
Research Article
A Novel Latin Hypercube Algorithm via
Translational Propagation

Guang Pan, Pengcheng Ye, and Peng Wang

School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

Correspondence should be addressed to Pengcheng Ye; ypc2008300718@163.com

Received 14 May 2014; Revised 22 July 2014; Accepted 30 July 2014; Published 2 September 2014

Academic Editor: Ming-Huwi Horng

Copyright © 2014 Guang Pan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Metamodels have been widely used in engineering design to facilitate analysis and optimization of complex systems that involve
computationally expensive simulation programs. The accuracy of metamodels is directly related to the experimental designs used.
Optimal Latin hypercube designs are frequently used and have been shown to have good space-filling and projective properties.
However, the high cost in constructing them limits their use. In this paper, amethodology for creating novel Latin hypercube designs
via translational propagation and successive local enumeration algorithm (TPSLE) is developed without using formal optimization.
TPSLE algorithm is based on the inspiration that a near optimal LatinHypercube design can be constructed by a simple initial block
with a few points generated by algorithm SLE as a building block. In fact, TPSLE algorithm offers a balanced trade-off between the
efficiency and sampling performance. The proposed algorithm is compared to two existing algorithms and is found to be much
more efficient in terms of the computation time and has acceptable space-filling and projective properties.

1. Introduction

In engineering, manufacturing companies strive to produce
better and cheaper products more quickly. However, engi-
neering systems are fairly large and complicated nowadays. In
addition, design requirements are rigorous and stringent for
such systems, especially multidiscipline design optimization
systems such as aerospace. These engineering analysis and
design problems usually involve expensive computer simu-
lations. For example, it is reported that it takes Ford Motor
Company about 36–160 h to run one crash simulation [1],
which is unacceptable in practice. Although the capacity of
computer keeps increasing, the complexity of analysis soft-
ware, for example, finite element analysis (FEA) and compu-
tational fluid dynamics (CFD), seems to keep pace with com-
puting advances [2]. To alleviate the computational bur-
den, metamodels, which are often called surrogate models
or response surfaces, are widely used for optimization and
design analysis by creating approximate models to replace
the expensive computer simulations. Because the accuracy
of metamodels directly depends on the samples of computer
simulations, it is important to obtain efficient designs of com-
puter experiments.

In recent decades, various sampling designs have been
developed for computer experiments. The classical exper-
iment designs containing alphabetical optimal design [3],
factorial or fractional factorial design [4], central composite
design (CCD) [5], and so forth, were widely used earlier.
However, they do not have good performance of both space-
filling and projective properties. As is recognized by many
researchers, designs for computer experiments should at least
satisfy the following two criteria (see [6–10]). Firstly, the
design should be space-filling in some sense.When no details
on the functional behavior of the response parameters are
available, it is necessary to be capable of obtaining informa-
tion from the entire design space. Therefore, design points
should be “evenly spread” over the entire region. Secondly, the
design should be noncollapsing.When one of the design var-
iables has almost no effect on the function value, two design
points that differ only in this variable will “collapse”; that is,
they can be considered as the same point that is evaluated
twice. As evaluation of the deterministic black-box function
is often time-consuming, this is not a desirable situation.
Therefore, two design points should not share any coordinate
values when it is not known a priori which dimensions are

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 163949, 15 pages
http://dx.doi.org/10.1155/2014/163949

http://dx.doi.org/10.1155/2014/163949


2 The Scientific World Journal

important. Furthermore, we would like the projections of the
points onto the axes to be separated as much as possible.
Based on these twoproperties, a space-filling Latin hypercube
design termed LHD in this paper is an appropriate and
popular choice.

Latin hypercube designs (LHD) play an important role in
computer experiments.The Latin hypercube structure allows
one to achieve both the space-filling requirement and the
noncollapsing condition. Each column of an 𝑛-dimensional
LHD of 𝑚 points is a random permutation of {1, 2, . . . , 𝑚}.
By scaling, we can use LHD for any rectangular design space.
An LHD has good projective properties on any single dimen-
sion but bad space-filling properties when it is randomly
selected. To further obtain the good space-filling property,
the optimal LHD is widely studied. Koehler and Owen [11]
showed that the projection of the optimal LHD onto a sub-
set of variables retains good spatial properties. Morris and
Mitchell [7] employed the simulated annealing (SA) algo-
rithm for constructing optimal LHD. Ye et al. [12] made a
research on the columnwise-pairwise (CP) algorithm for con-
structing optimal symmetrical LHD. Jin et al. [13] introduced
the enhanced stochastic evolutionary (ESE) algorithm for
finding various space-filling designs, including approximate
maximin LHD. Bates [14] described a method for generating
optimal LHD using PermGA by minimizing the potential
energy 𝑈. Liefvendahl and Stochi [15] compared the effi-
ciency of CP and genetic algorithm (GA) for the optimization
of LHD. Grosso et al. [16] adopted iterated local search (ILS)
for improving the objective function 𝜙𝑝 to obtain maximin
LHD problem. Jourdan and Franco [17] presented an optimal
LHD using the Kullback-Leibler criterion.

Although aforementioned methods provide effective
ways to produce samples with good space-filling and projec-
tive properties, they are computationally inefficient for prob-
lems with large dimensions and sample sizes. For example,
Ye et al. [12] reported that generating an optimal 25 × 4
LHD using CP could take several hours on a Sun SPARC 20
workstation. The search for a larger design would take even
longer and may be computationally prohibitive. Thus, search
processes often stopped before finding a good design. This
situation motivated us to look for alternatives that require
less computing time. In recent years, some methods without
expensive optimization procedures were investigated. Van
Dam et al. [18] presented some general formulas to obtain
maximin LHD, which is just used for two-dimensional prob-
lems and limited by the number of sampling points. Viana et
al. [19] presented a new method to obtain near optimal LHD
without going through the expensive optimization process,
whereas the projective property of the sampling points is not
satisfying except for some special problem sizes. Zhu et al.
[20] presented a novel algorithmofmaximin Latin hypercube
design using successive local enumeration.

In this paper, we propose a method that is able to quickly
construct a good design of experiments given a limited com-
putational resource.There are twomajor algorithms involved.
One is translational propagation algorithm (TP) [19], which
requires minimal computational effort and does not use for-
mal optimization. It can solve the optimization problem in an

approximate sense, that is, to obtain a good Latin hypercube
quickly, rather than finding the best possible solution. The
other is successive local enumeration algorithm (SLE) [20]. It
can maximize the minimal distance which is the minimum
of all the distances between the point to be generated and
the existing points.The sampling points produced by SLE are
evenly distributed in the design space and projective points
in lower dimensions are almost uniform [20]. The algo-
rithm proposed in this paper is a combination of TP algo-
rithm and SLE algorithm which is termed TPSLE. In fact, it
is a compromise between computing efficiency and sampling
performance, that is, space-filling properties and projective
properties. TPSLE algorithm is based on the inspiration that
a near optimal Latin hypercube design can be constructed by
a simple initial block as a building block with a few points
generated by algorithm SLE. Testing results compared with
the MATLAB function LHSDESIGN and SLE indicate that
thismethod is effective to generate sampling points with good
space-filling and projective properties. In addition, the sam-
pling efficiency of TPSLE is the highest through comparison
with function LHSDESIGN and SLE. In this paper, MATLAB
function LHSDESIGN is termed LHSD.

The remainder of the paper is organized as follows. The
proposed TPSLE algorithm for obtaining Latin hypercube
designs is described in Section 2, and then testing results
compared with LHSD and SLE are represented to show
its acceptable sampling performance and high efficiency in
Section 3. Section 4 provides the further comparative study
to show the advantages of the proposed TPSLE algorithm on
improving the metamodels accuracy and solving mechanical
design optimization problem. Eventually, conclusions are
drawn in Section 5, where the shortcomings of TPSLE and
future works are also pointed out.

2. Description of TPSLE Algorithm

In order to illuminate the algorithm in detail, the basic proce-
dure of TPSLE is introduced first, followed by the application
of the novel algorithm for a two-dimensional problem. Then
a method of generating experimental designs of any size is
proposed. Certainly the summary of TPSLE algorithm will
be given at last.

2.1. Basic Process of TPSLE Algorithm. The proposed algo-
rithm is based on the inspiration of constructing the 𝑛-
dimensional Latin hypercube design from a fairly small opti-
mal 𝑛-dimensional Latin hypercube design used as an ini-
tial block via translational propagation [20]. In order to
strengthen understanding, a simple example of a size 16 × 2
(i.e., sixteen sampling points in two dimensions) Latin hyper-
cube design is used to elaborate the methodology below.

Assuming to construct a Latin hypercube design of 𝑚𝑝
points and 𝑛𝑝 dimensions from an initial block design of 𝑚𝑏
points and 𝑛𝑏 dimensions, each dimension is partitioned into
the same number of divisions as 2. So the design space is
divided into a total of 𝑏 blocks such that

𝑏 = 2
𝑛𝑝
. (1)



The Scientific World Journal 3

Meanwhile, the number of points 𝑚𝑏 of block design is
defined as

𝑚𝑏 =

𝑚𝑝

𝑏

=

𝑚𝑝

2
𝑛𝑝
, (2)

where dimensions of block design 𝑛𝑏 should be equal to the
dimensions of Latin hypercube design 𝑛𝑝; that is, 𝑛𝑏 = 𝑛𝑝.

In the example of the 16 × 2 Latin hypercube design (i.e.,
𝑚𝑝 = 16 and 𝑛𝑝 = 2), one obtains 𝑛𝑏 = 2, 𝑏 = 4, and 𝑚𝑝 = 4
from (1) and (2).

Next, points of initial block are generated by the optimal
Latin hypercube design SLE which will be introduced in
the next section. Then the entire design space will be filled
with the initial block via translational propagation algorithm.
Figure 1 shows the division of the design space for the 16 ×
2 Latin hypercube design. Figure 2 illustrates the process
step by step. First, the initial block is properly filled with
points determined by SLE algorithm as shown in Figure 2(a).
Next, the initial block is shifted by 𝑚𝑝/2 levels in one of
the dimensions. Every time that the old block is shifted, a
new block is added to the experimental design to produce a
new block (twice as points of old block). Figure 2(b) shows
the shift of the initial block (chosen to be in the horizontal
direction). To preserve the noncollapsing property of Latin
hypercube, that is, only a single point per level, there also has
to be a one-level shift in the vertical direction which is shown
in Figure 2(b). In the general case, a displacement vector is
built for each accounting for the shifting in the dimension
of interest (horizontal direction in the example above) as
well as a shift in all other dimensions to preserve the Latin
hypercube properties (vertical direction in our example). In
the next step, the current set of points (newly filled division)
is used as a new block and the procedure of shifting the block
is repeated in the next dimension. Figure 2(c) illustrates the
shifting procedure in the vertical direction.

The greatest advantage of this approach is that there are
no calculations to performonce initial block is completed. All
operations can be viewed as a simple translation of the block
designs in the 𝑛𝑝-dimensional hypercube. Although efficient
for generating sampling designs, the algorithmproposed now
fails to provide flexibility to obtain any sample size in the
final Latin hypercube design. Equations (1) and (2)must hold,
that is, become responsible for the limitation of algorithm.
The strategy to overcome this limitation and generate sample
designs with arbitrary size is described in Section 2.3.

2.2. Novel Optimal Algorithm of Latin Hypercube Design SLE.
In this section a novel algorithm of maximin LHD using
SLE is introduced briefly, referred to in [19]. Unlike the
existing LHD methods which employed the global objective
functions, the sequential local objective function is to maxi-
mize the minimal distance which is the minimum of all the
distances between the point to be generated and the existing
points already generated by SLE. The points produced by
this method are evenly distributed in the design space and
projective points in lower dimensions are almost uniform.
Based on SLE algorithm, the sampling points in a two-dimen-
sional plane are shown in Figure 3(a). The projective points
to each coordinate axis are uniform. Comparison with LHSD

b = 4
Initial block

2

3

4

1

mp = 16

np = 2

mb = 4

nb = 2

Figure 1: 16 × 2 Latin hypercube mesh divided into blocks (2 divi-
sions in each dimension results in 4 blocks). The left-lower block is
the initial block to be first picked in the algorithm.

function provided byMATLAB using the default set is shown
in Figure 3(b). From the comparative plots, sampling points
generated by using SLE algorithm have better space-filling
and projective property.

Similarly, assuming to generate an initial Latin hypercube
design of 𝑚𝑏 sampling points and 𝑛𝑏 dimensions by SLE
algorithm. This problem of finding a set of sampling points
in 𝑛𝑏-dimensional space can be described as positioning 𝑚𝑏
points in a 𝑚𝑛𝑏

𝑏
unit hypercube, each point in which has

𝑛𝑏 coordinates values, (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑛𝑏) ∈ {1, 2, . . . , 𝑚𝑏}
𝑛𝑏 ,

(𝑖 = 1, 2, . . . , 𝑚𝑏), so that all the 𝑚𝑏 points possess good
performance, that is, space-filling and projective properties.
According to the SLE algorithm, the design space will be
divided into the 𝑚𝑛𝑏

𝑏
unit hypercube. The sampling points

should be determined cell by cell (when 𝑛𝑏 = 2, a cell is
equal to a column), and for each cell only one point can
be designated. A cell can be considered as a (𝑚𝑏 − 1)

𝑛𝑏 unit
hypercube, which owns (𝑚𝑏 − 1)

𝑛𝑏 hyperboxes (when 𝑛𝑏 = 2,
a hyperbox is equal to a square, and when 𝑛𝑏 = 3, a hyperbox
is equal to a cube).

When using SLE algorithm to construct an initial block
for TPSLE algorithm, it is noticed that the variable (𝑥𝑖1,
𝑥𝑖2, . . . , 𝑥𝑖𝑛𝑏

) ∈ {1+ (0, 2
𝑛𝑏−1

, 2∗2
𝑛𝑏−1

, . . . , (𝑚𝑏 −1)∗2
𝑛𝑏−1

)}
𝑛𝑏 ,

(𝑖 = 1, 2, . . . , 𝑚𝑏), which is different from the SLE algorithm in
the literature [19]. Figure 2(a) shows that the interval of points
in initial block is two-level which is equal to 2𝑛𝑏−1 = 2.

2.3. Constructing Designs of Experiment with Arbitrary Size.
To generate an improved Latin hypercube design proposed
in this paper with any number of points, the first step is to
generate a TPSLE that has more points than the required.The
experimental design will be completed without resizing the
size of TPSLE if the design of𝑚𝑝 points and 𝑛𝑝 dimensions is
proper; that is, 𝑚𝑏 calculated by (2) is an integer. Otherwise,
an experimental design which is larger than the required will



4 The Scientific World Journal

Initial 
block

2

3

4

1

(a) Step 1

New block

2

3

4

1

6

7

8
5
One levelmp/2 levels

(b) Step 2

2

3

4

1

6

7

8

5

10

11

12

9

14

15

16

13

One level

m
p

/2
le

ve
ls

(c) Step 3

Figure 2: Process of creating the 16×2 Latin hypercube design. (a) illustrates the initial block. (b) shows the translation of the initial block in
the horizontal direction with𝑚𝑝/2 levels which is accompanied by a one-level vertical displacement to preserve Latin hypercube properties
and represents the newly created block that will be translated in the vertical direction. (c) shows the translation in the vertical direction which
is accompanied by horizontal displacement of one level.

be created through rounding 𝑚𝑏 up. And then a resizing
process will be used to reduce the number of points to the
desired one.The points are removed one by one from the ini-
tially created TPSLE by discarding the points that are the
furthest from the center of the hypercube and reallocating
remaining points to fill thewhole design (preserving the Latin
hypercube properties). In the proposed algorithm removing
the points furthest from the center does not reduce the area
of exploration. After removing the points, the final design is
rescaled to cover the whole design space.The detailed process
of resizing algorithm refers to the literature [20]. In the next
paragraph, an experimental design of Latin hypercube with a
size 13 × 2 will be illustrated step by step.

To construct a 13 × 2 size Latin hypercube (i.e., 𝑚𝑝 = 13
and 𝑛𝑝 = 2), the corresponding initial block should be created
first. From (1) and (2), one can obtain 𝑚𝑏 = 𝑚𝑝/2

𝑛𝑝
= 3.25

which is not an integer. Rounding 𝑚𝑏 = 3.25 up to 𝑚𝑏 = 4,
then the size of larger design that can be constructed is 16×2,
as illustrated in Figure 1.The resizing process begins with first
calculating the distance between each of the 16 points and the
center of the design space. To create a 13×2 size design out of
a 16 × 2 one, three points furthest from the center have to be
eliminated. In practice, this means the points of the original
TPSLE have to be ranked according to the distance between
the original points and the center of the design space. Three
points which are further from the center are eliminated



The Scientific World Journal 5

0 8 16 24 32 40 48 56 64
0

8

16

24

32

40

48

56

64

(a) SLE

0 8 16 24 32 40 48 56 64
0

8

16

24

32

40

48

56

64

(b) LHSD

Figure 3: Sampling comparison with MATLAB function LHSD (𝑚𝑏 = 64, 𝑛𝑏 = 2).

gradually. When two points are equally far from the center, it
is not important which of the points will be removed first due
to symmetry. In general, the point which is further from the
origin will be removed. Certainly, the point which is nearer
to the origin can also be chosen to be removed.The red point
marked with 16 is first eliminated rather than point 1, as
illustrated in Figure 4. However, removing point merely may
break the Latin hypercube property that only a single point
is found at any of the levels. So once a point is removed, the
levels occupied by its projection along each of the dimensions
have to be eliminated. Figure 4 illustrates the resizing process
step by step.The number of points in the design progressively
shrinks, but the final design still represents samples over
the same design space. Figure 4(a) shows that in the 16 × 2
design the red point which is farther from the center and its
corresponding levels marked with green shadow are elim-
inated. When eliminating levels, the remaining points are
used to occupy the empty level that is in between the points
remarked with 10, 12 in Figure 4(a). In Figure 4(a), two
points marked with 10, 14 on the top would move downward
to occupy the empty level. Next, all points are scaled to
cover the original design space. After each step, a new Latin
hypercube design is obtained with one point less.The process
continues until the 13 × 2 design is achieved. Figure 4(b) and
Figure 4(c) display the same process of eliminating points
marked with 1, 14 and their corresponding levels. Removing
points/levels part reduces the number of points of the exper-
imental designs to obtain sample designs with arbitrary size,
while preserving the Latin hypercube properties. The cor-
responding dimensions will not be eliminated after one cer-
tain point is chosen to be eliminated. On the other hand, it
makes the experimental design fit in the original design space
again.

2.4. Summary of the TPSLE Algorithm. The proposed algo-
rithm is inspired by the trade-off between performance and
efficiency of experimental sampling design. In practice, good
Latin hypercube designs are expected to be obtained effi-
ciently because the consuming time is limited. This is partic-
ularly critical for large number of points in high dimensions.
TPSLE generated from a fairly small optimal Latin hyper-
cube design used as an initial block via translational propa-
gation algorithm is a superior design relatively. Figure 5 illus-
trates the TPSLE algorithm. The given design parameters
include the number of points of the required Latin hypercube
design 𝑚𝑝 and the number of variables 𝑛𝑝. The first step
is to calculate the design variables 𝑚𝑏, 𝑛𝑏 and number of
blocks 𝑏 from (1) and (2). Then checking whether 𝑚𝑏 is an
integer. If𝑚𝑏 is an integer, the initial blockwill be constructed
with size𝑚𝑏 × 𝑛𝑏 by SLE algorithm. Afterwards, the required
experimental design is constructed by TPSLE algorithm
via translational propagation. However, while 𝑚𝑏is not an
integer, the initial block cannot be constructed immediately.
It is advised to round𝑚𝑏 up; 𝑐𝑒𝑖𝑙() in Figure 5 represents the
rounding up. In this algorithm, parameter 𝑚𝑏 controls the
number of sampling points, that is, 𝑚𝑝 = 𝑚𝑏 ⋅ 2

𝑛𝑝 . Thus,
a larger Latin hypercube design is obtained using the initial
block via translational propagation algorithm.Next, the Latin
hypercube design is resized to the required one. So far, the
process of constructing a Latin hypercube design with the
arbitrary size is completed and the required experimental
design is achieved.

Based on the abovementionedTPSLE algorithm, the sam-
pling points illustrated in Figure 6 in two-dimensional space
with size 64 × 2 are generated, compared with the sam-
pling points produced by SLE and LHSD which are shown
in Figure 3. From the comparative plots, the space-filling and



6 The Scientific World Journal

2

3

4

1

6

7

8

5

10

11

12

9

14

15

16

13

4

1

6

7

8

5

11

12
9

14

15

13

10

2

3

Levels to be
eliminated

Point to be
eliminated

Eliminate
levels

Eliminate
point

2

3

4

1

6

7

8

5

10

11

12
9

14

15

13

(a) Step 1. New design with size 15 × 2 by eliminating point and corresponding levels

4

1

6

7

8
5

11

12
9

14

15

13

10

2

3

4

1

6

7

8

5

11

12
9

14

15

13

10

2

3

Point to be
Levels to be
eliminated

eliminated

Eliminate
levels

Eliminate
point

4

6

7

8
5

11

12
9

14

15

13

10

2

3

(b) Step 2. New design with size 14 × 2 by eliminating point and corresponding levels

Point to be
eliminated Levels to be

eliminated

Eliminate
point

Eliminate
levels

4

1

6

8

5

11

12

9

15

13

10

2

3 7

4

6

7

8

5

11

12
9

14

15

13

10

2

3

4

6

7

8

5

11

12

9

15

13
10

2

3

Levels to be
eliminated

(c) Step 3. New design with size 13 × 2 by eliminating point and corresponding levels

Figure 4: Process of resizing to create a 13 × 2 size design.

projective properties of sampling design generated by using
the TPSLE algorithm are better than LHSD and coincident
with SLE roughly, but the efficiency of TPSLE algorithm is
farther superior to SLE algorithm which will be discussed in
the next section.

3. Results and Discussion

The sampling points generated by the TPSLE algorithmmeet
the two desired features, namely, space-filling and projective
properties.The distributions of the produced sampling points
are even in the design space and the projective points in lower
dimensions are almost uniform, especially for projecting to

each coordinate axis. According to the sampling process of
the TPSLE algorithm, the initial block constructed by SLE is
used to generate the sampling points via translational prop-
agation, which are quite different from the existing LHD
sampling methods. In TPSLE, there are no global objective
functions, such as𝜙𝑝, potential energy𝑈 to optimize and thus
no expensive optimization algorithm such as genetic algo-
rithm and simulated annealing would be employed, so the
efficiency of the algorithm TPSLE is superior to the sampling
methods containing optimization algorithms. In this section,
the performance and efficiency of algorithm TPSLE are
both tested compared with two existing Latin hypercube
algorithms.



The Scientific World Journal 7

Yes No

Obtain an experimental 
design with arbitrary size 

Construct an experimental design
by TPSLE via the initial block

Construct an experimental design
by TPSLE via the initial block

Resize the experimental design
constructed by TPSLE with required size

Construct an optimal 
initial block with size

mb × nb by SLE algorithm

Is mb an integer?

Given design parameters mp, np

Calculate parameters mb, nb of initial block

Construct an optimal 
initial block with size

m
b



× nb by SLE algorithm

Round mb up to an
integer mb = ceil(mb)

Figure 5: Flowchart of proposed algorithm TPSLE.

0 8 16 24 32 40 48 56 64
0

8

16

24

32

40

48

56

64

Figure 6: A Latin hypercube design with size 64 × 2 by TPSLE.

3.1. Test Criteria. In recent years, some optimal criteria are
employed widely to achieve a good performance in design
of computer experiments. The optimal designs constructed
by these optimal criteria have been shown to have a good
performance. In other words, these optimal criteria can be
used as test criteria to test whether the experimental designs
have good performance. Four widely used test criteria are
considered in this work.

3.1.1. Maximin Distance Criterion 𝑑min. Maximin distance
criterion is proposed by Johnson et al. [6]. As the term sug-
gests, the objective of the criterion is maximizing the mini-
mum intersite distance 𝑑min:

𝑑min = min
1≤𝑖,𝑗≤𝑚, 𝑖 ̸=𝑗

𝑑 (𝑥𝑖, 𝑥𝑗) , (3)

where𝑚 is the number of points and 𝑑(𝑥𝑖, 𝑥𝑗) is the distance
between two arbitrary points:

𝑑 (𝑥𝑖, 𝑥𝑗) = 𝑑𝑖𝑗 = [

𝑛

∑

𝑘=1






𝑥𝑖𝑘 − 𝑥𝑗𝑘







𝑡

]

1/𝑡

, 𝑡 = 1 or 2, (4)

where 𝑛 is the number of variables. In this paper, 𝑡 = 2 is
considered.Theparameters𝑑𝑖𝑗,𝑚, and 𝑛 are the same as those
used for test criteria below.

3.1.2. Centered 𝐿2 Discrepancy Criterion 𝐶𝐿2. Centered 𝐿2
discrepancy criterion is one of 𝐿𝑝 discrepancy criteria which
is a measure of the difference between the uniform cumu-
lative distribution function and the empirical cumulative
distribution function of an experimental design. Namely, the
𝐿2 discrepancy is ameasure of nonuniformity of a design that
is used most widely. Hickernell [21] proposed an interesting
formula of 𝐿2 discrepancy termed as centered 𝐿2 discrepancy
𝐶𝐿2 expressed as follows:

𝐶𝐿2 (𝑋)

= (

13

12

)

𝑛

−

2

𝑚

𝑚

∑

𝑖=1

𝑛

∏

𝑘=1

(1 +

1

2





𝑥𝑖𝑘 − 0.5






−

1

2





𝑥𝑖𝑘 − 0.5






2
)



8 The Scientific World Journal

+

1

𝑚
2

𝑚

∑

𝑖=1

𝑚

∑

𝑗=1

𝑛

∏

𝑘=1

(1 +

1

2





𝑥𝑖𝑘 − 0.5





+

1

2






𝑥𝑗𝑘 − 0.5







−

1

2






𝑥𝑖𝑘 − 𝑥𝑗𝑘






) .

(5)

3.1.3. 𝜙𝑝 Criterion. In 1995,Morris andMitchell [7] proposed
an intuitively appealing extension of the maximin distance
criterion:

𝜙𝑝 = [

𝑠

∑

𝑖=1

𝐽𝑖𝑑𝑖

−𝑝
]

1/𝑝

, (6)

where 𝑑𝑖 are distinct distance values with 𝑑1 < 𝑑2 < ⋅ ⋅ ⋅ < 𝑑𝑠,
𝐽𝑖 is the number of pairs of sites in the design separated by 𝑑𝑖,
𝑝 is a positive integer, and 𝑠 is the number of distinct distance
values. Jin et al. [13] provided a new equation to efficiently
evaluate the value of 𝜙𝑝 which is expressed by

𝜙𝑝 =
[

[

∑

1≤𝑖,𝑗≤𝑚, 𝑖 ̸=𝑗

𝑑𝑖𝑗

−𝑝
]

]

1/𝑝

, (7)

where 𝑑𝑖𝑗 can be obtained by (4) and 𝑝 = 50 are advised by
the literature [13].

3.1.4. Potential Energy Criterion 𝑈. In optimal LHD algo-
rithms, the Audze-Eglais objective function [17], namely, the
potential energy criterion 𝑈, is usually used as a criterion for
checking whether sampling points have good performance.
It is inspired by the following physical analogy: a system will
reach equilibrium when the potential energy of the repulsive
forces between the masses is at a minimum. The potential
energy criterion 𝑈 is inversely proportional to the distance
squared between the points formulated as follows:

𝑈 =

𝑚−1

∑

𝑖=1

𝑚

∑

𝑗=𝑖+1

𝑑
−2

𝑖𝑗
. (8)

3.2. Performance of TPSLE Algorithm. To illustrate the per-
formance, that is, space-filling andprojective properties of the
sampling points, four aforementioned criteria are employed,
namely, 𝑑min, 𝐶𝐿2, 𝜙𝑝, and potential energy 𝑈, to compare
with other existing LHD methods. In this work, LHSD
function in MATLAB and SLE algorithm [19] are used to
make a comparison with TPSLE algorithm.

Various sampling designs are generated by three different
Latin hypercube design methods including TPSLE, LHSD,
and SLE. In order to reduce the randomness of sampling
designs, sampling points are generated for 50 times through
the TPSLE and SLE algorithm. Meanwhile, 500 times are
for LHSD algorithm with the default set in MATLAB. It is
noticed that sampling points are generated for 10 times as
𝑛 ≥ 10. And the best, worst, and mean values of the different
criteria are calculated. It is noticed that the sampling designs
are scaled to 0∼1. Afterwards, testing and comparison results

based on four test criteria which are minimal distance 𝑑min,
centered discrepancy 𝐶𝐿2, 𝜙𝑝, and potential energy 𝑈 are
shown in Tables 1 and 2.The larger the values of 𝑑min and the
smaller the values of 𝐶𝐿2, 𝜙𝑝, and 𝑈 which are marked with
bold and italic in Tables 1–3, the better the sampling design.

According to the comparison study with SLE algorithm
and LHSD function with various number of points in two-
dimension in Table 1, the most mean values of 𝐶𝐿2, 𝜙𝑝, and
𝑈 of the sampling designs produced by TPSLE algorithm are
smaller than LHSD function, and the mean values of 𝑑min
of sampling designs produced by TPSLE algorithm are all
larger than LHSD function, which demonstrate that sampling
designs using TPSLE algorithm have better performance
compared with LHSD function. Furthermore, part of worst
values 𝑑min, 𝐶𝐿2, 𝜙𝑝, and 𝑈 of sampling designs produced
by TPSLE algorithm are better than mean values of those
produced by LHSD function especially for the criteria 𝑑min
and 𝑈. In order to show the good performance of sampling
designs produced by TPSLE algorithm comprehensively,
comparisons are made with sampling designs produced by
SLE algorithm which is a time-consuming algorithm. From
the results shown in Table 1, sampling designs produced by
TPSLE algorithm are compared to SLE algorithm in terms of
performance. It is attractive that the sampling designwith size
32 × 2 generated by TPSLE algorithm is better than the other
two methods in terms of test criteria 𝑑min, 𝜙𝑝, and 𝑈.

Similarly, the results of sampling designs in three-
dimension from Table 2 demonstrate the same conclusion as
aforementioned. For observing the performance of sampling
design produced by TPSLE algorithm intuitionally, the 3D
space-filling and corresponding 2D projective points gener-
ated based on three sampling methods separately are shown
in Figures 7, 8, and 9.

For the sake of reflecting good performance of TPSLE
further, the test criteria 𝑑min, 𝜙𝑝, and 𝑈 of TPSLE are studied
to compare with LHSD in high dimension, as shown in
Table 3. As it is shown in Table 3, the minimum distances
between any two points 𝑑min of sampling designs in high
dimension generated by TPSLE are all larger than LHSD.The
other criterion 𝜙𝑝 is smaller compared with LHSD. However,
the potential energy 𝑈 of sampling designs generated by
LHSD is smaller in some cases. It indicates that different
optimal sampling designs may be obtained based on different
optimal criteria. According to the comparison in Table 3,
the performance of sampling designs generated by TPSLE in
most cases is better than LHSD in high dimension.

In a word, we can conclude that better space-filling and
projective properties can be obtained by TPSLE through
comparison with LHSD and SLE under different criteria of
𝑑min, 𝐶𝐿2, 𝜙𝑝, and 𝑈.

3.3. Efficiency Study of TPSLE Algorithm. In this section,
an illustrative comparison among our proposed TPSLE
algorithm, LHSD function in MATLAB, and SLE algorithm
presented in Zhu et al. [20] is provided to show the significant
savings achieved by our method.

The time consumptions of sampling designs using differ-
ent algorithms are compared in Table 4. The computational



The Scientific World Journal 9

Table 1: Comparison of test criteria among TPSLE, SLE, and LHSD in two-dimension.

𝑛 = 2 TPSLE LHSD SLE
𝑚 Criteria Best Worst Mean Best Worst Mean Best Worst Mean

16

𝑑min 0.177 0.140 0.146 0.178 0.061 0.114 0.198 0.140 0.191
𝐶𝐿2 0.059 0.064 0.060 0.045 0.087 0.054 0.058 0.062 0.060
𝜙𝑝 5.816 7.255 7.025 5.062 8.074 6.790 5.060 7.155 5.357
𝑈 739.75 802.66 749.71 740.87 1398.3 951.87 708.19 754.56 729.42

32

𝑑min 0.113 0.070 0.087 0.095 0.033 0.057 0.156 0.088 0.129
𝐶𝐿2 0.031 0.034 0.032 0.025 0.063 0.035 0.030 0.034 0.032
𝜙𝑝 8.999 14.713 12.392 10.558 29.996 18.045 6.688 11.314 7.995
𝑈 3957.9 4522.6 4216.8 4465.1 8371.5 5599.4 3820.0 3966.9 3867.7

64

𝑑min 0.099 0.035 0.064 0.045 0.014 0.028 0.105 0.035 0.093
𝐶𝐿2 0.016 0.017 0.016 0.015 0.045 0.023 0.016 0.018 0.017
𝜙𝑝 10.467 29.021 18.075 20.458 32.345 26.618 9.732 28.622 11.392
𝑈 19278 21035 20007 24060 44498 30041 19179 19994 19320

128

𝑑min 0.052 0.017 0.036 0.024 0.008 0.014 0.074 0.025 0.061
𝐶𝐿2 0.008 0.009 0.009 0.009 0.028 0.015 0.009 0.011 0.009
𝜙𝑝 19.779 58.042 31.482 42.235 129.40 72.667 13.739 40.477 17.059
𝑈 94780 100754 96565 119503 195253 152308 93131 94787 93513

Table 2: Comparison of test criteria among TPSLE, SLE, and LHSD in three-dimension.

𝑛 = 3 TPSLE LHSD SLE
𝑚 Criteria Best Worst Mean Best Worst Mean Best Worst Mean

16

𝑑min 0.306 0.258 0.281 0.308 0.121 0.210 0.306 0.108 0.246
𝐶𝐿2 0.097 0.115 0.103 0.074 0.132 0.089 0.087 0.095 0.092
𝜙𝑝 3.358 3.935 3.619 3.323 8.267 4.875 3.284 9.238 4.247
𝑈 339.41 382.95 355.68 344.65 557.14 411.31 357.67 438.01 376.71

32

𝑑min 0.221 0.153 0.183 0.184 0.084 0.124 0.261 0.077 0.182
𝐶𝐿2 0.051 0.068 0.056 0.045 0.098 0.058 0.050 0.057 0.053
𝜙𝑝 4.653 6.716 5.710 5.529 11.926 8.268 3.847 13.064 5.988
𝑈 1645.2 1769.0 1709.9 1798.5 2689.1 2038.5 1673.7 1882.3 1743.5

64

𝑑min 0.147 0.077 0.110 0.106 0.047 0.075 0.206 0.038 0.143
𝐶𝐿2 0.029 0.034 0.032 0.029 0.058 0.040 0.031 0.035 0.033
𝜙𝑝 7.016 13.431 9.704 9.455 21.358 13.639 4.977 26.128 7.713
𝑈 7642.1 8803.8 8148.1 8440.2 10480 9286.4 7617.8 8342.6 7744.7

128

𝑑min 0.073 0.038 0.058 0.067 0.027 0.047 0.149 0.014 0.094
𝐶𝐿2 0.018 0.021 0.019 0.020 0.048 0.028 0.019 0.023 0.021
𝜙𝑝 14.028 26.862 18.825 15.130 37.412 22.068 6.744 73.901 13.781
𝑈 34282 38292 35798 37069 44138 40207 33268 39353 33797

Table 3: Comparison of test criteria between TPSLE and LHSD in high dimension.

Criteria method Sampling size𝑚 × 𝑛
16 × 4 32 × 4 64 × 4 64 × 6 128 × 6 256 × 6 256 × 8 512 × 8 1024 × 10 1024 × 15 1024 × 20

𝑑min
TPSLE 0.395 0.346 0.230 0.433 0.429 0.294 0.468 0.476 0.500 0.538 0.678
LHSD 0.308 0.205 0.138 0.274 0.210 0.163 0.273 0.225 0.273 0.518 0.635

𝜙𝑝

TPSLE 2.601 2.963 4.575 2.441 2.444 3.653 2.334 2.354 2.349 1.825 1.118
LHSD 3.301 4.971 7.394 3.702 4.811 6.221 3.696 4.486 3.700 1.956 1.380

𝑈

TPSLE 272.1 1065.9 4634.5 3049.4 11108 44410 35147 127547 427341 235684 187425
LHSD 253.9 1179.8 5145.5 2701.6 11116 45053 30454 122542 372095 232627 169532



10 The Scientific World Journal

0
8

16
24

320 8 16 24 32

0

8

16

24

32

0 8 16 24 32
0

8

16

24

32

0 8 16 24 32
0

8

16

24

32

0 8 16 24 32
0

8

16

24

32

x1

x2

x1

x1

x
2

x2

x
3

x
3

x
3

Figure 7: 3D space-filling and corresponding 2D projective points generated by TPSLE.

time of them is measured on a PC with an Intel Core i3
3.3 GHz CPU. For sampling designs with various sizes accept
𝑛 ≥ 10, the time of TPSLE is close to zero, which is more
efficient than algorithm SLE especially for larger sampling
size. For the sampling designs with size 32 × 6 and 256 × 8,
TPSLE is even more effective than LHSD. When sampling
dimension 𝑛 ≥ 10, the computational time increases rapidly
but is still acceptable.

4. Application Study of TPSLE Algorithm

In this section, fivemathematical examples listed inAppendix A
and one engineering problem are used to study the validity of
TPSLE algorithm. TPSLE algorithm is applied to construct
metamodels and deal with engineering optimization design
problem in this work.

4.1. Comparative Study Based on Metamodel Accuracy. Sam-
pling designs are very important for constructing metamod-
els. Poor sampling designs not only lead to poor accuracy
of metamodels, but also reduce the efficiency. In this paper,
five widely accepted mathematical examples are employed
to test the accuracy of metamodels that are built with
different sampling methods, that is, LHSD and TPSLE. As
one of the most effective approximation methods, radial
basis functions’ (RBF) [23–25] interpolation is a better choice
for constructing metamodels or finding the global optima
of computationally expensive functions by using a limited
number of sampling points. In this paper, RBF is used to
construct metamodels and the basis function multiquadric is
applied.

To make a fair comparison of two methods, the total
number of sampling points (𝑚𝑝 = 64) is the same for each
method in each tested problem. As mentioned in the last



The Scientific World Journal 11

Table 4: Comparison of time(s) among TPSLE, SLE, and LHSD.

Time(s) method Sampling size
16 × 2 64 × 2 128 × 2 16 × 3 64 × 3 128 × 3 64 × 4 32 × 6 256 × 8 1024 × 10 1024 × 15 1024 × 20

TPSLE 0.0042 0.0100 0.0266 0.0039 0.0098 0.0579 0.0061 0.0050 0.0044 12.34 19.85 279.24
SLE 0.0058 0.0902 0.3802 0.0531 3.9341 35.948 1023.8
LHSD 0.0040 0.0043 0.0048 0.0040 0.0054 0.0055 0.0052 0.0058 0.0080 12.48 12.77 12.83

0
8

16
24

320 8 16 24 32

0

8

16

24

32

0 8 16 24 32
0

8

16

24

32

0 8 16 24 32
0

8

16

24

32

0 8 16 24 32
0

8

16

24

32

x1

x2

x1

x1

x
2

x2

x
3

x
3

x
3

Figure 8: 3D space-filling and corresponding 2D projective points generated by LHSD.

section, 50 times procedures are conducted for each sampling
design and therefore there are 50 sets of accuracy results for
each sampling method. The accuracy measures, NRMSE and
NMAX [26, 27] (see Appendix B for definition) summarized
in Table 5, are average values. Note that a value of zero for
both accuracymeasures,NRMSE andNMAX,would indicate
a perfect fit.

From the results shown in Table 5, it is found that val-
ues of both NRMSE and NMAX by TPSLE algorithm are
smaller comparable to those of LHSD function. It indicates

that the metamodels based on TPSLE sampling algorithm
can obtain better approximations for black-box functions.
Such improved accuracy in metamodeling is attributed to
better space-filling and LHD projective properties achieved
by the TPSLE method. Therefore, the performance of TPSLE
is better than LHSD function provided by MATLAB in
constructing metamodels.

4.2. Engineering Problem. The performance of TPSLE algo-
rithm is tested by a typical mechanical design optimization



12 The Scientific World Journal

0
8

16
24

320 8 16 24 32

0

8

16

24

32

0 8 16 24 32
0

8

16

24

32

0 8 16 24 32
0

8

16

24

32

0 8 16 24 32
0

8

16

24

32

x1

x2

x1

x1

x
2

x
3

x
3

x
3

x2

Figure 9: 3D space-filling and corresponding 2D projective points generated by SLE.

Table 5: Comparison of metamodels accuracy between TPSLE and
LHSD.

Function Number of variables NRMSE NMAX
TPSLE LHSD TPSLE LHSD

BR 2 0.0519 0.0973 0.0519 0.0973
AF 2 0.274 0.4012 0.274 0.4012
PEAKS 2 0.1153 0.1919 0.1153 0.1919
HN 3 0.3929 0.5755 0.3929 0.5755
MATH [22] 5 0.0383 0.0417 0.0383 0.0417

problem involving three design variables, that is, pressure
vessel design. This problem is modified from the original
problem recorded in [28–30]. The schematic of the pressure
vessel is shown in Figure 10. In this case, a cylindrical
pressure vessel with two hemispherical heads is designed
for minimum fabrication cost. Three variables are identified:
thickness of the head 𝑇ℎ, inner radius of the pressure vessel

𝑅, and length of the vessel without heads 𝐿. In this case, the
variable vectors are given (in inches) by

𝑋 = (𝑇ℎ, 𝑅, L) = (𝑥1, 𝑥2, 𝑥3) . (9)
The objective function is the combined cost of materials,

forming andwelding of the pressure vessel.Themathematical
model of the optimization problem is expressed as

min 𝑓 (𝑋) = 0.6224𝑥1𝑥2𝑥3 + 1.7781 × 0.625𝑥
2

2

+ 3.1661𝑥
2

1
𝑥3 + 19.84𝑥

2

1
𝑥2

s.t. 𝑔1 (𝑋) = −𝑥1 + 0.0193𝑥2 ≤ 0,

𝑔2 (𝑋) = −0.625 + 0.000954𝑥2 ≤ 0,

𝑔3 (𝑋) = 1296000 − 𝜋𝑥
2

2
𝑥3 −

4

3

𝜋𝑥
3

2
≤ 0,

𝑔4 (𝑋) = −240 + 𝑥4 ≤ 0.

(10)



The Scientific World Journal 13

Table 6: Optimal results of pressure vessel design.

Method Number of function evaluations Number of design iterations Variable design Objective value
LHSD 16 11.8 [1.00, 44.50, 149.02] 7682.7
TPSLE 16 7.28 [1.03, 53.57, 72.34] 7044.0

L

Th

R

Figure 10: Diagram of pressure vessel design.

The ranges of the design variables 𝑥1 ∈ [1.0, 1.375],
𝑥2 ∈ [25, 150], and 𝑥3 ∈ [25, 240] are used referring to
the literature [30]. The minimum objective function value is
7021.3 declared in the literature [30].

The problem formulated above is a simple nonlinear con-
strained problem.Now assume the objective function defined
by (10) is a computation-intensive function and thus the
reduction of the number of function evaluations is consid-
ered. Hence, metamodel of objective function is constructed
by RBF. Initial sampling points are generated by TPSLE
algorithm. For comparison, sampling design method LHSD
function is also employed. The average values of optimal
results from 50 runs are listed in Table 6. It can be seen from
the table that TPSLE outperforms LHSD in terms of both the
minimum objective function value and the efficiency, that is,
the number of design iterations. As shown in the table, the
TPSLEmethod requires 7.28 iterations to reach the optimum,
whereas the LHSD method needs 11.8 iterations. Therefore,
the performance of TPSLE is better than LHSD function in
solving engineering design optimization problem.

5. Conclusion

In this paper, a methodology for creating novel Latin
hypercube designs via translational propagation algorithm
(TPSLE) is proposed.The approach is inspired by the idea that
a simple initial block with a few points generated by a novel
algorithm SLE can be used as a building block to construct a
near optimal Latin hypercube design. TPSLE algorithmoffers
a balanced trade-off between the efficiency and performance,
that is, space-filling and the projective properties.The greatest
advantage of the proposed methodology is that it requires
virtually no computational time. In fact, no global objective
functions are employed to optimize in TPSLE algorithm
which is quite different from the existing LHD sampling
methods. The performance of the sampling points generated
byTPSLE is studied through comparisonwith other sampling
methods under different test criteria, and the efficiency of
TPSLE and other sampling methods is compared.

It is found that the space-filling and projective properties
of sampling points using TPSLE are better than LHSD in
most cases. In addition, though TPSLE algorithm is not as
good as SLE in terms of performance of sampling points, the
efficiency of TPSLE is further superior to SLE. TPSLE is a
novel LHD sampling algorithm with acceptable space-filling
and projective properties, and the efficiency of sampling
algorithm TPSLE is superior. For the sake of examining the
validity of the proposed TPSLE sampling algorithm further,
five typical mathematical examples and one mechanical
design optimization problem have been tested. The assess-
ment measures for accuracy of metamodels, that is, NRMSE
and NMAX, are employed. In contrast to the traditional
sampling methods LHSD, TPSLE results in more accurate
metamodels. Furthermore, TPSLE is superior in solving
engineering design optimization problemon exploring global
minimum of metamodels.

The proposed sampling algorithm TPSLE is a wise trade-
off between performance and efficiency of sampling design
and significantly outperforms the conventional sampling
methods. However, there are still some shortcomings in
TPSLE algorithm. Firstly, the performance of sampling points
in high dimension is not good sometimes. Secondly, the sam-
pling algorithm TPSLE cannot construct sampling points
with arbitrary size directly. The problems mentioned above
need to be resolved in future work.

Appendices

A. Mathematical Examples

Branin function (BR), 𝑛 = 2:

𝑓 (𝑥) = (𝑥2 −
5.1

4𝜋
2
𝑥
2

1
+

5

𝜋

𝑥1 − 6)

2

+ 10 (1 −

1

8𝜋

) cos (𝑥1) + 10,

𝑥1 ∈ [−5, 10] , 𝑥2 ∈ [0, 15] .

(A.1)

Alpine function (AF), 𝑛 = 2:

𝑓 (𝑥) = sin (𝑥1) sin (𝑥2)√𝑥1𝑥2,

𝑥1 ∈ [0, 10] , 𝑥2 ∈ [0, 10] .

(A.2)

Peaks function, 𝑛 = 2:

𝑓 (𝑥) = 3(1 − 𝑥1)
2
⋅ 𝑒
−𝑥
2

1
−(𝑥2+1)

2

− 10 (

𝑥1

5

− 𝑥
3

1
− 𝑥
5

2
) ⋅ 𝑒
−𝑥
2

1
−𝑥
2

2

−

1

3

𝑒
−(𝑥1+1)

2
−𝑥
2

2
,

𝑥1 ∈ [−3, 3] , 𝑥2 ∈ [−3, 3] .

(A.3)



14 The Scientific World Journal

Hartman function (HN), 𝑛 = 3:

𝑓 (𝑥) = −

4

∑

𝑖=1

𝑐𝑖 exp[

[

−

𝑛

∑

𝑗=1

𝛼𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)

2
]

]

,

𝑥1 ∈ [0, 1] , 𝑥2 ∈ [0, 1] , 𝑥3 ∈ [0, 1] ,

(A.4)

where

𝛼𝑖𝑗 =

[

[

[

[

3 10 30

0.1 10 35

3 10 30

0.1 10 35

]

]

]

]

, 𝑝𝑖𝑗 =

[

[

[

[

.3689 .1170 .2673

.4699 .4387 .7470

.1090 .8732 .5547

.03815 .5743 .8828

]

]

]

]

,

𝑐𝑖 =

[

[

[

[

1

1.2

3

3.2

]

]

]

]

.

(A.5)

MATH function, 𝑛 = 5:

𝑓 (𝑥) =

5

∑

𝑖=1

[

3

10

+ sin(16
15

𝑥𝑖 − 1) + sin2 (16
15

𝑥𝑖 − 1)] ,

𝑥𝑖 ∈ [−1, 1] , 𝑖 = 1, 2, 3, 4, 5.

(A.6)

B. Metamodel Accuracy Measures

Root mean squared error (RMSE):

RMSE = √
∑
𝐾

𝑘=1
[𝑓 (𝑥𝑘) −

̂
𝑓 (𝑥𝑘)]

2

𝐾

,
(B.1)

where 𝐾 is the number of additional testing points and
𝑓(𝑥𝑘) and ̂

𝑓(𝑥𝑘) are the true function value and predicted
metamodel value at the 𝑘th testing point 𝑥𝑘, respectively.

Normalized root mean squared error (NRMSE):

NRMSE = √
∑
𝐾

𝑘=1
[𝑓 (𝑥𝑘) −

̂
𝑓 (𝑥𝑘)]

2

∑
𝐾

𝑘=1
[𝑓 (𝑥𝑘)]

2
.

(B.2)

RMSE only calculates the error of functions themselves.
However, NRMSE allows comparison of themetamodel error
values with regard to different functions.

Maximum absolute error:

MAX = max 

𝑓 (𝑥𝑘) −

̂
𝑓 (𝑥𝑘)






. (B.3)

Normalized maximum absolute error:

NMAX =
max 


𝑓 (𝑥𝑘) −

̂
𝑓 (𝑥𝑘)







√(1/𝐾)∑
𝐾

𝑘=1
[𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘)]

2

, (B.4)

where 𝑓(𝑥𝑘) is the mean of the actual function values at the
𝐾 test points.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank everybody for their encour-
agement and support. The support grants from the National
Science Foundation (CMMI-51375389 and 51279165) are
greatly acknowledged.

References

[1] L. Gu, “A comparison of polynomial based regressionmodels in
vehicle safety analysis,” in Proceedings of the ASMEDesign Engi-
neering Technical Conference and Computers and Information in
Engineering Conference (DAC’ 01), pp. 509–514, September 2001.

[2] P. N. Koch, T.W. Simpson, J. K. Allen, and F.Mistree, “Statistical
approximations for multidisciplinary design optimization: the
problem of size,” Journal of Aircraft, vol. 36, no. 1, pp. 275–286,
1999.

[3] T. J.Mitchell, “An algorithm for the construction of “D-optimal”
experimental designs,” Journal of Technometrics, vol. 16, no. 2,
pp. 203–210, 1974.

[4] R. H. Myers and D. C. Montgomery, Response Surface Method-
ology: Process and Product Optimization Using Designed Exper-
iments, John Wiley & Sons, 1995.

[5] W. Chen, A robust concept exploration method for configuring
complex systems [Ph.D. thesis], Mechanical Engineering, Geor-
gia Institute of Technology, Atlanta, Ga, USA, 1995.

[6] M. E. Johnson, L. M. Moore, and D. Ylvisaker, “Minimax and
maximin distance designs,” Journal of Statistical Planning and
Inference, vol. 26, no. 2, pp. 131–148, 1990.

[7] M. D. Morris and T. J. Mitchell, “Exploratory designs for
computational experiments,” Journal of Statistical Planning and
Inference, vol. 43, no. 3, pp. 381–402, 1995.

[8] T.W. Simpson, J. D. Peplinski, P. N. Koch, and J. K. Allen, “Met-
amodels for computer-based engineering design: survey and
recommendations,” Engineering with Computers, vol. 17, no. 2,
pp. 129–150, 2001.

[9] G. Rennen, B. Husslage, E. R. Van Dam, and D. Den Hertog,
“NestedmaximinLatin hypercube designs,” Structural andMul-
tidisciplinary Optimization, vol. 41, no. 3, pp. 371–395, 2010.

[10] G. Rennen, E. R. van Dam, and D. Den Hertog, Space-Filling
Latin Hypercube Designs for Computer Experiments, Tilburg
University, 2006.

[11] J. R. Koehler and A. B. Owen, “Computer experiments,” in
Handbook of Statistics, vol. 13, pp. 261–308, 1996.

[12] K. Q. Ye, W. Li, and A. Sudjianto, “Algorithmic construction of
optimal symmetric Latin hypercube designs,” Journal of Statis-
tical Planning and Inference, vol. 90, no. 1, pp. 149–159, 2000.

[13] R. Jin, W. Chen, and A. Sudjianto, “An efficient algorithm for
constructing optimal design of computer experiments,” Journal
of Statistical Planning and Inference, vol. 134, no. 1, pp. 268–287,
2005.

[14] . Bates S J, J. Sienz, and V. Toropov V, “Formulation of the opti-
mal Latin hypercube design of experiments using a permutation
genetic algorithm,” AIAA Journal, vol. 2011, pp. 1–7, 2004.

[15] M. Liefvendahl and R. Stocki, “A study on algorithms for opti-
mization of Latin hypercubes,” Journal of Statistical Planning
and Inference, vol. 136, no. 9, pp. 3231–3247, 2006.



The Scientific World Journal 15

[16] A. Grosso, A. R. M. J. U. Jamali, and M. Locatelli, “Finding
maximin latin hypercube designs by Iterated Local Search
heuristics,” European Journal of Operational Research, vol. 197,
no. 2, pp. 541–547, 2009.

[17] A. Jourdan and J. Franco, “Optimal Latin hypercube designs
for theKullback-LEIbler criterion,”AStA. Advances in Statistical
Analysis., vol. 94, no. 4, pp. 341–351, 2010.

[18] E. R. vanDam,B.Husslage,D. denHertog et al., “MaximinLatin
hypercube designs in two dimensions,” Journal of Operations
Research, vol. 55, no. 1, pp. 158–169, 2007.

[19] F. A. C. Viana, G. Venter, and V. Balabanov, “An algorithm for
fast optimal Latin hypercube design of experiments,” Interna-
tional Journal for Numerical Methods in Engineering, vol. 82, no.
2, pp. 135–156, 2010.

[20] H. Zhu, L. Liu, T. Long, and L. Peng, “A novel algorithm ofmax-
imin Latin hypercube design using successive local enumera-
tion,” Engineering Optimization, vol. 44, no. 5, pp. 551–564, 2012.

[21] F. J. Hickernell, “A generalized discrepancy and quadrature
error bound,”Mathematics of Computation, vol. 67, no. 221, pp.
299–322, 1998.

[22] A. A. Mullur and A. Messac, “Extended radial basis functions:
more flexible and effective metamodeling,” AIAA Journal, vol.
43, no. 6, pp. 1306–1315, 2005.

[23] G. S. Babu and S. Suresh, “Sequential projection-based met-
acognitive learning in a radial basis function network for
classification problems,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 24, no. 2, pp. 194–206, 2013.

[24] W. Yao, X. Q. Chen, Y. Y. Huang, and M. van Tooren, “A sur-
rogate-based optimization method with RBF neural network
enhanced by linear interpolation and hybrid infill strategy,”
Optimization Methods & Software, vol. 29, no. 2, pp. 406–429,
2014.

[25] N. Vuković and Z. Miljković, “A growing and pruning sequen-
tial learning algorithm of hyper basis function neural network
for function approximation,” Neural Networks, vol. 46, pp. 210–
226, 2013.

[26] R. Jin, X. Du, and W. Chen, “The use of metamodeling
techniques for optimization under uncertainty,” Structural and
Multidisciplinary Optimization, vol. 25, no. 2, pp. 99–116, 2003.

[27] A. A. Mullur and A. Messac, “Metamodeling using extended
radial basis functions: a comparative approach,” Engineering
with Computers, vol. 21, no. 3, pp. 203–217, 2006.

[28] L. D. S. Coelho, “Gaussian quantum-behaved particle swarm
optimization approaches for constrained engineering design
problems,” Expert Systems with Applications, vol. 37, no. 2, pp.
1676–1683, 2010.

[29] Y. J. Cao and Q. H. Wu, “Mechanical design optimization by
mixed-variable evolutionary programming,” in Proceedings of
the IEEE International Conference on Evolutionary Computation
(ICEC ’97), pp. 443–446, April 1997.

[30] X. Wei, Y. Wu, and L. Chen, “A global optimization algorithm
based on incremental metamodel method,” China Mechanical
Engineering, vol. 24, no. 5, pp. 623–627, 2013.


