose EFNB1 may accelerate the vicious cycle involved in adipose tissue inflammation.
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Introduction

Obesity, especially visceral fat obesity, is an important
aspect of the metabolic syndrome and atherosclerosis [1,2]. In
the Human Body Map project [3], our group provided evidence
for the endocrine function of adipose tissue, in addition to
serving as an energy storage organ [4]. Our group also
discovered Adiponectin among human adipose tissue cDNAs
[5]. Clinical evidence indicates that adipocytes produce various
cytokines and chemokines, which we named adipocytokines,
and that the obesity-related changes in adipocytokines
contribute to the development of the metabolic syndrome [6].
Infiltration of immunocytes, such as macrophages, is observed
in obese adipose tissues and these cells induce chronic low-
grade inflammation by producing a battery of inflammatory
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cytokines and chemokines [7-9]. Moreover, the infiltrated
macrophages interact with adipocytes via inflammatory
mediators, such as free fatty acids and adipocytokines, to
generate a metabolic vicious cycle, which eventually lead to the
clinical spectrum of the metabolic syndrome [10].

It is our view that the visceral fat status affects and reflects
the gene expression profile in peripheral blood cells. In this
regard, we reported recently the association between visceral
fat adiposity and gene expression profile of peripheral blood
cells in human subjects [11,12]. Furthermore, in a series of
exploratory research studies, we searched for genes of
unknown function in adipocytes and adipose tissues by
comparing the cDNA microarray-based gene expression
patterns of human peripheral blood cells and mouse adipose
tissues. Our search identified various genes, among them
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ephrin-B1 (EfnB1). Historically, the first Eph receptor, EphA1
and its Eph receptor-interacting (ephrin) ligand, ephrin-A1,
were cloned from cancer cells [13,14]. Increasing evidence
indicate that Eph receptors and their ephrin ligands mainly
serve as a cell communication system and their interactions
play crucial roles in both normal steady conditions and
pathological diseases [15]. A unique feature of the Eph-ephrin
complexes is their capability to transduce bidirectional
intracellular signals; such property closely regulates the
physiological and pathological cellular events as well as
developmental processes [16].

To our knowledge, there is virtually no information on the
regulation and functions of EFNB1 in adipocytes. In this report,
we describe the novel role of EFNB1 in the development of
adipose inflammation.

Materials and Methods

Animals

Male C57BL/6N mice and ob/ob mice were obtained from
Charles River Japan Inc. (Kanagawa, Japan) and maintained
at 22°C under a 12:12-h light-dark cycle (lights on from 7:00 to
19:00). For analysis of tissue distribution, 12-week-old male
C57BL/6N mice were euthanized by bleeding from the inferior
vena cava under anesthesia after 12 hrs of fasting, and various
tissue samples were excised. For the diet-induced obese (DIO)
model study, 8-week-old male C57BL/6N mice were fed either
regular chow diet (MF; Oriental Yeast, Osaka, Japan) or high-
fat and high-sucrose (HF/HS) diet (F2HFHSD; Oriental Yeast)
for 8 weeks. At 16 weeks of age, the mice were euthanized
under feeding condition, blood samples were collected from the
inferior vena cava, and epididymal white adipose tissues
(WAT) were excised. For obese model mice study, C57BL/6N
and ob/ob mice were fed regular chow diet and sacrificed at 8
or 16 weeks of age. In all experiments, mice were anesthetized
with an intraperitoneal injection of a mixture of medetomidine
(0.3 mg/kg body weight), midazolam (4 mg/kg body weight)
and butorphanol tartrate (5 mg/kg body weight). The
experimental protocols were approved by the Ethics Review
Committee for Animal Experimentation of Osaka University
School of Medicine. This study also conforms to the Guide for
the Care and Use of Laboratory Animals published by the US
National Institutes of Health.

Fractionation of WAT

WAT were minced in Krebs-Ringer buffer [composition: 120
mmol/L NaCl, 4 mmol/L KH,PO,, 1 mmol/L MgSO,, 1 mmol/L
CaCl,, 10 mmol/L NaHCO,;, 30 mmol/L HEPES, 20 mmol/L
adenosine, and 4% (wt/vol) bovine serum albumin
(Calbiochem, San Diego, CA)]. Tissue suspensions were
centrifuged at 500 x g for 5 min to remove erythrocytes and
free leukocytes. Collagenase was added to a final
concentration of 2 mg/mL and suspensions were incubated at
37°C for 20 min under continuous shaking. The cell suspension
was filtered through a 250 um filter and then spun at 300 x g for
1 min to separate the floating mature adipocytes fraction (MAF)
from the stromal vascular cell fraction (SVF) pellet. This
fractionation and washing procedures were repeated twice with
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Krebs-Ringer buffer. Finally, both fractions were washed with
phosphate buffered saline (PBS) and subjected to quantitative
real-time polymerase chain reaction (RT-PCR).

Cell cultures

3 T3-L1 adipocytes and RAW264.7 macrophages were
maintained as described previously [17]. 3T3-L1 adipocytes
were treated with the indicated concentrations of tumor
necrosis factor-a (TNF-a) for 24 hrs, harvested, and then
subjected to quantitative RT-PCR. Cocultures of 3T3-L1
adipocytes and RAW264.7 cells were prepared using a
separate system as described previously [10]. Briefly, on day 8
after the induction of differentiation, 3T3-L1 adipocytes in 6-well
plates were co-cultured with RAW264.7 cells (1.0x10% or the
indicated number of cells) using transwell inserts with a 1 ym
porous membrane (BD Falcon, MD) (Figure S1). After
incubation for 24 or 48 hrs, 3T3-L1 adipocytes and RAW264.7
cells were harvested and subjected to quantitative RT-PCR or
immunoblotting.

Introduction of siRNA

On day 7 after the induction of differentiation, 3T3-L1
adipocytes were transfected with siRNA for EfnB1 (forward
sequence 5-CUA UGA AGA UGU UAU GAA TT-3 and
reverse sequence 5-UUC AUA ACG AUC UUC AUA GTG-3,
Qiagen, Valencia, CA) using DeliverX Plus siRNA Transfection
kit (Affymetrix, Santa Clara, CA) according to the protocol
recommended by the manufacturer. The transfected cells were
incubated for 24 hrs and then treated with the indicated
concentrations of TNF-a. After treatment with TNF-a for 24 hrs,
the cells were harvested and subjected to quantitative RT-PCR
or western blotting. In these experiments, allstars negative
control siRNA (Qiagen) was used as a control.

Construction and preparation of Ephrin-B1-expressing
adenovirus

The full-length cDNA of EfnB1 from mouse colon was
subjected to RT-PCR using Pfu DNA polymerase (Promega,
Madison, WI) with primers containing a restriction enzyme
cutting site at the end. The amplicons were cloned into
pENTRTM1A vector (Life Technologies, Carlsbad, CA) using
restriction enzyme sites. After confirming the correct
sequences, the genes encoding ephrin-B1 in pENTRTM1A
vector were transferred into the adenoviral expression vector
(pPAd/CMV/V5-DEST; Life Technologies) by recombination
following the instructions provided by the manufacturer. The
resultant pAd/CMV plasmids containing the target gene were
linearized by Pacl digestion and transfected into 293A cells by
lipofectamine-2000 (Life Technologies) according to the
protocol recommended by the manufacturer. On day 2 after
transfection, the 293A cells were passaged and cultivated until
80% of cells became detached. The cell suspension was
frozen then thawed three times. After centrifugation at 1,750 x
g for 15 min, the supernatant was used as the gene expression
adenoviral preparation (Ad-EfnB1). The titers for the adenoviral
preparation were approximately 2x108 plaque forming units
(pfu)/mL. In these experiments, the adenovirus expressing B-
galactosidase (Ad-Bgal) was used as a control.
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Infection of adipocytes with the prepared adenovirus

For efficient transduction of the adenovirus, 3T3-L1 cells
stably expressing Coxsackie-Adenovirus Receptor (CAR-3T3-
L1) were used in the adenoviral study [18,19]. On day 7 after
the induction of differentiation, CAR-3T3-L1 adipocytes were
infected with Ad-EfnB1 or Ad-Bgal at 2.0 multiplicity of infection
(MOI) (Figure S2). At 24 hrs after adenovirus infection, the
medium was changed to remove uninfected adenovirus. At day
9, CAR-3T3-L1 adipocytes were cocultured with RAW264.7
cells using the transwell inserts, as described above. After co-
incubation for 24 hrs, CAR-3T3-L1 adipocytes were harvested
and subjected to quantitative RT-PCR or immunoblotting.

Quantitative RT-PCR

Isolation of total RNA and production of cDNA were
performed as described previously [17]. RT-PCR was
performed on the ViiATM 7 real-time PCR system (Life
Technologies) using the THUNDERBIRDTM gPCR Mix
(TOYOBO, Osaka, Japan) according to the instructions
provided by the manufacturer. For quantitative precision, the
same amount of total RNA was consistently used for each
expression analysis and the expression level of each gene was
normalized by the mRNA level of a housekeeping gene,
ribosomal protein, large, PO (Rplp0/36B4). The following is a
list of the primers used in this study: mouse Ephrin-B1, 5-ATT
ACA TCA ACG TCC AAT GGG AG-3’ and 5-CCC AAC CTT
CAT AAC GAT CTT CA-3’; mouse Mcp-1, 5-CCA CTC ACC
TGC TGC TAC TCA T-3' and 5-TGG TGA TCC TCT TGT
AGC TCT CC-3’; mouse /I-6, 5-GAG GAT ACC ACT CCC
AAC AGA CC-3’; mouse Adiponectin, 5- GAT GGC AGA GAT
GGC ACT CC-3’; mouse Mcp-3, 5- GCT GCT TTC AGC ATC
CAA GTG-3’ and 5- CCA GGG ACA CCG ACT ACT G-3;
mouse Rplp0/36B4, 5- AAG CGC GTC CTG GCATTG TCT-3
and 5'- CCG CAG GGG CAG CAG TGG T-3.

Monocyte adherent assay

The adhesion of THP-1 human monocytic cell line to 3T3-L1
adipocytes was determined as described previously with minor
modification [20]. Briefly, THP-1 cells were fluorescently
labeled by incubation with calcein-AM (Dojin Chemical,
Kumamoto, Japan) for 45 min, and washed twice in RPMI
medium. 3T3-L1 adipocytes transfected with siRNA for EfnB1
or negative control were incubated with TNF-a (1 ng/mL) for 24
hrs and CAR-3T3-L1 adipocytes infected with Ad-EfnB1 or Ad-
Bgal were cocultured with RAW264.7 cells for 24 hrs prior to
the adhesion assay. The labeled THP-1 cells were added to
3T3-L1 adipocytes and allowed to adhere for 90 min at 4°C.
Cells were washed gently three times to remove non-adherent
monocytes. Adherent cells were lysed with 50 mmol/L Tris (pH
8.4)/0.1% SDS, and fluorescence was measured with
excitation at 485 nm wavelength and detection at 535 nm
wavelength.

Immunoblotting

Preparation of protein extracts from tissues and cells was
performed as described previously [21]. For measurement of
extracellular signal-regulated kinase (ERK) 1/2
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phosphorylation, CAR-3T3-L1 adipocytes were infected with
Ad-EfnB1 or Ad-Bgal before the assay. After 24-hr incubation,
cells were incubated with or without TNF-a (1 ng/mL) for 5 min.
At the end of incubation, the cells were harvested and
subjected to immunoblotting. Twenty ug of protein was
subjected to 4-20% gradient SDS-PAGE gel and then
transferred to a nitrocellulose membrane (GE Healthcare, Little
Chalfont, UK). For immunoblotting, the membrane was
incubated with 1:1,000 dilution of goat anti-ephrin-B1 (R&D
systems Inc., Minneapolis, MN), rabbit anti-a-tubulin, mouse
anti-phospho-Erk1/2, or rabbit ant- Erk1/2 (Cell signaling
technology, Danvers, MA). Detection was achieved using the
enhanced chemiluminescence kit (GE Healthcare).

Statistical analysis

All values were expressed as meantSD. Differences
between groups were analyzed by one-factor ANOVA and
unpaired Student’s t-test. P values less than 0.05 were
considered statistically significant.

Results

Changes in Ephrin-B1 expression in obese adipose
tissue

EFNB1 mRNA levels in peripheral blood cells correlated
negatively with the estimated visceral fat area (eVFA) in human
subjects (range of BMI, 25.4-51.2 kg/m? range of eVFA,
80-386 cm?) (Figure S3). The significance of EFNB1 in adipose
tissue was analyzed in mice and cell experiments. Figure 1A
shows the tissue distribution of EfnB7 mRNA in lean control
(C57BL/6) mice. EfnBT mRNA was highly expressed in the
colon and lung, and also abundantly detected in WAT.

Next, we examined changes in EfnB1 mRNA level in obesity.
The EfnB1 mRNA level in WAT was significantly lower in mice
fed HF/HS diet than the normal chow group (Figure 1B).
Furthermore, adipose tissue EfnB1 mRNA level was
significantly lower in obese ob/ob mice at 8 and 16 weeks of
age, compared with that in lean control mice at the
corresponding ages (Figure 1C). The amount of EFNB1 protein
was also lower in ob/ob mice compared to lean control mice at
16 weeks of age (Figure 1D). Next, we examined EfnB1 mRNA
level in MAF and SVF following fractionation of adipose tissue
(Figure 1E). EfnB1 mRNA was abundantly expressed in MAF
compared to SVF and was significantly lower in obese MAF.
These results indicate that under-expression of EfnB71 mRNA in
adipocytes may account for the low EfnB7 mRNA level in
obese WAT.

We also investigated the effects of nutritional changes on
adipose tissue EfnB1 mRNA level. Fasting increased EfnB1
mRNA level in WAT (Figure S4a), but streptozotocin (STZ)-
induced insulin-deficiency had no influences on the mRNA
level (Figure S4b), suggesting no direct effect for insulin on
EfnB1 mRNA level in WAT.

Changes in Ephrin-B1 expression in 3T3-L1 adipocytes

Since EfnB1 was mainly expressed in mature adipocytes
(Figure 1E), we examined the regulation of EfnB1 using 3T3-L1
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Figure 1. Expression of Ephrin-B1 in obese adipose
tissue. A, Tissue distribution of Ephrin-B1 mRNA.
Experiments were conducted in C57BL/6N mice under 12 hrs-
fasting state at 12 weeks of age. B, Changes in adipose
Ephrin-B1 mRNA level under high-fat/high-sucrose (HF/HS)
diet. C57BL/6N mice were fed normal chaw diet (Cont) or
HF/HS from 8 to 16 weeks of age. n=3 for each group. C,
Adipose Ephrin-B1 mRNA levels in obese model mice. Ephrin-
B1 mRNA level in WAT was examined in C57BL/6N (B6) and
ob/ob (ob) mice at 8 and 16 weeks of age, respectively. n=6 for
each group. D, Changes in adipose Ephrin-B1 protein level in
mice of the obese model. Immunoblotting was performed using
WAT of 16-week-old B6 and ob mice. Relative protein level
(Ephrin-B1/a-tubulin) was calculated by densitometry. n=6 for
each group. E, Ephrin-B1 mRNA level in fractionated WAT.
WAT of 16-week-old B6 and ob mice was separated into
mature adipocytes fraction (MAF) and stromal vascular fraction
(SVF) as described in Materials and Methods section. n=5-6 for
each group. EfnB1 and EFNB1, Ephrin-B1; WAT, white
adipose tissue; BAT, brown adipose tissue; DIO, diet-induced
obesity; B6, C57BL/6J mice; ob, ob/ob mice; MAF, mature
adipocytes fraction; SVF, stromal vascular fraction. Values are
meanxSD. *P<0.05; **P<0.01; ***P<0.001.

doi: 10.1371/journal.pone.0076199.g001
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adipocytes. EfnB1 mRNA level decreased during differentiation
of 3T3-L1 cells into adipocytes (Figure 2A). To investigate the
regulation of EfmB71 in WAT of obese animals, 3T3-L1
adipocytes were stimulated with tumor necrosis factor-a (TNF-
a) and cocultured with RAW264.7 macrophages (Figure S1).
As shown in Figure 2B, TNF-a reduced EfnB1 mRNA level in
3T3-L1 adipocytes and the effect was dose-dependent.
Interestingly, EfnB1 mRNA level was markedly reduced in 3T3-
L1 adipocytes after coculture of these cells with RAW264.7
cells, while the level in RAW264.7 cells was low and not
influenced by co-culture with 3T3-L1 adipocytes (Figure 2C).
EfnB1 mRNA level significantly decreased in 3T3-L1
adipocytes in proportion with the number of RAW264.7 cells
(Figure 2D). Furthermore, the amount of EFNB1 protein also
decreased in 3T3-L1 adipocytes under co-culture with
RAW?264.7 cells (Figure 2E). Collectively, the results of these in
vitro experiments suggest that macrophage-derived factors,
e.g., TNF-q, suppress adipose EFNB1 expression.

Effects of suppression and overexpression of Ephrin-
B1 on adipose inflammatory response

To explore the role of EFNB1 in adipocytes, knockdown and
overexpression of EFNB1 were conducted by using siRNA and
adenovirus, respectively. The introduction of siRNA designed
for EfnB1 (EfnB1-siRNA) successfully reduced EfnB1 mRNA
(Figure 3A) and EFNB1 protein (Figure 3B) levels.
Interestingly, Mcp-17 mRNA level was significantly increased
with and without TNF-a, when 3T3-L1 adipocytes were
transfected with EfnB1-siRNA (Figure 3C). The introduction of
EfnB1-siRNA caused a significant increase in /l-6 mRNA level
in  TNF-o-unstimulated 3T3-L1 adipocytes (Figure 3C).
However, EfnB1-siRNA had no effect on Adiponectin mRNA
(Figure 3C).

Experiments designed to examine the effects of
overexpression of EFNB1 were performed using adenovirus
expressing EfnB1 (Ad-EfnB1) as described in Materials and
Methods section. Transfection with Ad-EfnB1 successfully and
dose-dependently increased EfnB1 mRNA (Figure 4A) and
EFNB1 protein (Figure 4B) levels in CAR-3T3-L1
preadipocytes, but did not in 3T3-L1 preadipocytes (Figure 4A).
Following transfection of CAR-3T3-L1 adipocytes with Ad-
EfnB1, the cells were cocultured with RAW264.7 cells (Figure
S2). EfnB1 mRNA (Figure 4C) and EFNB1 protein (Figure 4D)
was substantially overexpressed in CAR-3T3-L1 adipocytes
with or without co-culture with RAW264.7 cells. Figure 4E
shows changes in EfnB1 mRNA related to adipose
inflammation. High mRNA levels of Mcp-1 and Mcp-3 were
noted in CAR-3T3-L1 adipocytes following coculture with
RAW264.7 cells, while such increase was markedly
suppressed following transfection with Ad-EfmB1. The
coculture-related increase in /-6 mRNA level tended to
diminish in CAR-3T3-L1 adipocytes transfected with Ad-EfnB1.
Similar to the siRNA study, transfection with Ad-EfnB1 did not
alter Adiponectin mRNA level in CAR-3T3-L1 adipocytes.
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Figure 2. Regulation of Ephrin-B1 in 3T3-L1
adipocytes. A, Changes in Ephrin-B1 mRNA level during

differentiation of 3T3-L1 adipocytes. B, Effect of tumor necrosis
factor-a (TNF-a) on Ephrin-B1 mRNA level in 3T3-L1
adipocytes. 3T3-L1 adipocytes were co-incubated for 24 hrs in
the absence or presence of TNF-a at the indicated
concentrations. C, Changes in Ephrin-B1 mRNA level under
the coculture of 3T3-L1 adipocytes and RAW264.7 cells. The
co-culture system was based on the transwell method as
described in the Materials and Methods section. Ephrin-B1
mRNA levels were measured in 3T3-L1 adipocytes and
RAW264.7 cells cultured alone or together. D, Effects of co-
culture of 3T3-L1 adipocytes with RAW264.7 cells on Ephrin-
B1 mRNA level in 3T3-L1 adipocytes. 3T3-L1 adipocytes were
cocultured for 24 hrs with the indicated number of RAW264.7
cells. E, Ephrin-B1 protein level in 3T3-L1 adipocytes
cocultured with RAW264.7 cells. 3T3-L1 adipocytes were
cocultured with RAW264.7 cells through transwell and
collected at 24 and 48 hrs after coculture. Western blotting was
performed using the indicated antibodies. The relative protein
level (Ephrin-B1/a-tubulin) was calculated by densitometry.
EfnB1 and EFNB1, Ephrin-B1; TNF-a, tumor necrosis factor-a;
RAW, RAW264.7 cells. Values are meantSD; n=3 for each
group. *P<0.05; **P<0.01; ***P<0.001.

doi: 10.1371/journal.pone.0076199.g002
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Figure 3. Inflammatory response in Ephrin-B1-knockdown
3T3-L1 adipocytes. The small inhibitory RNA (siRNA) for
Ephrin-B1 was introduced in 3T3-L1 adipocytes as described in
the Materials and Methods section. A and B, Ephrin-B1 mRNA
(A) and protein (B) levels at 24 hrs (left) and 48 hrs (right) after
transfection of control-siRNA or Ephrin-B1-siRNA. C, Changes
in adipocytokine mRNA levels by Ephrin-B1-siRNA. 3T3-L1
adipocytes were incubated with or without 1 ng/mL of tumor
necrosis factor-a (TNF-a) for 24 hrs after siRNA transfection.
EfnB1 and EFNB1, Ephrin-B1; TNF-a, tumor necrosis factor-a;
Mcp-1, monocyte chemoattractant protein-1; /-6, interleukin-6.
Values are mean+SD; n=3 for each group. *P<0.05; **P<0.01;
***P<0.001. #P<0.05; # # #P<0.001, compared to TNF-a (-).

doi: 10.1371/journal.pone.0076199.g003

Effects of Ephrin-B1 on monocyte adhesion and
activation of extracellular signal-regulated kinase 1/2
Mcp-1 and Mcp-3 mRNA levels clearly changed following
suppression and overexpression of EFNB1 (Figures 3C and
4E). We hypothesized that adipose EFNB1 contributes to
monocyte recruitment into adipose tissues. The hypothesis was
tested using monocyte adherent assay and THP-1 cells as
described in Materials and Methods section (Figure 5A and B).
Stimulation of 3T3-L1 adipocytes with TNF-a increased the
adhesion of THP-1 cells and such increase was significantly
augmented by the introduction of EfnB71-siRNA (Figure 5A).
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Figure 4. Suppression of inflammatory response by

adenovirus-mediated overexpression of Ephrin-B1 in 3T3-
L1 adipocytes. CAR-3T3-L1 preadipocytes and adipocytes
were infected with adenovirus expressing Ephrin-B1 (Ad-
EfnB1) or B-galactosidase (Ad-Bgal). CAR-3T3-L1 adipocytes
were transfected with Ad-EfnB1 or Ad-Bgal on day 7 after
differentiation and cocultured with RAW264.7 cells using
transwell inserts on day 9. After coincubation with RAW264.7
cells for 24 hrs, CAR-3T3-L1 adipocytes were collected and
analyzed. A, Expression levels of Ephrin-B1 mRNA in
CAR-3T3-L1 preadipocytes (left) and 3T3-L1 preadipocytes
(right) following Ad-EfnB1 transfection. B, Dose-response of
Ephrin-B1 protein level by Ad-EfnB1 infection in CAR-3T3-L1
preadipocytes. The relative protein level (Ephrin-B1/a-tubulin)
was calculated by densitometry. C and D, Adenoviral-mediated
overexpression of Ephrin-B1 mRNA (C) and protein (D) levels
in CAR-3T3-L1 adipocytes cultured with or without RAW264.7
cells. E, Changes in adipocytokine mRNA levels by
overexpression of Ephrin-B1 in CAR-3T3-L1 adipocytes. EfnB1
and EFNB1, Ephrin-B1; CAR-3T3-L1, 3T3-L1 cells stably
expressing Coxsackie-Adenovirus Receptor; MOI, multiplicity
of infection; Mcp-1, monocyte chemoattractant protein-1; //-6,
interleukin-6; Mcp-3, monocyte chemoattractant protein-3.
Values are mean+SD; n=3 for each group. *P<0.05; **P<0.01.
#P<0.05; # #P<0.01; # # #P<0.001, compared to coculture (-).
doi: 10.1371/journal.pone.0076199.g004
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Adhesion of THP-1 cells to Ad-Bgal-infected-CAR-3T3-L1
adipocytes was slightly but significantly increased following
coculture with RAW264.7 cells (Figure 5B). Such coculture-
related increase of monocyte adhesion was significantly
blunted by transfection of Ad-EfnB1 (Figure 5B).

Finally, we examined the effect of EFNB1 on the activation of
ERK1/2, which is one of the major signaling pathways in
adipose inflammatory process [7-10]. In Ad-Bgal-infected-
CAR-3T3-L1 adipocytes, stimulation with TNF-a caused
phosphorylation of ERK1/2 (Figure 5C). Furthermore,
transfection of the adenovirus significantly reduced TNF-a-
induced phosphorylation of ERK1/2 (Figure 5C and D).

Discussion

The main findings of the present study were: (1) expression
of EFNB1 in WAT and the expression level was significantly
low in obese mature adipocytes(2). EFNB1 expression in 3T3-
L1 adipocytes was significantly reduced by TNF-a, and
markedly suppressed by coculture of 3T3-L1 adipocytes with
RAW264.7 cells(3). Adipose EFNB1 exhibited anti-
inflammatory properties and inhibited monocyte adhesion to
adipocytes(4). EFNB1 in adipocytes suppressed TNF-a-
mediated ERK1/2 activation.

The present study demonstrated for the first time a
significantly low level of EFNB1 expression in obese fat tissue.
Regulation of EFNB1 has remained uncertain and has not
been examined in adipocytes. TNF-a, which is increased in
obesity, significantly reduced EfnB1 mRNA expression level
(Figure 2B), suggesting that this cytokine is one of factors
accounting for the low expression of EFNB1 in obese adipose
tissue. Interestingly, coculture with RAW264.7 macrophages
cells definitely suppressed EFNB1 level in adipocytes (Figure
2C-E). The coculture-related reduction of EFNB1 was larger
than TNF-a-mediated decrease in EfnB7, indicating that
macrophage-derived undetermined factors can modulate
EFNB1 expression in adipocytes.

The Eph-ephrin system is important in neural tissue
development, plasticity, and regeneration, immune function,
bone homeostasis, and various types of cancers [15].
However, the role of Eph-ephrin system in various metabolic
diseases (e.g., diabetes, atherosclerosis, and obesity) remains
poorly understood. Konstantinova et al [22] demonstrated that
B-cells communicated through EphA-ephrin-A and its signaling
controls insulin secretion in response to glucose levels. In other
studies, EFNB1 was detected in T-lymphocytes and
macrophages in atherosclerotic lesions of the human aorta
[23,24]. Interestingly, EFNB1 inhibited MCP-1-dependent
monocyte migration, although the role of this phenomenon in
atherosclerogenesis remains to be defined. In the present
study, EFNB1-overexpression clearly suppressed the elevation
of Mcp-1, Mcp-3, and /-6 mRNA levels in adipocytes when
they were cocultured with RAW 264.7 macrophages, while
knockdown of EFNB1 increased Mcp-1 in adipocytes. These
results suggest that EFNB1 under-expression in obese WAT
accelerates the infiltration of monocytes/macrophages into
WAT.
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Figure 5. Effects of Ephrin-B1 on monocyte adhesion to adipocytes and activation of extracellular signal-regulated
kinase. For the monocyte adhesion assay, fluorescently labeled THP-1 cells were added to adipocytes and coincubated for 90 min.
After removal of nonadherent monocytes, the intensity of fluorescence was measured as described in the Materials and Methods
section. A, Effect of Ephrin-B1-knockdown on monocyte adhesion to 3T3-L1 adipocytes. 3T3-L1 adipocytes were transfected with
siRNA for Ephrin-B1 (EfnB1) or negative control (Cont) and then the cells were incubated in the absence or presence of tumor
necrosis factor-a (TNF-a) at 1 ng/mL for 24 hrs prior to adherent assay. n=6 for each group. B, Effect of overexpression of Ephrin-
B1 on monocyte adhesion to CAR-3T3-L1 adipocytes. CAR-3T3-L1 adipocytes were transfected with an adenovirus expressing
Ephrin-B1 (Ad-EfnB1) or 3-galactosidase (Ad-Bgal). The transfected adipocytes were cocultured with RAW264.7 cells for 24 hrs
before the adhesion assay. n=6 for each group. C, Representative blots of ERK signal in the adenovirus study. Western blotting was
performed using antibodies against Ephrin-B1 (EFNB1), a-tubulin, phosphorylated extracellular signal-regulated kinase 1/2 (P-
ERK1/2), and total extracellular signal-regulated kinase 1/2 (T-ERK1/2). After 24 hrs of transfection with Ad-EfnB1 or Ad-Bgal,
CAR-3T3-L1 adipocytes were stimulated with or without 1 ng/mL of TNF-a for 5 min and subjected to immunoblotting. n=3 for each
group. D, Phosphorylation of ERK1/2. The relative signal intensity for P-ERK1/2 and T-ERK1/2 was calculated by densitometry and
expressed as phosphorylation of ERK. n=3 for each group. EfnB1 and EFNB1, Ephrin-B1; CAR-3T3-L1, 3T3-L1 cells stably
expressing Coxsackie-Adenovirus Receptor; TNF-a, tumor necrosis factor-a. Values are meanSD. **P<0.01. #P<0.05; # #P<0.01;
# # #P<0.001, compared to TNF-a (-) or coculture (-).

doi: 10.1371/journal.pone.0076199.g005

Chronic low-grade inflammation is observed in obese nuclear factor-kB (NFkB), and c-Jun N-terminal kinase (JNK)

adipose tissue and is closely associated with the metabolic
syndrome. Several metabolic stresses, such as stress of the
endoplasmic reticulum [25], oxidative stress [26], and hypoxia
[27] may induce adipose inflammation and adipocyte
dysfunction, which can cause disorders of circulating fatty
acids, accumulation of reactive oxygen species, and
hyperadipocytokinemia, located upstream in the development
of the metabolic syndrome and atherosclerosis [2,28,29].
Importantly, various adipocytes-derived chemokines increase
monocyte recruitment into adipose tissue and the MCP-1/
CCR2 pathway is known to play a crucial role in monocyte/
macrophage infiltration into obese adipose tissue [30-32],
suggesting the involvement of adipose MCP-1 in the prevention
of the metabolic syndrome. Inflammatory cytokines, such as
TNF-q, interleukin-1B (IL-1B), and transforming growth factor-8
(TGF-B), increase MCP-1 through the activation of ERK,
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pathway [33-35]. In the course of adipocyte hypertrophy, ERK
is activated while mitogen-activated protein  kinase
phosphatase-1 (MKP-1) is inactivated [18]. Inhibition of MKP-1
causes ERK activation and results in the elevation of MCP-1,
indicating the significant role of MKP-1 in obese adipocytes
[18]. Importantly, the EFNB1 signal suppresses ERK activation
in several cells [36,37]. Taken together, our results suggest
that adipose EFNB1 regulates MCP-1 expression through the
ERK pathway, although further investigation is needed to
confirm these findings.

Figure 6 provides a model that summarizes the results of the
present study. In obese adipose tissue, TNF-a and
macrophage-derived undetermined factors suppress EFNB1
expression in adipocytes. Such under-expression results in
augmentation of MCP-1 expression, which in turn increases the
recruitment of monocytes into adipose tissues. Infiltrated

October 2013 | Volume 8 | Issue 10 | e76199



recruitment *

Ephrin-B1 and Adipose Inflammation

Monocyte

Figure 6

Figure 6. A schematic diagram illustrating the possible role of Ephrin-B1 in the development of adipose inflammation in
obesity. In obese adipose tissues, TNF-a and macrophages repress Ephrin-B1 expression in adipocytes. Suppression of Ephrin-
B1 in adipocytes augments MCP-1 expression and accelerates monocytes recruitment into adipose tissues. Ephrin-B1 may play an
important role in adipose vicious cycle in obesity; reduction of adipose Ephrin-B1 expression in obesity could accelerate the vicious

cycle involved in adipose tissue inflammation.
doi: 10.1371/journal.pone.0076199.g006

monocytes may phenotypically change into macrophages and
such macrophages reduce EFNB1 expression. Collectively,
adipose EFNB1 serves as a suppressor of adipose
inflammatory response. In obesity, under-expression of EFNB1
in adipose tissue may accelerate the vicious cycle of adipose
tissue inflammation.
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