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Abstract: A bitter taste often identifies hazardous compounds and it is generally avoided by most
animals and humans. Bitterness of hydrolyzed proteins is caused by the presence of bitter peptides.
To improve palatability, bitter peptides need to be identified experimentally in a time-consuming
and expensive process, before they can be removed or degraded. Here, we report the development
of a machine learning prediction method, iBitter-DRLF, which is based on a deep learning pre-
trained neural network feature extraction method. It uses three sequence embedding techniques,
soft symmetric alignment (SSA), unified representation (UniRep), and bidirectional long short-term
memory (BiLSTM). These were initially combined into various machine learning algorithms to build
several models. After optimization, the combined features of UniRep and BiLSTM were finally
selected, and the model was built in combination with a light gradient boosting machine (LGBM).
The results showed that the use of deep representation learning greatly improves the ability of the
model to identify bitter peptides, achieving accurate prediction based on peptide sequence data alone.
By helping to identify bitter peptides, iBitter-DRLF can help research into improving the palatability
of peptide therapeutics and dietary supplements in the future. A webserver is available, too.

Keywords: bitter peptide; deep representation learning; light gradient boosting; feature selection

1. Introduction

Humans and most animals instinctively dislike bitter substances, as the taste often
identifies toxic compounds. However, some beneficial nutrients, such as soy products,
endive, and other Asteraceae vegetables, as well as certain therapeutic peptides, are often
bitter. Proteins can be enzymatically digested into shorter polypeptides that have certain
beneficial biological activities. Studies have shown that hydrolyzed polypeptides have
good nutritional properties and can be easily absorbed and utilized. However, hydrolysis
often produces peptides with varying degrees of bitterness that can be detected even at very
low concentrations [1]. The bitter taste of protein hydrolysates is caused by the presence
of peptides containing hydrophobic amino acids. Most of these peptides are typically
composed of no more than eight amino acids and few contain more than ten. However,
bitter peptides containing up to 39 amino acids have been described [2]. The bitter taste of
protein hydrolysates is the result of a variety of factors. Hydrophobic amino acids within
the polypeptide tend to become exposed, stimulating the taste buds, causing the bitterness.
Generally, the more hydrophobic amino acids are exposed, the stronger the bitter taste.
In addition, the length, overall hydrophobicity, sequence, and amino composition of a
polypeptide chain also have a significant impact on bitterness [3].

Identifying bitter peptides using conventional laboratory approaches is expensive and
time-consuming. With the availability of a large number of peptide sequence databases in
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the post-genomic era [4], the development of automated computational models to iden-
tify novel bitter peptides has far-reaching practical implications. The success of machine
learning-based peptide prediction methods led to an increased interest in bioinformat-
ics [5–8]. A number of computational methods based on quantitative structure-activity
relationship modeling (QSAR) and machine learning have been developed to predict the bit-
terness of polypeptides [9–14]. For example, BitterX [15], BitterPredict [16], iBitter-SCM [17],
and iBitter-Fuse [18] using traditional sequence features were proposed to identify bitter
peptides and showed increasing performance. Now the methods for identifying bitter
peptides sequences are focused on feature engineering. The more meaningful the repre-
sentation features for sequence are, the better the accuracy of the models will be. In 2021,
BERT4Bitter [19] was proposed, which used natural language processing (NLP) heuristic
signature coding methods to represent peptide sequences as feature descriptors, and it
displayed better accuracy. While in 2022, He et al. [20] proposed mutual information-
based meta learning (MIMML) to discover the best feature combination for bitter peptides
and attained an independent accuracy of 93.8%. Although great progress has been made
in this field, there is still much room for improvement in the performance of machine
learning-based bitter peptide identification models using sequences only.

Deep learning refers to an algorithm in machine learning that does not require pre-
processing or prior characterization of data, allowing the transformation of raw protein
sequences into a form that machine learning can effectively utilize [21]. Inspired by deep
learning application in the NLP area, sequence-based deep representation learning of
proteins and peptides has emerged as an efficient and accurate method for predicting
the characteristics of proteins [22–24], such as UniRep [25] and TAPE [26]. The models
with deep representation learning features have been applied for identifying anticancer
peptides [23], protein subcellular location [27], and post-translational modifications of pro-
teins [28], showing significant improvement of models using traditional sequence features.

Here, we used two protein/peptide sequence-based deep representation learning
feature to develop a machine learning based model named iBitter-DRLF for bitter peptides
identification. It achieved impressive 10-fold cross-validation results, and independent
test accuracy compared favorably with existing methods and traditional, non-deep rep-
resentation learning methods. Furthermore, iBitter-DRLF could be used more generally
and showed superior discrimination in detecting bitter peptides. In addition, based on
the results of independent tests, iBitter-DRLF (ACC = 0.944, MCC = 0.889, Sp = 0.977,
F1 = 0.952, auPRC = 0.984, auROC = 0.977) outperformed the most advanced predic-
tors currently available. Apart from the feature analysis methods, unified manifold ap-
proximation and projection dimensionality reduction (UMAP) was also used to explore
the effects of different feature analysis approaches and different depth characterization
learning features on model performance. The user-friendly webserver is available at
https://www.aibiochem.net/servers/iBitter-DRLF/ (accessed on 1 May 2022). A diagram
describing the steps taken during the development of iBitter-DRLF is shown in Figure 1.

https://www.aibiochem.net/servers/iBitter-DRLF/
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Figure 1. Overview of model development. The pre-trained SSA sequence embedding model,
UniRep sequence embedding model, and BiLSTM sequence embedding model were used to embed
peptide sequences into eigenvectors. Peptide sequences were converted into 121-dimensional (D) SSA
eigenvectors, 1900-dimensional UniRep eigenvectors, and 3605-dimensional (D) BiLSTM eigenvectors.
Features were combined and fused to derive the following fusion features: SSA-UniRep (2021D), SSA-
BiLSTM (3726D), UniRep-BiLSTM (5505D), and SSA-UniRep-BiLSTM (5626D). These fusion features
were used as inputs to the SVM, RF, and LGBM predictor algorithms. The model was optimized by
feature selection using the LGBM method. Selected feature sets were subjected to another round
of analysis using three algorithms and various hyperparameters. Through 10-fold cross-validation
and comparison of independent tests results, the optimized final model was developed. Here, the
example like SSA-BiLSTM means two kind of features are combined.

2. Result and Discussion
2.1. Results of Preliminary Optimization

To explore embedded features that are useful in identifying bitter peptides, we first
used three deep representation learning feature extraction methods, soft symmetric align-
ment (SSA), unified representation (UniRep), and bidirectional long short-term memory
(BiLSTM). To generate each of these, we used three distinct machine learning methods,
SVM, LGBM, and RF, to develop models and carry out their initial optimization. Table 1
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shows the results of 10-fold cross-validation and independent tests for the three models
developed based on the above assumptions. The values in the table represent model per-
formance measures after the optimization of model parameters. The best values achieved
for individual features are shown in bold and are underlined.

Table 1. Performance metrics of three different deep representation learning features using three
machine learning models.

Feature Model Dim
10-Fold Cross-Validation Independent Test

ACC MCC Sn Sp F1 auPRC auROC ACC MCC Sn Sp F1 auPRC auROC

SSA b

SVM c

121
0.826 0.652 0.836 0.816 0.828 0.89 0.898 0.883 a 0.766 0.891 0.875 0.884 0.951 0.944

LGBM c 0.787 0.575 0.816 0.758 0.793 0.874 0.886 0.859 0.722 0.906 0.812 0.866 0.949 0.941
RF c 0.791 0.584 0.828 0.754 0.798 0.848 0.865 0.82 0.644 0.875 0.766 0.83 0.934 0.922

UniRep b
SVM c

1900
0.865 0.73 0.867 0.863 0.865 0.937 0.931 0.867 0.735 0.844 0.891 0.864 0.952 0.948

LGBM c 0.84 0.68 0.828 0.852 0.838 0.939 0.93 0.867 0.735 0.844 0.891 0.864 0.953 0.952
RF c 0.842 0.684 0.836 0.848 0.841 0.927 0.92 0.844 0.688 0.828 0.859 0.841 0.946 0.943

BiLSTM b

SVM c

3605
0.818 0.637 0.82 0.816 0.819 0.91 0.912 0.883 0.766 0.906 0.859 0.885 0.956 0.951

LGBM c 0.855 0.711 0.863 0.848 0.857 0.924 0.926 0.836 0.673 0.812 0.859 0.832 0.95 0.95
RF c 0.818 0.637 0.828 0.809 0.82 0.9 0.908 0.844 0.688 0.844 0.844 0.844 0.954 0.949

a Best performance values are in bold and are underlined. b SSA: soft symmetric alignment; UniRep: unified
representation; BiLSTM: bidirectional long short-term memory. c SVM: support vector machine; LGBM: light
gradient boosting machine; RF: random forest.

As shown in Table 1, the 10-fold cross-validation results of the UniRep feature vector,
developed using SVM, performed the best of all tested feature/model combinations (accu-
racy (ACC) = 0.865, Matthews correlation coefficient (MCC) = 0.730, sensitivity (Sn) = 0.867,
specificity (Sp) = 0.863, F1 = 0.865, area under the PRC curve (auPRC) = 0.937, and area
under the ROC curve (auROC) = 0.931). The ACC of this feature vector exceeded other op-
tions by 1.17–9.91%. MCC was better by 2.67–26.69%, Sn by 0.46–6.25%, Sp by 1.77–14.46%,
F1 by 0.98–9.08%, and auROC by 0.54–7.63%. Regarding its performance in indepen-
dent tests (ACC = 0.867, MCC = 0.735, Sn = 0.844, Sp = 0.891, F1 = 0.864, auPRC = 0.952,
auROC = 0.948), ACC was 1.85% lower, MCC was reduced by 4.22%, Sn was reduced by
7.35%, F1 was reduced by 2.49%, and auPRC by 0.47% compared to the BiLSTM feature
vector developed based on SVM. It can be concluded that, for the identification of bitter
peptides, UniRep features were superior to BiLSTM features.

2.2. The Effects of Feature Fusion on the Automatic Identification of Bitter Peptides

At this stage of the development work, we evaluated the use of pairwise combinations
of features to generate fusion features. Features were combined in all possible pairings,
namely, SSA + UniRep, SSA + BiLSTM, and UniRep + BiLSTM. In addition, SSA, UniRep,
and BiLSTM were combined to obtain a triple fusion feature, SSA + UniRep + BiLSTM.
These fusion feature combinations were used as input into SVM, LGBM, and RF algorithms
to train predictive models and to optimize model performance (Figure 2). Table 2 shows
the 10-fold cross-validation and independent test results for all the developed models. The
values in this table represent the results after optimizing model parameters. Again, the best
performance metrics values are shown in bold and are underlined.

Comparing Table 1 (see Section 3.1) and Table 2, it is immediately apparent that
the optimal performance values of the models using fusion features are better than the
best values obtained with non-combined features. As an example, the performance of
the combination of the 121-dimensional SSA feature and the 5505-dimensional BiLSTM,
SSA + BiLSTM, developed using RF, showed an ACC value of 0.898, while the ACC of the
SSA feature alone was 0.820, representing a 9.51% better performance of the fusion feature.
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Table 2. Performance metrics of fusion features developed using three machine learning models in
10-fold cross-validation and in independent tests.

Feature Model Dim
10-Fold Cross-Validation Independent Test

ACC MCC Sn Sp F1 auPRC auROC ACC MCC Sn Sp F1 auPRC auROC

SSA
+ UniRep b

SVM c

2021
0.861 0.723 0.875 a 0.848 0.863 0.929 0.927 0.867 0.734 0.859 0.875 0.866 0.954 0.952

LGBM c 0.840 0.680 0.848 0.832 0.841 0.933 0.924 0.859 0.719 0.859 0.859 0.859 0.960 0.958
RF c 0.838 0.676 0.840 0.836 0.838 0.923 0.917 0.867 0.735 0.844 0.891 0.864 0.955 0.954

SSA
+ BiLSTM b

SVM c

3726
0.836 0.672 0.848 0.824 0.838 0.915 0.917 0.883 0.766 0.859 0.906 0.880 0.943 0.947

LGBM c 0.848 0.696 0.859 0.836 0.849 0.927 0.927 0.875 0.751 0.906 0.844 0.879 0.961 0.957
RF c 0.824 0.649 0.832 0.816 0.826 0.906 0.911 0.898 0.797 0.891 0.906 0.898 0.959 0.951

UniRep
+ BiLSTM b

SVM c

5505
0.844 0.688 0.859 0.828 0.846 0.921 0.926 0.891 0.783 0.922 0.859 0.894 0.966 0.962

LGBM c 0.863 0.727 0.871 0.855 0.864 0.932 0.935 0.870 0.737 0.859 0.886 0.887 0.972 0.958
RF c 0.832 0.664 0.844 0.820 0.834 0.932 0.930 0.875 0.750 0.859 0.891 0.873 0.963 0.960

SSA
+ UniRep

+ BiLSTM b

SVM c

5626
0.871 0.742 0.863 0.879 0.870 0.943 0.941 0.891 0.783 0.922 0.859 0.894 0.940 0.943

LGBM c 0.855 0.711 0.844 0.867 0.854 0.945 0.942 0.898 0.797 0.891 0.906 0.898 0.971 0.971
RF c 0.840 0.680 0.848 0.832 0.841 0.926 0.925 0.898 0.799 0.859 0.937 0.894 0.963 0.957

a Values representing the best performance values are in bold and are underlined. b SSA + UniRep: SSA features
combined with UniRep features; SSA + BiLSTM: SSA features combined with BiLSTM features; UniRep + BiLSTM:
UniRep features combined with BiLSTM features; SSA + UniRep + BiLSTM: all the above features are combined.
c SVM: support vector machine; LGBM: light gradient boosting machine; RF: random forest.
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Figure 2. The accuracy of independent tests for predicting individual and fused features of
bitter peptides. Three individual features, SSA, UniRep, and BiLSTM, three double fusion
features, SSA + UniRep, SSA + BiLSTM, and UniRep + BiLSTM, and a triple fused feature,
SSA + UniRep + BiLSTM, were tested with three distinct machine learning algorithms. The same
color is used to signify the same features. The accuracy of the individual or fused feature/machine
learning algorithm combinations is ranked from highest to lowest. The accuracy of one of the triple
fusion features and four fused double features outperformed the best performing individual feature.
In contrast, the four least accurate predictors were individual feature models, indicating the superior-
ity of fused features. The accuracy of the SSA + UniRep + BiLSTM-LGBM) combination was 0.898.
The best performing SSA-SVM and BiLSTM-SVM individual features had an accuracy of 0.883. In
summary, combining different feature information sets helped to improve the predictive performance
of the model. Please note SSA-SVM means that the SVM model with SSA feature vectors as input
while and SSA + UniRep + BiLSTM-LGBM means that the LGMB model with the combination of
SSA, UniRep and BiLSTM features as input. Other similar labels have similar meanings.
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2.3. The Effects of Feature Selection on the Automatic Identification of Bitter Peptides

As described in previous section, fused feature encoding was clearly superior to non-
fused feature encoding. The sequence vector used in the training set had 512 dimensions,
while the feature vectors based on the combined fusion feature scheme had 2021, 3726, 5505,
and 5626 dimensions. This high number of dimensions increases the risk of redundancy and
the overfitting of feature information. To resolve this problem, we used the LGBM algorithm
for feature selection, while using an incremental feature strategy and a hyperparametric
mesh search method. For the latter, we selected the scikit-learn GridSearchCV module
to perform the hyperparameter search for each model. The performance metrics of each
individual, double, and triple fused feature developed using all three machine learning
models (SVM, LGBM, RF) are summarized in Table 3, while a visual representation of the
outcomes is shown in Figure 3.

Table 3. Performance metrics of individual features and fused features, according to the machine
learning methods used to derive them.

Feature Model Dim
10-Fold Cross-Validation Independent Test

ACC MCC Sn Sp F1 auPRC auROC ACC MCC Sn Sp F1 auPRC auROC

SSA b

SVM c 53 0.820 0.641 0.840 0.801 0.824 0.910 0.909 0.914 0.829 0.937 0.891 0.916 0.948 0.941
LGBM c 77 0.816 0.634 0.848 0.785 0.822 0.877 0.892 0.883 0.768 0.922 0.844 0.887 0.947 0.940

RF c 16 0.805 0.610 0.820 0.789 0.808 0.860 0.881 0.867 0.734 0.875 0.859 0.868 0.888 0.894

UniRep b
SVM c 65 0.875 0.750 0.875 0.875 0.875 0.946 0.943 0.906 0.813 0.891 0.922 0.905 0.952 0.952

LGBM c 313 0.854 0.707 0.855 0.852 0.854 0.946 0.938 0.914 0.829 0.891 0.937 0.912 0.954 0.948
RF c 329 0.836 0.672 0.824 0.848 0.834 0.918 0.908 0.891 0.785 0.844 0.937 0.885 0.958 0.957

BiLSTM b

SVM c 344 0.820 0.641 0.824 0.816 0.821 0.913 0.915 0.922 0.844 0.937 0.906 0.923 0.955 0.956
LGBM c 339 0.871 0.742 0.883 0.859 0.873 0.925 0.929 0.906 0.813 0.906 0.906 0.906 0.969 0.966

RF c 434 0.830 0.660 0.836 0.824 0.831 0.906 0.914 0.898 0.797 0.906 0.891 0.899 0.957 0.950

SSA
+ UniRep b

SVM c 62 0.865 0.730 0.863 0.867 0.865 0.944 0.942 0.914 0.828 0.906 0.922 0.913 0.958 0.957
LGBM c 106 0.881 0.762 0.887 0.875 0.882 0.961 0.957 0.891 0.783 0.859 0.922 0.887 0.952 0.947

RF c 47 0.838 0.676 0.859 0.816 0.841 0.937 0.931 0.906 0.816 0.859 0.953 0.902 0.956 0.947

SSA
+ BiLSTM b

SVM c 267 0.836 0.672 0.836 0.836 0.836 0.910 0.911 0.914 0.828 0.906 0.922 0.913 0.956 0.952
LGBM c 317 0.861 0.723 0.875 0.848 0.863 0.924 0.929 0.906 0.813 0.906 0.906 0.906 0.962 0.958

RF c 176 0.832 0.664 0.848 0.816 0.835 0.922 0.925 0.906 0.813 0.906 0.906 0.906 0.959 0.952

UniRep
+ BiLSTM b

SVM c 186 0.873 0.746 0.887 0.859 0.875 0.932 0.934 0.914 0.829 0.937 0.891 0.916 0.961 0.965
LGBM c 106 0.889 a 0.777 0.891 0.887 0.889 0.947 0.952 0.944 0.889 0.922 0.977 0.952 0.984 0.977

RF c 45 0.871 0.742 0.871 0.871 0.871 0.937 0.941 0.938 0.875 0.938 0.938 0.938 0.976 0.971

SSA
+ UniRep

+ BiLSTM b

SVM c 336 0.881 0.762 0.883 0.879 0.881 0.940 0.942 0.922 0.845 0.953 0.891 0.924 0.942 0.946
LGBM c 285 0.881 0.762 0.891 0.871 0.882 0.951 0.947 0.938 0.875 0.922 0.953 0.937 0.969 0.969

RF c 192 0.863 0.727 0.859 0.867 0.863 0.932 0.932 0.922 0.844 0.906 0.937 0.921 0.970 0.967

a Best performance values are in bold and are underlined. b SSA: soft symmetric alignment; UniRep: unified
representation; BiLSTM: bidirectional long short-term memory. SSA + UniRep: SSA features combined with
UniRep features; SSA + BiLSTM: SSA features combined with BiLSTM features; UniRep + BiLSTM: UniRep
features combined with BiLSTM features; SSA + UniRep + BiLSTM: all the above features are combined. c SVM:
support vector machine; LGBM: light gradient boosting machine; RF: random forest.

The outcome measures shown in Figure 3 and Table 3 clearly indicate that the selected
fusion feature sets performed significantly better than unselected fusion features. It is
apparent from these results that the overall performance of the 106D UniRep + BiLSTM
feature vector was better than outcomes achieved with any other feature vector. The results
of 10-fold cross-validation (ACC = 0.899, MCC = 0.777, Sn = 0.891, Sp = 0.887, F1 = 0.889,
auPRC = 0.947, auROC = 0.952) outperformed the ACC of other feature sets by 0.91–5.83%.
MCC was better by 1.97–14.26%, Sn by 0.45–5.57%, Sp by 1.37–6.61%, and F1 by 0.79–5.70%.
The independent test results for the 106D UniRep + BiLSTM fusion feature (ACC = 0.944,
MCC = 0.889, Sn = 0.922, Sp = 0.977, F1 = 0.952, auPRC = 0.984, auROC = 0.977) were
also better by 0.64–9.90% (ACC), 1.60–23.64% (MCC), 1.77–7.33% (Sp), 2.52–15.76% (Sn),
1.65–10.78% (F1), 1.23–3.42% (auPRC), and 0.62–3.17% (auROC).
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Figure 3. The performance metrics of fusion features using a range of selected features and different
algorithms. Panels (A,C,E) show 10-fold cross-validation results, and panels (B,D,F) are independent
test results. Please note that the same colors represent different selected features in the different
panels. Refer to the codes directly underneath a panel for the appropriately selected feature/model
combination codes.

These results clearly show that selecting feature descriptors is an effective way of
resolving problems with information redundancy and was beneficial in optimizing the
prediction performance of the bitter peptide prediction model.

2.4. The Effect of Machine Learning Model Parameter Optimization on the Automated
Identification of Bitter Peptides

It is apparent from Table 3 that the overall performance of the SSA + UniRep_106
feature set was superior to all other options. There were only two isolated exceptions to
this statement. The ten-fold cross-validation result developed based on LGBM with an
auROC = 0.957 and the Sn of SSA + UniRep + BiLSTM_336 feature developed based on
SVM (Sn = 0.953) were marginally better. Although these measures are 0.52% and 3.36%
higher than those achieved using the UniRep + BiLSTM_106 feature, we believe that the
UniRep + BiLSTM_106 feature developed using LGBM provided the best overall perfor-
mance. Therefore, the UniRep + BiLSTM feature set was selected for final development,
using three different machine learning methods to build models.

We utilized the scikit-learn GridSearchCV module to perform a hyperparameter
search on each model, recording the corresponding optimal hyperparameters for each, and
comparing them with default parameters. The observed values are shown in Figure 4 and
in Supplemental Table S1.
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default parameters (light bars) or hyperparameters (dark bars). Results using selected hyperparame-
ters invariably matched or outperformed default ones.

As shown in Figure 4 and Supplemental Figure S1, when the UnRep + BiLSTM feature
prediction was run using different algorithms and hyperparameters, the best performance
was seen with the RF (Nleaf = 2, n_estimators = 300) model and the LGBM (depth = 3,
n_estimators = 75) model. Although in the independent tests the Sn = 0.938 of the RF model
was marginally better (Sn was 1.73% higher), in every other respect, including ACC, MCC,
Sp, F1, auPRC, and auROC, the LGBM-based model showed clearly superior performance
in both independent testing and 10-fold cross-validation.

Based on the analysis above, we selected the first 106D features of UniRep + BiLSTM
to build the iBitter-DRLF predictor based on the LGBM model and selected the parameter
depth = 3 and n_estimator = 75 values for further use. Although in 10-fold cross-validation
the auPRC = 0.955 of LGBM model was marginally better (auPRC was 0.84% higher),
in every other respect, the LGBM (depth = 3, n_estimators = 75) model showed clearly
superior performance in both independent testing and 10-fold cross-validation. The 10-fold
cross-validation results of this final prediction model were ACC = 0.889, MCC = 0.777,
Sn = 0.891, Sp = 0.887, F1 = 0.889, auPRC = 0.947, and auROC = 0.952. The corresponding
independent test results were ACC = 0.944, MCC = 0.889, Sn = 0.922, Sp = 0.977, F1 = 0.952,
auPRC = 0.984, and auROC = 0.977.

2.5. Comparison with Existing Methods

We compared the predictive performance of iBitter-DRLF with existing methods, in-
cluding iBitter-Fuse [18], MIMML [20], iBitter-SCM [17], and BERT4Bitter [19] to assess the
effectiveness and utility of our method against its competitors. Independent test results
for iBitter-DRLF and the existing methods are compared in Table 4. These results clearly
demonstrate that iBitter-DRLF has significantly better ACC, MCC, Sp, and auROC, than ex-
isting methods. ACC outperformed other methods by 0.64–11.85%. MCC was 1.60–29.22%
better, Sp was 4.16–15.76% higher, while auROC values were up by 1.35–8.08%. These
comparisons show that iBitter-DRLF is more reliable and stable than existing algorithms in
predicting the bitterness of peptides.
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Table 4. Comparison of performance metrics of bitterness prediction using iBitter-DRLF and alterna-
tive state-of-the-art methods while testing independent samples.

Classifier ACC MCC Sn Sp auROC

iBitter-DRLF 0.944 a 0.889 0.922 0.977 0.977
iBitter-Fuse 0.930 0.859 0.938 0.922 0.933
BERT4Bitter 0.922 0.844 0.938 0.906 0.964
iBitter-SCM 0.844 0.688 0.844 0.844 0.904

MIMML 0.938 0.875 0.938 0.938 0.955
a Best performance metrics are shown in bold and are underlined.

2.6. Feature Visualization of the Picric Peptide Automatic Recognition Effect

Feature visualizations can communicate key data and features through graphics and
colors to enable better insight into complex datasets. UMAP is a consistent manifold
approximation and projection for the reduction of dimensionality. This algorithm is also
suitable for the visual analysis of peptide characteristics. Feature visualization analysis of
the automatic recognition of bitter peptides carried out by the UMAP algorithm preserved
the characteristics of the original data well while greatly reducing the dimensions of
characteristics. Through UMAP feature visualization, differences in feature representation
can be clearly shown. Furthermore, the reasons for performance improvements of the
model after feature optimization can be explained. The visualization of dimension-reduced
features achieved using UMAP is shown in Figure 5. Apparently as compared to Figure 5
A–C, the first 106 features of the UniRep and BiLSTM fusion function, shown in Figure 5D,
can better discriminate bitter peptides from non-bitter ones.
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data using the first 106 features selected from the BiLSTM_UniRep fusion feature set.
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2.7. iBitter-DRLF Webserver

To facilitate the widespread use of our algorithm, we developed an iBitter-DRLF
webserver that is freely available online at https://www.aibiochem.net/servers/iBitter-
DRLF/ (accessed on 1 May 2022) to other investigators for the prediction of bitter peptides.
The webserver is easy to use. Just pasting the peptide sequences into the text box, clicking
the run button and waiting for a few minutes, the results will be displayed in the web
pages. Please see the webserver interface at the website or in Supplementary Figures S2–S4.

3. Materials and Methods
3.1. Benchmark Dataset

The updated benchmark dataset from iBitter-SCM [17] is utilized here for modeling
and to make future comparisons easier. Both peptides constructed as non-bitter using the
BIOPEP database [29] and those previously experimentally confirmed to be bitter were
included in the datasets used in this study. There are 320 bitter peptides and 320 non-bitter
peptides in the BTP640 benchmark dataset. The dataset was randomly split into a training
subset known as BTP-CV and an independent subset of test peptides known as BTP-TS
in order to prevent overfitting the prediction model. The BTV-CV and BTS-TS groups
had peptide ratios of 4:1. As a result, while the BTP-TS dataset contains 64 peptides in
each category, the BTP-CV dataset contains 256 bitter peptides and 256 non-bitter peptides.
Users can obtain both datasets from https://www.aibiochem.net/servers/iBitter-DRLF/
(accessed on 1 May 2022).

3.2. Feature Extraction

To explore the effects of different features on bitter peptide recognition, we used three
deep representation learning feature extraction methods, namely, SSA [30], UniRep [25],
and BiLSTM [31]. Models were trained on an alternate dataset for the identification of bitter
peptides. Different feature encoding schemes were compared to build more comprehensive
predictive models.

3.2.1. Pre-Trained SSA Embedding Model

SSA defines a novel measure of similarity between sequences of arbitrary lengths
embedded in vectors. First, a peptide sequence was used as input to a pre-trained model
and encoded through a three-tier stacked BiLSTM encoder output. The final embedding
matrix of each peptide sequence was obtained through a linear layer, RL×121, where L is
the length of the peptide. Such a model trained and optimized using SSA is referred to as
an SSA-embedded model.

Suppose there are two embedded matrix of RL×121 named F1 and F2 for two different
peptide sequences of differing lengths, called L1 and L2.

F1 = [x1, x2, · · · , xL1], (1)

where xi is a vector of 121D.
F2 = [y1, y2, · · · , yL2] (2)

where yi is also a vector of 121D.
To calculate the similarity between two amino acid sequences represented as F1 and F2

separately, a soft symmetry alignment mechanism was developed, in which the similarity
between the two sequences was calculated based on their embedded vector as follows:

ŝ = − 1
A

L1

∑
i=1

L2

∑
j=1

aij‖ xi − yj ‖1
(3)

https://www.aibiochem.net/servers/iBitter-DRLF/
https://www.aibiochem.net/servers/iBitter-DRLF/
https://www.aibiochem.net/servers/iBitter-DRLF/
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aij is determined by the following Formulas (4)–(7).

ϕij =
exp

(
−‖ xk − yj ‖1

)
∑L1

k=1 exp
(
−‖ xk − yj ‖1

) (4)

ωij =
exp

(
−‖ xi − yk ‖1

)
∑L2

k=1 exp
(
−‖ xi − yk ‖1

) (5)

aij = ωij +ϕij −ωijϕij (6)

A =
L1

∑
i=1

L2

∑
j=1

aij (7)

These parameters are backfitted with the parameters of the sequence encoder by a fully
differentiated SSA. The trained model converts the peptide sequence into an embedding
matrix, RL×121, and a 121D SSA feature vector is generated by averaging pooling operations.

3.2.2. Pre-Trained UniRep Embedding Model

The UniRep model was trained on 24 million UniRef50 primary amino acid sequences.
The model performs next amino acid prediction by minimizing cross-entropy losses, thus
learning how to represent proteins internally in the process. Using the trained model, a
single fixed-length vector representation of the input sequence was generated by mLSTM
(hidden state). The output vector representation was then trained into the best machine
learning model. This characterizes the input sequence and enables supervised learning
during different bioinformatics tasks.

First, the sequence with L amino acid residues was embedded into a matrix using a
single thermal code, RL×10. The matrix was then fed into the mLSTM encoder to obtain a
hidden state output of R1900×L as an embedding matrix. Finally, by an averaging pooling
operation, the UniRep feature vector of 1900D was derived.

The calculation of the mLSTM encoder involves the following Equations (8)–(14).

mt = (XtWxm)⊗ (ht−1Whm) (8)

ĥt = tan h(XtWxh + mtWmh) (9)

ft = σ(XtWxf + mtWmf) (10)

it = σ(XtWxi + mtWmi) (11)

ot = σ(XtWxo + mtWmo) (12)

Ct = ft ⊗Ct−1 + it ⊗ ĥt (13)

ht = ot ⊗ tan h(Ct) (14)

In these equations, ⊗ represents element-by-element multiplication, ht−1 represents
the previous hidden state, Xt is the current input, and mt is the current intermediate
multiplication state. ĥt represents the input before the hidden state, ft is the forgotten gate,
it is the input gate, and ot is the output gate. Ct−1 is the previous unit state, Ct is the current
unit state, and ht is the hide state for output. σ is a sigmoid function, while tan h it is a
tangent function.

3.2.3. Pre-Trained BiLSTM Embedding Model

BiLSTM is a combination of a forward LSTM and a backward LSTM that captures
bidirectional sequence features better than either LSTM model. LSTM obtains the ability
to calculate by forgetting and memorizing information. This propagates information that
is useful for subsequent computation moments to pass through while discarding useless
information and outputting hidden states at each time point. The forgetting memory and
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output are controlled by the forgetting gate, memory gate, and output gate. These gates are
calculated from the hidden state of the previous moment and the current input.

The calculation of BiLSTM involves the following Formulas (15)–(20).

ft = σ(Wf · [ht−1, Xt] + bf) (15)

it = σ(Wi · [ht−1, Xt] + bi) (16)

C̃t = tan h(WC · [ht−1, Xt] + bC) (17)

ot = σ(Wo · [ht−1, Xt] + bo) (18)

Ct = ft ∗Ct−1 + it ∗ C̃t (19)

ht = ot ∗ tan h(Ct) (20)

Here Xt is the current input, ht−1 represents the previous hidden state, C̃t is the current
cell state, ft is the forgotten gate, it is the input gate, ot is the output gate, Ct−1 is the
previous cell state, and ht is the output hidden state. Again, σ is a sigmoid function, while
tan h is a tangent function.

3.2.4. Feature Fusion

To establish the best feature combination, first we combined the SSA eigenvector of
121D with the UniRep eigenvector of 1900D, obtaining the SSA + UniRep fusion feature
vector, 2021D. Second, the SSA eigenvector of 121D was combined with the BiLSTM
eigenvector of 3605D to obtain the 3726D SSA + BiLSTM fusion eigenvector. Third, the
1900D UnIrep eigenvector was combined with the 3605D BiLSTM eigenvector giving the
5505D UniRep + BiLSTM fusion feature vector. Finally, the 121D SSA eigenvector, the
1900D UniRep eigenvector, and the 3605D BiLSTM eigenvector were combined to obtain
the 5626D SSA + UniRep + BiLSTM fusion eigenvector.

3.3. Feature Selection Method

LGBM is a gradient boosting framework that abandons the level-wise decision tree
growth strategy used by most gradient boosting tools in favor of a leaf-wise algorithm with
depth restrictions. In this project, LGBM was utilized to identify the optimal feature space
and sort features based on their importance values. Data and data labels were entered into
the LGBM model to fit the model before using the built-in functions of LGBM to obtain the
importance value for each feature. Features were ranked from ‘largest’ to ‘smallest’ based
on feature importance values and those with an importance value greater than the critical
value (the average feature importance values) were selected.

3.4. Machine Learning Methods

This work utilized three widely used high performance machine learning models,
SVM [32,33], RF [34,35], and LGBM [23,36].

SVM is a typical machine learning (ML) algorithm for dealing with binary classifi-
cation problems in bioinformatics. We chose gamma and C in the range: a row vector of
30 elements logarithmically divided from 10−4 to 104. ‘rbf’ is the default kernel.

RF is a bagging-based algorithm that not only randomly selects samples, but also
randomly selects features during the node splitting process. We selected the range of n
estimators as (25, 550) and the range of Nleaf as (2, 12).

LGBM is a gradient boosting framework that uses tree-based learning algorithms. We
selected the range of n estimators as (25, 750) and the range of max_depth as (1, 12).
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3.5. Evaluation Metrics and Methods

We utilized the following five widely used measures [37,38] to evaluate the perfor-
mance of specific models, calculated as follows: (21)–(25).

ACC =
TP + TN

(TP + TN + FP + FN)
(21)

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(22)

Sn =
TP

(TP + FN)
(23)

Sp =
TN

(TN + FP)
(24)

F1 =
2× TP

(2× TP + FN + FP)
(25)

In these equations, TP represents the number of bitter peptides correctly predicted
to be bitter, TN is the number of non-bitter peptides correctly predicted as non-bitter. FP
represents the number of non-bitter peptides erroneously predicted as bitter, while FN is the
number of bitter peptides falsely predicted as non-bitter. Using the auROC, the proposed
models could be compared with each other and with previously described models. The
precision-recall curve is the line connecting the points of precision and recall. Using the
auPRC to represent the area enclosed by the precision-recall curve and the x-axis. The area
under the ROC curve was also used to evaluate predicted performance, where AUC values
ranging from 0.5 to 1 represent stochastic and perfect models, respectively.

K-fold cross-validation and independent testing are widely used to evaluate machine
learning models. K-fold cross-validation divides the raw data into K-folds. One is used
for the validation of each data subset, while the remaining K − 1 subset is used as the
training set. In the validation set, K models are evaluated separately, and the final values
of the model measures are averaged to obtain cross-validated values. During the work
presented here, we used the 10-fold (K = 10) cross-validation method. For stand-alone
testing, a completely different dataset from the training set was used, where all the samples
were new to the trained model.

4. Conclusions

Here we describe the development of a new computational model called iBitter-DRLF
that can accurately identify bitter peptides based on sequence data alone. It uses a deep
representation learning feature embedding method to predict potential bitter peptides. As
a result of extensive testing and optimization of multiple feature extraction approaches,
using three distinct algorithms, we identified UniRep + BiLSTM_106 as the best fusion
feature set. Additional feature selection, using LGBM classifier input, allowed us to
develop a robust model. Results of the 10-fold cross-validation and the analysis of the
results obtained through independent testing showed that iBitter-DRLF can effectively
predict bitter peptides in protein hydrolysates or amongst artificially synthesized peptide
therapeutics. Based on independent test results, iBitter-DRLF significantly outperformed
existing predictors. Finally, to facilitate the use of the algorithm by other scientists, we
built an iBitter-DRLF webserver. We hope that the use of iBitter-DRLF prediction of
bitter peptides can improve adherence with taking nutritional supplements and peptide
therapeutics in the future and advance drug development and nutrition research.

This work used deep representation learning [39,40] features to improve the predictive
performance of the model. Although the exact physicochemical relevance of these features
is unclear, this does not prevent the successful use of this method for computational
predictions in peptide and protein sequence analysis.
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