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A B S T R A C T   

Background and purpose: Patients with brain metastases (BMs) are surviving longer and returning for multiple 
courses of stereotactic radiosurgery. BMs are monitored after radiation with follow-up magnetic resonance (MR) 
imaging every 2–3 months. This study investigated whether it is possible to automatically track BMs on longi-
tudinal imaging and quantify the tumor response after radiotherapy. 
Methods: The METRO process (MEtastasis Tracking with Repeated Observations was developed to automatically 
process patient data and track BMs. A longitudinal intrapatient registration method for T1 MR post-Gd was 
conceived and validated on 20 patients. Detections and volumetric measurements of BMs were obtained from a 
deep learning model. BM tracking was validated on 32 separate patients by comparing results with manual 
measurements of BM response and radiologists’ assessments of new BMs. Linear regression and residual analysis 
were used to assess accuracy in determining tumor response and size change. 
Results: A total of 123 irradiated BMs and 38 new BMs were successfully tracked. 66 irradiated BMs were visible 
on follow-up imaging 3–9 months after radiotherapy. Comparing their longest diameter changes measured 
manually vs. METRO, the Pearson correlation coefficient was 0.88 (p < 0.001); the mean residual error was − 8 
± 17%. The mean registration error was 1.5 ± 0.2 mm. 
Conclusions: Automatic, longitudinal tracking of BMs using deep learning methods is feasible. In particular, the 
software system METRO fulfills a need to automatically track and quantify volumetric changes of BMs prior to, 
and in response to, radiation therapy.   

1. Introduction 

Brain metastases (BMs) are the most common form of brain tumors. 
It is estimated that 10–40% of all cancer patients will develop brain 
metastases, with an estimated 70,000–400,000 cases/year in the United 
States [1–4]. Historically, the standard of care for patients with multiple 
BMs was whole brain radiation therapy (WBRT), which controls the 
disease for some time, but carries the possibility of cognitive side effects 
and reduced quality of life [5–7]. In addition, delivering additional 
courses radiation may increase the risk of radionecrosis [8–10]. Recent 
advances in technology have allowed treatment of multiple BMs with 
frameless single-fraction or hypofractionated stereotactic radiosurgery 
(SRS/HYPO) [11]. Evidence of reduced cognitive decline has led to the 
primacy of SRS/HYPO for treating BMs [12]. Moreover, there is an 

increasing trend to manage multiple or recurrent BMs with multiple 
courses of SRS/HYPO [13–21]. 

Patients with BMs are typically monitored with magnetic resonance 
(MR) imaging performed every two–three months [22], including T1 
post-Gd (T1C+). The complexity of longitudinally tracking each BM and 
determining treatment response increases with each course of radiation 
or follow-up MR. Key challenges include classifying BMs as progressing, 
stable, or recurring, separating new BMs from treated BMs, and differ-
entiating recurrent metastases from delayed radiation necrosis or post- 
treatment effects. 

Limited prior work exists on automatic BM tracking. Shearkhani 
et al. applied a Jacobian operator field to detect size changes in brain 
metastases on longitudinal MRs, with significant challenges from new 
and resolved BMs and false positive detections from blood vessels [23]. 
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Chitphakdithai et al. performed deformable intrapatient registration to 
estimate BM size changes, but relied on manual segmentation of the 
initial tumor [24]. Some commercially available software platforms can 
track BMs with significant manual user input, but do not provide a 
feasible or practical solution for patients with multiple BMs and multiple 
prior treatments. Recently, Petersen et al. evaluated a PACS-integrated 
tracking tool for tracking BMs [25], and demonstrated time savings 
and reduced manual clicks for physicians. However, there are currently 
no available tools which integrate automatic image registration, detec-
tion, segmentation, and tracking, and can provide information about all 
treated and untreated lesions in a timely manner to the radiologist and 
radiation oncologist. 

The aim of this study was to investigate whether it is possible to 
automatically track size and radiation dose for multiple BMs, which 
could help clinicians make the optimal care decisions. We validated and 
investigated the efficacy of the METRO software (MEtastasis Tracking 
with Repeated Observations), which detects and segments all BMs using 
deep learning, tracks the BMs across co-registered MR timepoints, and 
reports the radiation dose from prior treatments. 

2. Materials and methods 

2.1. Overview of METRO process 

Fig. 1 shows an overview of METRO. The inputs are DICOM data 
(Digital Imaging and Communications in Medicine): longitudinal MR 
image series from the picture archiving and communication system 
(PACS) and DICOM-RT data from the treatment planning system (TPS). 
A recent MR series is chosen as the fixed image and rigid registration is 
performed with all the patient’s other MRs. After registration, artificial 
intelligence (AI) inference is performed at each MR series using a deep 
convolutional neural network to produce longitudinal maps of BM gross 
tumor volumes (GTVs) in the fixed MR frame of reference. Next, BM 
tracking is performed using the treatment plan structure sets and the AI 
segmentations. Depending on overlap with existing GTVs from treat-
ment plans, the detected GTVs are associated with previously treated 
GTVs or classified as new AI GTV candidates. The size of each GTV is 
tracked over time. The calculated dose distributions from prior treat-
ment plans are overlaid on the GTVs to track the physical dose over time. 
Finally, a report document is generated with separate pages for each 
tracked BM. Raw data is also saved for downstream analysis, including 

tracking information such as volume and 3D longest diameter. 

2.2. Registration method 

As months or years elapse, the patient’s brain may exhibit large 
changes over time, including tumor control and progression, edema, 
midline shift, and resection cavities. Furthermore, patients who survive 
longer have several follow-up imaging studies. METRO co-registers all 
longitudinal MR imaging using a six-degree-of-freedom (6DOF) rigid 
registration. A multiple-stage registration procedure is used, balancing 
speed and accuracy, while avoiding catastrophic failures requiring 
manual user intervention. 

The choice of fixed image for the registration depends on the treat-
ment plans. If no co-registered treatment plans are provided, the most 
recent T1C+ MR is the fixed image. Otherwise, it is the MR registered to 
the most recent treatment plan. The mutual information similarity 
metric was used as the cost function [26]. 

A brief description of the registration stages follows. The registration 
translation is initialized based on intensity moments, followed by a 
three-dimensional exhaustive search for initial rotation angle. Two 
successive stages align the entire head using gradient descent with 
6DOF. Next, a fine 6DOF search is performed using only the brain pa-
renchyma as the region of interest—this brain contour is obtained either 
from the structure sets of the co-registered treatment plan or an MR- 
based deep learning model [27]. Lastly, a fine-tuning 6DOF search is 
performed using a rectangular zone centered on the lateral ventricles. 
After registration, all images are resampled to the fixed image with 
isotropic 1 mm voxel spacing. 

The registration method was validated by comparing with manually 
verified registrations performed by a medical physicist on 20 BM pa-
tients. Each patient had two T1C+ brain MR scans with a large time 
interval: median 392 days, interquartile range (IQR) 334–887. Seven 
anatomical points were chosen, and manually located on multi-planar 
views of the first scan. The XYZ position of each control point was 
passed through the spatial transformations from the manual and auto-
matic registrations, and the registration error was quantified by differ-
ences in resulting position. Further details are given in Supplementary 
Materials. 

Fig. 1. Schematic showing an overview of the METRO software. Planning and follow-up MR scans are obtained from the PACS. Treatment plans with calculated dose 
and CT scans are obtained from the TPS. 
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2.3. AI segmentation 

BM GTVs are automatically detected and segmented on co-registered 
T1C+ scans using a previously published AI model [27]. Using GTVs 
authored by the radiation oncologist as ground truths, this 3D V-Net 
convolutional neural network was trained (tested) on statistically in-
dependent samples of 409 (102) SRS/HYPO patients with 1345 (367) 
BMs. Dense evaluation of the neural network on each MR timepoint 
produces 3D BM probability maps in the fixed image frame of reference. 
To obtain discrete BM segmentations from the probability maps, a bi-
nary threshold is applied, followed by a connected-component analysis. 
The average patient sensitivity, false positive rate, and Dice coefficient 
were 95% ± 3%, 2.4 ± 0.5 per patient, and 0.76 ± 0.03, respectively 
(95% confidence). 

A heuristic is applied to handle instances where two BMs are 
conjoined into one segmentation by a sandbar or isthmus of lower 
probability. A morphological opening operator is applied once to each 
initial segmentation blob of volume V[mL]. Assuming the blob contains 
two spherical lesions each of volume roughly V/2, an adaptive ball 

kernel radius of 0.4rsphere is chosen, where rsphere [cm] =
( 3V

4π
)1

3. If the result 
has two separate parts, they are now each counted as separate BM de-
tections; otherwise, the original component is kept. 

2.4. Brain metastasis tracking 

After registration and AI segmentation, METRO tracks BMs over 
time. First, consider physician-authored GTVs with radiation pre-
scriptions from prior treatment plans. Each expert GTV from the struc-
ture sets is rasterized, then expanded by a default 1 mm margin for 
longitudinal tracking. At each timepoint, any segmentation components 
that overlap with this expanded GTV are found; their union constitutes 
the tracked lesion on that scan. This search is applied to all scan time-
points—BMs are tracked and measured even at MRs preceding treat-
ment. Measurements of (non-expanded) GTV volume and 3D longest 
diameter (3LD) at each timepoint are computed and saved. Longitudinal 
size changes are measured using AI segmentations. 

BMs which are newly appeared or not prescribed treatment are also 
tracked. To mitigate false positive detections, an increased detection 
probability threshold (80%) was required to identify such lesions. 
METRO checks each MR timepoint and finds new or untargeted AI GTVs 
that do not overlap with AI GTVs found at previous timepoints. Like the 
expert GTV tracking, these AI GTVs are tracked on past and future 
timepoints, using the expansion margin to check for overlap with AI 
segmentations. False negative, true positive, and false positive de-
tections were identified based on clinical radiology reports. The radi-
ologist’s axial 2D diameter measurements were recorded for false 
negatives. False positives were measured using 3LD. 

Next, dose metrics are computed to each BM for patients with prior 
treatment data. This includes BMs not targeted for radiation by a given 
SRS/HYPO or WBRT plan, using the BM segmentations and the calcu-
lated dose images. Dose tracking is handled slightly differently for tar-
geted and untargeted lesions. For linac-based SRS plans, a targeted 
lesion is defined as an expert GTV which has an associated planning 
target volume and a mean physical dose sum > 10 Gy. Otherwise, it is an 
untargeted BM which received spillage dose. Using the original GTV 
volume that initiated the tracking, physical dose metrics are recorded 
for each treatment, including fractionation, dose delivered to 99% vol-
ume (D99%), and mean dose. 

2.5. Longitudinal patient dataset for clinical validation 

32 patients with BMs were retrospectively identified under a patient 
consent waiver approved by our Institutional Review Board. They were 
treated in 2018–2021 with VMAT SRS/HYPO on linear accelerators 
using multiple arcs, couch rotations, and optical surface monitoring 

[11]. Patients were imaged with T1C+ MR prior to treatment and 
received regular follow-up imaging (183 total scans). METRO was used 
to longitudinally track each of the 187 lesions treated within this cohort. 
53 lesions were excluded due to lack of follow-ups within a chosen time 
window of 90–270 days. Three resection cavities, one skull lesion, and 
seven missing PTVs were also excluded. For the remaining 123 lesions, 
the follow-up MR closest to 180 days post-treatment was chosen. Median 
time between treatment start date and the chosen follow-up was 185 
days (IQR 149.5–196). 

2.6. Brain metastasis response assessment 

To evaluate the accuracy measuring the size changes of tracked BMs, 
the pre-treatment 3LD and volume for each lesion was compared to the 
size at follow-up. The percent changes of 3LD and equivalent sphere 
diameter (ESD) between pre-treatment and follow-up scans were 
calculated. To validate the tracking performance, a trained operator 
contoured the same 123 BMs on the pre-treatment and follow-up MR 
scans using MIM Maestro 6. Volume and longest diameter measurements 
were extracted from each manual contour. The ESD was derived from 
the manual and automatic volume measurements. 3LD and ESD were 
compared between METRO and manual measurements using linear 
regression and the Pearson correlation coefficient. For percent size 
changes, the residual error was defined as the software observation 
minus the human observation, with size changes determined either by 
3LD or ESD. Distributions of the size change residual errors were 
analyzed for both size metrics. 

3. Results 

3.1. Registration accuracy 

Evaluating the registrations qualitatively, differences between scan 
timepoints were handled well by the registration method, including 
ventricle size, edema, tumor progression, tumor response, and motion 
and susceptibility artifacts. No BM tracking failures were caused by 
registration uncertainty. The spatial shifts between manual and auto-
matic registration at each anatomical control point were assessed to 
quantify the registration accuracy. The average shift per point in milli-
meters was: Point A, 1.8 ± 0.7; Point B, 1.2 ± 0.5; Point C, 1.3 ± 0.5; 
Point D, 1.6 ± 0.6; Point E, 1.7 ± 0.7; Point F: 1.2 ± 0.5; Point G: 1.3 ±
0.5 (95% confidence). The average shift across all points was 1.5 ± 0.2 
mm (95% confidence) with median 1.1 mm (IQR 0.6–1.6). Registration 
examples for three patients with time intervals of about three years are 
shown in Figure S2. 

3.2. Report document 

Several example reports are shown for anonymized patients. In 
Fig. 4, a larger enhancing lesion in the right frontal lobe was treated with 
27 Gy over three fractions, and the report correctly identifies that the 
lesion responded to treatment on follow-up images. Fig. 5 shows a BM in 
the right parietal lobe which was treated with 21 Gy (single-fraction) 
and is stable for some time, but exhibits an increase in size over one year 
later. Lastly, Fig. 6 shows a new BM identified by METRO in the right 
parietal lobe after four previous courses of radiation treatments to other 
BMs. See Figures S3 and S4 for additional examples. 

3.3. Detection 

72% (38/54) of new or unirradiated BMs were detected in the lon-
gitudinal tracking dataset. 92 false positive new lesions were tracked 
(0.5/scan). The median sizes of true positive, false negative, and false 
positive detections of unirradiated BMs were respectively: 0.8 cm (IQR 
0.6–1.2), 0.5 cm (IQR 0.3–0.7), and 0.7 cm (IQR 0.6–0.9). The median 
initial size of all tracked lesions was 0.9 cm (IQR 0.6–1.3). The isthmus 
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rule was applied 64 times (0.3/scan) and affected measurements of 15 
irradiated BMs. For example, two nearby BMs in the left cerebellum and 
temporal lobe were measured at 7.58 and 0.73 cm3 pre-treatment, after 
an isthmus was removed between their conjoined segmentations. 

3.4. Treatment response 

With complete BM disappearance as the quantity of interest, 
compared to the human observer, METRO produced 48 true positives (i. 
e. truly disappeared BMs), 66 true negatives, four false positives, and 
five false negatives. For the 66/123 BMs still visible on follow-up, linear 

regression (Fig. 2) shows a correlation (R2 = 0.80) between the size 
responses measured by human versus METRO. Comparing the size 
changes of non-disappeared lesions measured by both observers, the 
Pearson correlation coefficient was 0.88 for 3LD and 0.86 for ESD (p <
0.001). Distributions of the size change residual errors are shown in 
Fig. 3. The mean residual of 3LD changes was − 8 ± 17% (95% confi-
dence), with standard deviation 70%, median 2%, IQR (-7%, 12%). The 
mean residual of ESD changes was − 12% ± 17% (95% confidence) with 
standard deviation 81%, median 2%, and IQR (-7%, 11%). The residual 
distributions were characterized by a central mode plus large outliers. 

Fig. 2. Linear regression of size response for treated BMs that were still visible on follow-up, as measured automatically by METRO versus manually. One outlier with 
diameter change greater than + 200% is suppressed. 

Fig. 3. Distributions of residual errors for the size changes measured by automatic METRO method for the BMs still visible at follow-up. The residual is the difference 
of the percent change measured with METRO minus that measured manually. Left: 3D longest diameter. Right: equivalent sphere diameter. 
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4. Discussion 

The METRO process was capable of reading the patient data and 

tracking BMs over time. The longitudinal intrapatient registration 
method was reliable when tested on numerous clinical cases, including 
those with significant time intervals and notable changes in brain 

Fig. 4. This 2 cm enhancing lesion in the right frontal lobe was treated with 27 Gy in three fractions using the MR scan from 11/12/2017 for planning. The planning 
target volume (PTV) is shown in red, and the longitudinal AI segmentations in blue. The lesion size is decreasing at all follow-up MR images with the last MR from 8/ 
15/2018. The METRO report shows both the 3D longest diameter and the volume based on the AI segmentation at each MR. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. A lesion in the right parietal lobe is targeted with single-fraction SRS using the MR from 6/12/2018 for treatment planning. There is not much size change in 
the first nine months after treatment, but a year and a half after treatment, at the MR scan from 12/24/2019, the lesion size is increasing. The increase in size must be 
evaluated for potential progression or necrosis. 
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anatomy, and its accuracy was sufficient for longitudinal tracking. The 
information gathered from each patient’s imaging and treatment history 
is compiled in a concise, lightweight report document accessible to cli-
nicians, and data are organized for downstream analysis. 

We observed a strong correlation between the BM size changes 
measured by METRO and the human operator. Furthermore, positive 
versus negative size changes were well-differentiated by METRO—this 
can be observed by the lack of points in the upper-left and lower-right 
quadrants of Fig. 2. The distribution of residuals for size changes 
measured by human versus METRO (Fig. 3) were well-centered at zero, 
but highly non-normal with large variance due to outliers. We observed 
a strong correlation coefficient of 88% for the measured change in 
longest diameter, but there is room for improvement. One potential 
avenue is a longitudinal segmentation model trained using multiple 
annotated longitudinal scans. We noticed several cases with non- 
spherical BMs where the 3LD remains stable, but the BM volume is 
increasing. This indicates that automatic measurements of BM volume 
could be more clinically relevant to tumor burden than the manually- 
measured 2D longest diameter frequently employed in radiology 
practice. 

The accuracy for tracking new sub-centimeter BMs was limited; 
several false positives and false negatives were observed. The sample of 
unirradiated BMs was also biased towards smaller size, since larger, 
growing BMs are more likely to be targeted with radiation. The driving 
factor is the imperfect detection accuracy of the AI model used to 
analyze individual MR scans. Unfortunately, this problem is omni-
present in the BM AI literature [27–34]. There is ongoing work studying 

how to mitigate false positives [35,36]. 
Varying imaging protocols and quality standards can hamper the 

generalizability of AI-based work such as this across different centers. 
Consensus guidelines are emerging for BM studies [37,38]. MR imaging 
parameters such as pixel spacing and slice thickness can be automati-
cally detected, but other quality aspects require standards developed by 
experts. 

It is currently difficult to differentiate post-treatment tumor volumes 
from radionecrosis treatment effects. Despite the current ambiguity, 
post-treatment tracking of abnormal volumes associated with tumors 
could be an important tool to help distinguish recurrences from radio-
necrotic volumes. 

Manually identifying multiple, potentially irradiated BMs on longi-
tudinal imaging is time-consuming and prone to human error [39–42]. 
Measuring or segmenting primary and metastatic brain tumors is simi-
larly challenging [31,43]. With the aim of aiding clinical practice, we 
are currently working to integrate this tracking workflow with our 
existing clinical systems. To address potential inaccuracies, a radiologist 
or trained operator could view and modify the results, while referencing 
other synchronized image series from the MR studies. The user would 
delete false positives and adjust inaccurate longitudinal segmentations, 
then an approved report would be generated. The approved structure 
sets would be available if further SRS treatment is indicated, and 
confirmed new BM appearances would be monitored automatically. 
These data would be invaluable not only for longitudinal retrospective 
studies, but also as a continuous source of BM annotations for devel-
oping better longitudinal AI models. While manual corrections do cost 

Fig. 6. This patient received three courses of SRS elsewhere in the brain, followed by WBRT (Rx 30 Gy). Then, the METRO workflow identified a new lesion in the 
right parietal lobe at the 7/10/2019 MR, which is increasing in size at subsequent follow-up on 1/7/2020. 
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time, there is great potential for time savings and clinical insights as the 
tracking accuracy is further improved. 

In conclusion, we show that automatic longitudinal tracking of brain 
metastases using deep learning methods is feasible. In particular, the 
software system METRO fulfills a need to automatically track and 
quantify volumetric changes of brain metastases prior to, and in 
response to, radiation therapy. The accuracy achieved in detecting and 
tracking tumor volumes, excepting tumors smaller than 1 cm, appears to 
be adequate to support clinical workflows. Further development is 
needed to improve the detection of small BMs and the response mea-
surement accuracy. Future work may explore how to distinguish post- 
treatment tumor volumes from radionecrosis treatment effects. We 
invite interested researchers to discuss potential multicenter collabora-
tions. In the future, the addition of interactivity for clinicians can make 
this a routine part of the patient’s medical record. 
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