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Abstract

Djungarian hamsters are able to use spontaneous daily torpor (SDT) during the winter sea-

son as well as fasting-induced torpor (FIT) at any time of the year to cope with energetically

challenging environmental conditions. Torpor is a state of severely reduced metabolism with

a pronounced decrease in body temperature, which enables animals to decrease their indi-

vidual energy requirements. Despite sharing common characteristics, such as reduced

body mass before first torpor expression and depressed metabolism and body temperature

during the torpid state, FIT and SDT differ in several physiological properties including torpor

bout duration, minimal body temperature, fuel utilization and circadian organization. It

remains unclear, whether SDT and FIT reflect the same phenomenon or two different physi-

ological states. The hypothalamus has been suggested to play a key role in regulating

energy balance and torpor. To uncover differences in molecular control mechanisms of tor-

por expression, we set out to investigate hypothalamic gene expression profiles of genes

related to orexigenic (Agrp/Npy), circadian clock (Bmal1/Per1) and thyroid hormone (Dio2/

Mct8) systems of animals undergoing SDT and FIT during different torpor stages. Orexi-

genic genes were mainly regulated during FIT and remained largely unaffected by SDT.

Expression patterns of clock genes showed disturbed circadian clock rhythmicity in animals

undergoing FIT, but not in animals undergoing SDT. During both, SDT and FIT, decreased

Dio2 expression was detected, indicating reduced hypothalamic T3 availability in both types

of torpor. Taken together, our results provide evidence that SDT and FIT also differ in certain

central control mechanisms and support the observation that animals undergoing SDT are

in energetical balance, whereas animals undergoing FIT display a negative energy balance.

This should be carefully taken into account when interpreting data in torpor research, espe-

cially from animal models of fasting-induced hypometabolism such as mice.
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Introduction

The use of torpor in times of energetically challenging environmental conditions is a common

strategy, which has been identified in most orders of mammals. Reduction of metabolic rate

and body temperature (Tb), the two main characteristics of torpor, enable the animal to reduce

energy expenditure and lower energy requirements with almost no evidence of tissue or organ

damage after rewarming from the torpid state [1–7].

The Djungarian hamster (Phodopus sungorus, also known as Siberian hamster) uses sponta-

neous daily torpor (SDT) to save energy during the harsh winters of Central Asian steppes.

SDT in Djungarian hamsters is the final trait of various adaptions (severe body weight loss,

molt to white winter fur, gonadal regression) to the winter season [8,9]. The onset of winter

acclimatization is triggered by decreasing day length during autumn, driven by modification

of melatonin production in the pineal gland, and can easily be induced by adjusting the light-

dark cycle in the laboratory [10–12]. SDT is controlled by the circadian clock and usually lim-

ited to the resting phase, allowing the hamsters to maintain foraging activities during the night

throughout winter. The torpid state is initiated by an active metabolic depression (25% below

the level of resting metabolic rate), followed by a drop in Tb to a minimum value of approxi-

mately 15˚C, reduced ventilation, heart rate and locomotor activity with an average duration

of six hours per torpor bout [3,13,14]. When SDT is used frequently, Djungarian hamsters are

able to save up to 65% of total energy requirements during the winter season [15].

Food scarcity, hence energy depletion, is not restricted to the winter months, but can occur

at any time of the year and is able to induce fasting-induced torpor (FIT) in many small mam-

mals, including mice [16–20]. This form of torpor can occur not only during any season but

also at any time of day. Although SDT and FIT in Djungarian hamsters both involve metabolic

depression and decreased Tb, they show some distinct physiological characteristics including

differences in preparatory time period before the first torpor episode occurs, circadian control,

fuel utilization as well as differences in torpor depth and duration [19,20]. The physiological

variations between these two forms of torpor suggest that they might be regulated by distinct

central control mechanisms.

Several hypothalamic systems have been linked to the regulation of energy balance and tor-

por. In the arcuate nucleus (ARC), food intake and energy expenditure are closely linked to

the expression of orexigenic (Npy/Agrp) and anorexigenic (Pomc/Cart) genes. When orexi-

genic neuropeptides are activated, food consumption is enhanced and energy expenditure

reduced [21–23]. Intracerebroventricular injections of NPY induce torpor like hypothermia in

P. sungorus, likely mediated by NPYY1 receptors. This hypothermic state seems to resemble

torpor patterns of FIT bouts rather than SDT bouts [24,25]. Moreover, ARC lesions by mono-

sodium glutamate injections prevent SDT expression [26].

The suprachiasmatic nuclei (SCN) host the circadian clock, which controls the circadian

organization of daily rhythms in biochemistry, physiology and behavior by autonomous tran-

scription-translation feedback loops. These feedback loops consist of positive (BMAL1/

CLOCK) and negative (PER/CRY) elements, activating and inactivating each other’s transcrip-

tion in a roughly 24 hour rhythm that is synchronized to the light-dark cycle of the day [27].

SDT is clearly timed by the circadian clock and expression of clock genes remains largely

rhythmic [13,28,29]. The ablation of the SCN leads to a disordered SDT onset, which is no lon-

ger restricted to the daytime, but does not prevent the expression of torpor [30]. In FIT, a cir-

cadian rhythmicity of torpor timing is absent, thus FIT can occur at any time of a day.

Thyroid hormones are known for their role in regulating energy balance by peripheral but

also central mechanisms [31,32]. The hypothalamic thyroid hormone system has been shown

to be a crucial driver of seasonal adaptions, including long-term shifts in energy balance [33–
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35]. Thyroid hormones are transported into the hypothalamus by transporters (e.g. Mct8)

where they are activated or inactivated by the type-II-deiodinase (Dio2) and type-III-deiodi-

nase (Dio3), respectively [36,37]. These two enzymes are co-expressed in tanycytes of the third

ventricle and expression is regulated in a season dependent manner [33,35,38,39]. Moreover,

T3 availability affects torpor behavior. Chemical inhibition of T3 production promotes torpor

expression, whereas excess T3 in the periphery as well as locally in the hypothalamus, is able to

prevent torpor in winter adapted animals [40–42].

Here we set out to investigate differences in regulatory mechanisms of SDT and FIT

induced torpor. For this purpose we compared hypothalamic expression profile of Agrp and

Npy (orexigenic system), Bmal1 and Per1 (circadian clock system) and Dio2 and Mct8 (thyroid

hormone system) over different torpor stages of fasted and ad libitum fed hamsters. Alterations

in the orexigenic as well as circadian system demonstrate that SDT and FIT are at least partly

regulated by distinct mechanisms.

Material and methods

Animals

The experiments were performed in accordance with the German Animal Welfare Law and

approved by the local animal welfare authorities (No. 4_16 and No. 114_14, Hamburg,

Germany).

All Djungarian hamsters (P. sungorus) were descended from our own breeding colony at

the Zoological Institute of the University of Hamburg, Germany. Hamsters were bred and

raised under artificial long day conditions (LD) with a light-dark-cycle of 16 hours light and 8

hours dark and an ambient temperature of 21 ± 1˚C. The hamsters were housed individually

in plastic cages (Macrolon Type III) with free access to drinking water before and during

experiments. They were fed a hamster breeding diet (Altromin 7014, Germany) ad libitum
before experiments started.

Experimental setup and sampling

At the age of three to five months a total number of 70 hamsters was transferred to short day

conditions (SD) with a light-dark-cycle of 8 hours light and 16 hours dark and an ambient

temperature of 18 ± 1˚C to develop their winter phenotype (catabolic state, white winter fur,

occurrence of SDT, gonadal regression). Animals not clearly showing a winter phenotype after

10 weeks of SD exposure were excluded from the experiments. A group of 20 hamsters

remained under LD, representing the summer phenotype (anabolic state, brownish-grey sum-

mer fur, reproductively active). Animals were separated into three SD-groups (SDT, FIT-SD,

non-torpid SD animals (NT-SD)) and one LD-group (FIT-LD). Each group consisted of 20

male and female hamsters.

After 12 weeks under SD all animals were implanted i.p. with DSI-transmitters (Model

TA-F10, St. Paul, MN, USA) under isoflurane anesthesia (2.0–2.5%, Forene, Abott, Wiesba-

den, Germany) and analgesia by s.c. injection of carprofen (5 mg/kg, Paracarp, IDT Biologika,

Germany). The LD-group was implanted with DSI-transmitters in the same way. Surgeries

were carried out as previously described [41]. Core Tb of each hamster was measured in three

minute intervals until the end of the experiment to precisely determine the Tb while sampling

during different torpor stages as well as to calculate torpor duration and depth.

The three SD groups were sampled according to torpor state and Zeitgeber time (ZT,

ZT0 = lights on), whereas the LD group was sampled according to torpor state only (Fig 1).

The spontaneous torpor group kept under SD (SDT) was fed ad libitum throughout the

experiment. These animals were culled at different stages of a spontaneous daily torpor bout:
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during torpor entrance at ZT1 (n = 5, Tb: 30.8˚C ± 0.5˚C), mid torpor at ZT4 (n = 5, Tb: 22.5˚-

C ± 1.5˚C), arousal at ZT7 (n = 5, Tb: 30.4˚C ± 0.4˚C) and in a post torpid state at ZT16 (n = 5,

Tb: 35.7˚C ± 0.6˚C) (Fig 1A, group 1–4; Table 1).

For the SD fasting-induced torpor group (FIT-SD), daily food consumption of each ham-

ster was individually recorded during week 11 in SD for seven consecutive days to calculate

average food intake. Throughout the experiment the hamsters were provided 60% of their

daily food intake at ZT6 for five days, followed by three days of ad libitum feeding. The animals

were weighed twice a week to monitor body weight loss. In case of a critical body weight loss

over 25% of their LD body mass the hamsters were fed additional 10%. To ensure sampling

during FIT bouts, we collected brain samples only after at least two days of food restriction,

when the hamsters had already shown torpor bouts. Once the hamsters displayed FIT, they

were culled during torpor entrance at ZT1 (n = 5, Tb: 30.1˚C ± 0.4˚C), mid torpor at ZT4

Fig 1. Sampling points for hamsters undergoing SDT (A), FIT-SD (B) and FIT-LD (C) and of hamsters remaining

NT-SD (D). Black bars in the x-axis represent the dark phase of the light-dark cycle.

https://doi.org/10.1371/journal.pone.0186299.g001

Table 1. Sampling Tb data of animals undergoing SDT, FIT-SD, FIT-LD and remaining NT-SD. SDT and FIT-SD were sampled according to torpor state

and ZT, FIT-LD was sampled according to torpor state and NT-SD was sampled according to ZT.

torpor entrance (ZT1) mid torpor (ZT4) arousal (ZT7) post torpor (ZT16)

SDT 30.8˚C ± 0.5˚C 22.5˚C ± 1.5˚C 30.4˚C ± 0.4˚C 35.7˚C ± 0.6˚C

FIT-SD 30.1˚C ± 0.4˚C 21.3˚C ± 0.9˚C 30.3˚C ± 0.5˚C 35.0˚C ± 2.7˚C

FIT-LD 29.7˚C ± 0.4˚C 25.4˚C ± 1.4˚C 30.7˚C ± 0.5˚C 35.1˚C ± 1.9˚C

NT-SD 35.7˚C ± 0.5˚C 35.7˚C ± 0.4˚C 35.6˚C ± 0.4˚C 36.2˚C ± 1.3˚C

https://doi.org/10.1371/journal.pone.0186299.t001
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(n = 5, Tb: 21.3˚C ± 0.9˚C), arousal at ZT7 (n = 5, Tb: 30.3˚C ± 0.5˚C) and in a post torpid

state at ZT16 (n = 5, Tb: 35.0˚C ± 2.7˚C) (Fig 1B, group 5–8; Table 1).

For the LD fasting-induced torpor group (FIT-LD), average daily food consumption for

each hamster was determined as described for FIT-SD. The food was provided daily at ZT14.

During the first experimental week hamsters were fed 30% of their daily food intake followed

by four weeks with 60% feeding to induce FIT [19]. The hamsters were weighed twice a week

and received additional 10% food, if they exceeded a body weight loss of over 25%. Hamsters

not showing torpor within these four weeks were fed ad libitum again for three days, followed

by four days with 30% food and one week with 60% food. Since FIT is not under circadian

control, these animals were not sampled at a particular ZT, but during torpor entrance at ZT5

–ZT9 (n = 5, Tb: 29.7˚C ± 0.4˚C), mid torpor at ZT5 –ZT10 (n = 5, Tb: 25.4˚C ± 1.4˚C),

arousal at ZT7 –ZT11 (n = 5, Tb: 30.7˚C ± 0.5˚C) and in a post torpid state at ZT20 (n = 5, Tb:

35.1˚C ± 1.9˚C) (Fig 1C, group 9–12; Table 1).

The SD non-torpid group (NT-SD) was fed ad libitum throughout the experiment. These

animals were winter adapted and already spontaneously expressed torpor. They were culled on

a day without torpor in a non-torpid state at ZT1 (n = 5, Tb: 35.7˚C ± 0.5˚C), ZT4 (n = 5, Tb:

35.7˚C ± 0.4˚C), ZT7 (n = 5, Tb: 35.6˚C ± 0.4˚C) and ZT16 (n = 5, Tb: 36.2˚C ± 1.3˚C) as

respective control (Fig 1D, group 13–16; Table 1).

All hamsters used in this experiment were sacrificed by CO2 inhalation. Brains were dis-

sected, immediately frozen on dry ice and stored at -80˚C until further use.

Isolation of total RNA and cDNA synthesis

Hypothalamic blocks were cut from frozen brain samples as described in Cubuk et al., 2017

[43]. Hypothalamic samples were homogenized in 1 ml TriFast by using a micropestle. Total

RNA was isolated using peqGOLD TrifastTM (Peqlab, Erlangen, Germany) and purified by

using the Crystal RNA MiniKit (Biolabproducts, Bebensee, Germany) including an on-column

digestion with RNase-free DNase (Quiagen, Hilden, Germany) according to the manufactur-

er‘s instructions. Total RNA was quantified spectrometrically, RNA purity was assessed by the

260/280 nm ratio on a NanoDrop 1000 spectrophotometer and RNA integrity was proven by

formaldehyde agarose gel electrophoresis. 1 μg of total RNA of each sample was used for

cDNA synthesis, carried out with the RevertAid H Minus First Strand cDNA Synthesis Kit

(Thermo Scientific, Waltham, MA, USA) using oligo-(dT)-primer (0.5 μg/μl) according to

manufacturer‘s instructions. Total cDNA samples were stored at -20˚C until usage as template

for Real Time qPCR or standard plasmid generation.

Cloning and sequencing

Standard plasmids were generated from 90–200 bp long coding sequence fragments of agouti

related neuropeptide (Agrp), brain and muscle Arnt-like protein-1 (Bmal1), iodothyronine

deiodinase 2 (Dio2), monocarboxylate transporter 8 (Mct8), neuropeptide Y (Npy), period cir-

cadian clock 1 (Per1), hypoxanthine phosphoribosyltransferase (Hprt), actin beta (Actb), ribo-

somal protein lateral stalk subunit P0 (Rplp0) and 18S ribosomal RNA (Rn18s) by gene specific

primers (Table 2). All primers were designed on P. sungorus specific sequences obtained from

our previous Illumina study [43]. 18–25 bp long primers were designed using the online tool

OligoAnalyzer 3.1 with a melting temperature of 60˚C ± 1.1˚C. The amplicons were cloned

into the pGEM1-T Easy Vector System (Promega, Madison, USA) according to manufactur-

er‘s instructions and sequenced by the commercial sequencing platform GATC Biotech (Kon-

stanz, Germany).
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Real-time qPCR (RT-qPCR) and analysis of expression data

Real-time qPCR was performed to compare relative gene expression values of investigated

genes between and within SDT, FIT-SD, FIT-LD and the non-torpid control group over the

course of a day and during different torpor stages.

RT-qPCR experiments were carried out on an ABI Prism 7300 Real Time PCR System

(Applied Biosystems, Darmstadt, Germany) using Power SYBR1 Green PCR Master Mix

(Applied Biosystems, Darmstadt, Germany). Due to the large number of samples, RT-qPCRs

were performed on five 96-well plates (Biolabproducts, Bebensee, Germany) for each target

gene with a non-torpid ZT16 sample applied to all plates as inter-plate calibrator. Hprt, Actb,

Rplp0 and Rn18s were employed as putative non-regulated controls. Since none of these refer-

ence genes showed stability of expression values across all investigated states, we used Hprt as

reference gene for NT-SD and SDT and Rplp0 as reference gene for FIT-SD and FIT-LD. To

calculate PCR efficiency, a series of six 10-fold dilutions of target gene specific standard plas-

mids was added to the plate from which standard curves were generated. Specificity of each

amplification reaction was validated by dissociation curve analysis. All samples were run in

triplicates, using 1 μl cDNA as template for each reaction. Furthermore, a no-template control

was run on each plate in duplicates. RT-qPCR was conducted with a standard cycling protocol

using 40 amplification cycles (50˚C 2 min; 95˚C 10 min; 95˚C 15 s; 60˚C 15 s; 72˚C 30 s).

First evaluation of RT-qPCR data was done with the 7500 Software v2.0.6 (ABI Prism,

Applied Biosystems). Afterwards RT-qPCR data were exported to Microsoft Excel 2010 to esti-

mate expression levels of investigated genes using the ΔΔCT method. Differences in relative

mRNA expression were assessed during torpor entrance, mid torpor, arousal and post torpor

and are shown relative to NT-SD at same ZT respectively. Relative mRNA expression levels

over the circadian cycle of investigated genes are shown for SDT, FIT-SD and NT-SD relative

to the corresponding ZT1 sample of each group. Since FIT-LD was not sampled at specific ZT

Table 2. P. sungorus specific primer sequences used for standard plasmid generation and qPCR.

gene 5´3´sequence melting amplicon

temperature length

Agrp forward GCC TTT GCC CAA CAT CCG TTG 59.8 99 bp

reverse GCT ACT GCC GCT TCT TCA ATG CC 60.9

Bmal1 forward GCT CAA GAG ACC CCA GGT TAT CC 59.1 145 bp

reverse GGC TCA TGA TGA CAG CCA TCG C 60.8

Dio2 forward TGA AGA AAC ACA GGA GCC AAG AGG A 60.0 111 bp

reverse CAT TAT TGT CCA TGC GGT CAG CCA 59.8

Mct8 forward GTC CTC TCA TTC CTG CTC CTG G 59.2 151 bp

reverse GTC CCA CCA GCT CAA ATG CAA TG 59.0

Npy forward CCA GGC AGA GAT ACG GCA AGA GAT C 60.7 119 bp

reverse CCA TCA CCA CAT GGA AGG GTC C 60.0

Per1 forward CTC TTC TTC TGG CAA TGG CAA GGA C 60.0 120 bp

reverse GCA CTC AGG AGG CTA TAG GCA ATG 59.4

Actb forward ACC TCA TGA AGA TCC TGA CCG AGC 60.3 120 bp

reverse CCA TCT CTT GCT CGA AGT CCA GGG 61.1

Hprt forward AGT CCC AGC GTC GTG ATT AGT GAT G 60.4 140 bp

reverse CGA GCA AGT CTT TCA GTC CTG TCC A 60.5

Rplp0 forward GCA ACA GTC GGG TAA CCA ATC TGC 60.4 153 bp

reverse CTTCGGGCTCATCATCCAGCAG 60.1

Rn18s forward GCT CCT CTC CTA CTT GGA TAA CTG TG 59.2 126 bp

reverse CGG GTT GGT TTT GAT CTG ATA AAT GCA 59.4

https://doi.org/10.1371/journal.pone.0186299.t002
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time points, but sampling was only defined by torpor state, this group was excluded from cir-

cadian rhythmicity analysis.

Statistical analysis

All statistical analysis and figures were performed with SigmaPlot 12.5 (Systat Software Inc).

Differences in torpor duration and depth between SDT, FIT-SD and FIT-LD were statistically

tested by Mann Whitney Rank Sum test (U-test). The qPCR data were statistically tested by

two-way ANOVA with the factors torpor group (SDT, FIT-SD, FIT-LD, NT-SD) and torpor

state/time of day (torpor entrance, mid torpor, arousal, post torpor) followed by Tukey test or

by one-way ANOVA or Kruskal-Wallis test, if normality test failed in at least one of the inves-

tigated groups. P-values� 0.05 were considered as significant.

Results

Torpor depth and duration in fasting-induced and spontaneous daily

torpor

We calculated the mean torpor duration and minimal Tb of hamsters undergoing SDT, FIT-

SD and FIT-LD. Torpor was defined as Tb < 32˚C for more than 30 minutes. Animals under-

going SDT had a mean torpor duration of 306.0 ± 14.46 minutes with a minimal Tb of 23.2 ±
0.27˚C. FIT-SD animals showed a slightly lower mean torpor duration of 279.02 ±7.19 minutes

and minimal Tb of 23.2 ± 0.16˚C. FIT-LD animals showed significantly shorter torpor bouts

with a mean torpor duration of 178.6 ± 13.53 minutes (SDT vs. FIT-LD: U-test, P<0.001; FIT-

SD vs. FIT-LD: U-test, P<0.001) as well as a significantly higher minimal Tb of 26.3 ± 0.33˚C

(SDT vs. FIT-LD: U-test, P<0.001; FIT-SD vs. FIT-LD: U-test, P<0.001) compared to SDT

and FIT-SD (Fig 2).

Hypothalamic gene expression of genes involved in orexigenic, circadian

and thyroid hormone regulatory mechanisms

To determine whether spontaneous daily torpor and fasting-induced torpor might underlie

different regulatory systems, we investigated hypothalamic mRNA expression levels of Npy,

Fig 2. Average torpor bout duration (A) and depth (B) of hamsters undergoing SDT, FIT-SD and FIT-LD. Numbers within bars indicate the

number of torpor episodes within each group used for statistical analysis. Significant differences between these three types of torpor are marked

with * = p<0.05, ** = p<0.01 and *** = p<0.001.

https://doi.org/10.1371/journal.pone.0186299.g002
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Agrp, Per1, Bmal1, Dio2 and Mct8 as representatives for orexigenic, circadian and thyroid hor-

mone regulatory mechanisms.

Relative mRNA expression of Agrp and Npy over the course of a torpor bout. There

was an effect on Agrp mRNA expression in torpor group during torpor entrance (one-way

ANOVA, p = 0.003) and mid torpor (one-way ANOVA, p = 0.034). During torpor entrance,

Agrp mRNA expression was 0.52-fold down regulated in FIT-LD relative to NT-SD at ZT1

(FIT-LD vs. NT-SD: Tukey test, p = 0.002). During mid torpor, expression of Agrp in FIT-SD

showed a 3.05-fold up regulation compared to NT-SD (FIT-SD vs. NT-SD: Tukey test, p =

0.034). SDT and FIT-LD showed no significant differences compared to NT-SD during mid

torpor. There were no significant changes in Agrp expression during arousal or post torpor

among all investigated torpor groups (Fig 3).

There was no effect of time of day or torpor state in Agrp expression for NT-SD (Kruskal-

Wallis test, p = 0.574) and SDT (one-way ANOVA, p = 0.178). In FIT-SD there was an effect

(one-way ANOVA, p = 0.034) showing elevated mRNA expression during mid torpor at ZT4

compared to torpor entrance at ZT1 (ZT4 vs. ZT1: Tukey test, p = 0.022) (Fig 3).

There was an effect of torpor group on Npy mRNA expression during the post torpid state

(Kruskal-Wallis test, p = 0.045). qPCR analysis revealed no significant differences of Npy
expression during torpor entrance, mid torpor or arousal between SDT, FIT-SD or FIT-LD.

However, there was a trend towards up regulation in FIT-SD during mid torpor compared

to NT-SD (FIT-SD vs. NT-SD: Tukey test, p = 0.090). Only during the post torpid state a sig-

nificant difference could be found between SDT and FIT-SD (SDT vs. FIT-SD: Tukey test,

p<0.05) (Fig 4).

Fig 3. Relative mRNA expression of Agrp. Bar graphs (with n = 5 for each bar) show fold changes of mRNA expression for hamsters

undergoing SDT (mid grey bars, ±SEM), FIT-SD (dark grey bars, ±SEM) and FIT-LD (light grey bars, ±SEM) relative to NT-SD (black bars,

±SEM) for torpor entrance (ZT1), mid torpor (ZT4), arousal (ZT7) and post torpor (ZT16) respectively. Significant differences within each torpor

state are marked with * = p<0.05, ** = p<0.01 and *** = p<0.001. Line graphs show differences in mRNA expression (±SEM) at four different

time points (with n = 5 for each time point) over the course of a day relative to ZT1 for hamsters remaining active (NT-SD), undergoing SDT or

FIT-SD. Significant differences are marked with different upper cases (p<0.05).

https://doi.org/10.1371/journal.pone.0186299.g003
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There was no effect of time of day or torpor state in Npy expression for NT-SD (one-way

ANOVA, p = 0.195), SDT (one-way ANOVA, p = 0.275) or FIT-SD (one-way ANOVA,

p = 0.144) (Fig 4).

Relative mRNA expression of Bmal1 and Per1 over the course of a torpor bout. There

was an effect of torpor group on Bmal1 mRNA expression during torpor entrance (one-way

ANOVA, p<0.001), arousal (one-way ANOVA, p = 0.002) and post torpor (one-way

ANOVA, p<0.001), as well as of torpor state (NT-SD: one-way ANOVA, p = 0.002; SDT: one-

way ANOVA, p = 0.003; FIT-SD: Kruskal-Wallis test, p = 0.024). During torpor entrance,

Bmal1 mRNA expression was 0.25-fold down regulated in FIT-LD compared to NT-SD

(FIT-LD vs NT-SD: Tukey test, p = 0.003), but 1.41-fold up regulated in FIT-SD compared to

NT-SD (FIT-SD vs NT-SD: Tukey test, p = 0.031) with a higher expression level compared to

SDT and FIT-LD (FIT-SD vs. SDT: Tukey test, p<0.001; FIT-SD vs. FIT-LD: Tukey test,

p<0.001). During arousal Bmal1 in FIT-LD was 0.48-fold down regulated relative to NT-SD

(FIT-LD vs. NT-SD: Tukey test, p = 0.012) and the expression level was significantly lower

than in SDT (FIT-LD vs. SDT: Tukey test, p = 0.045) and FIT-SD (FIT-LD vs. FIT-SD: Tukey

test, p = 0.001). In the post torpid state Bmal1 expression was 0.41-fold down regulated in

FIT-LD (FIT-LD vs. NT-SD: Tukey test, p<0.001). FIT-SD showed a significantly higher

expression level than SDT (FIT-SD vs SDT: Tukey test, p = 0.003) and FIT-LD (FIT-SD vs.

FIT-LD: Tukey test, p<0.001) (Fig 5).

There was an effect of time of day or torpor state in Bmal1 expression. In NT-SD Bmal1
expression was low at ZT1 and ZT4, significantly increased 1.56-fold at ZT7 and remained

1.66-fold up regulated at ZT16 (ZT1 vs. ZT16: Tukey test, p = 0.052; ZT4 vs. ZT7: Tukey test,

p = 0.011; ZT4 vs. ZT16: Tukey test, p = 0.002). In SDT Bmal1 expression was low at ZT1 and

ZT4, increased 1.62-fold at ZT7 before slightly decreasing again to 1.29-fold at ZT16 (ZT1 vs.

Fig 4. Relative mRNA expression of Npy. Bar graphs (with n = 5 for each bar) show fold changes of mRNA expression for hamsters

undergoing SDT (mid grey bars, ±SEM), FIT-SD (dark grey bars, ±SEM) and FIT-LD (light grey bars, ±SEM) relative to NT-SD (black bars,

±SEM) for torpor entrance (ZT1), mid torpor (ZT4), arousal (ZT7) and post torpor (ZT16) respectively. Significant differences within each torpor

state are marked with * = p<0.05, ** = p<0.01 and *** = p<0.001. Line graphs show differences in mRNA expression (±SEM) at four different

time points (with n = 5 for each time point) over the course of a day relative to ZT1 for hamsters remaining active (NT-SD), undergoing SDT or

FIT-SD. Significant differences are marked with different upper cases (p<0.05).

https://doi.org/10.1371/journal.pone.0186299.g004
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ZT7: Tukey test, p = 0.004; ZT1 vs. ZT16: Tukey test, p = 0.020; ZT4 vs. ZT7: Tukey test,

p = 0.043). In FIT-SD Bmal1 expression was low at ZT1, ZT4 (1.06-fold) and ZT7 (1.11-fold),

but 1.50-fold up regulated at ZT16 (ZT4 vs. ZT16: Tukey test, p<0.05) (Fig 5).

There was an effect of torpor state on Per1 mRNA expression (two-way ANOVA, p<0.001)

as well as of torpor group (two-way Anova, p<0.001) showing a significant interaction

between torpor state and torpor group (two-way ANOVA, p = 0.002). During torpor entrance,

Per1 expression in FIT-SD showed a significantly higher value compared to SDT (FIT-SD vs.

SDT: Tukey test, p = 0.010) and FIT-LD (FIT-SD vs. FIT-LD: Tukey test, p = 0.002). During

mid torpor, Per1 in FIT-SD was 2.35-fold up regulated relative to NT-SD (FIT-SD vs. NT-SD:

Tukey test, p = 0.001) and was significantly higher expressed than in SDT (FIT-SD vs. SDT:

Tukey test, p<0.001) and FIT-LD (FIT-SD vs. FIT-LD: Tukey test, p<0.001). During arousal,

Per1 expression was 1.72-fold up regulated in SDT (SDT vs. NT-SD: Tukey test, p = 0.012) and

1.50-fold up regulated in FIT-SD (FIT-SD vs. NT-SD: Tukey-test, p = 0.039) compared to

NT-SD, with a significantly lower expression value of FIT-LD compared to SDT (FIT-LD vs.

SDT: Tukey test, p<0.001) and FIT-SD (FIT-LD- vs. FIT-SD: Tukey test, p<0.001). In the post

torpid state, Per1 was significantly lower expressed in FIT-LD than in FIT-SD (FIT-LD vs.

FIT-SD: Tukey test, p = 0.013) (Fig 6).

There was an effect of time of day or torpor state in Per1 expression. In NT-SD Per1 expres-

sion was slightly increased 1.32-fold at ZT4 and increased 2.67-fold at ZT7, before decreasing

again to a fold change of 1.65 at ZT16 (ZT1 vs. ZT7: Tukey test, p<0.001; ZT4 vs. ZT7: Tukey

test, p<0.001). In SDT Per1 expression remained on a low expression level of 1.02-fold at ZT4,

increased 5.09-fold at ZT7 and decreased again to a fold change of 1.94 at ZT16 (ZT1 vs. ZT7:

Tukey test, p<0.001; ZT1 vs. ZT16: Tukey test, p<0.001; ZT4 vs. ZT7: Tukey test, p<0.001;

ZT4 vs. ZT16: Tukey test, p = 0.002; ZT7 vs. ZT16: Tukey test, p<0.001). In FIT-SD Per1

Fig 5. Relative mRNA expression of Bmal1. Bar graphs (with n = 5 for each bar) show fold changes of mRNA expression for hamsters

undergoing SDT (mid grey bars, ±SEM), FIT-SD (dark grey bars, ±SEM) and FIT-LD (light grey bars, ±SEM) relative to NT-SD (black bars,

±SEM) for torpor entrance (ZT1), mid torpor (ZT4), arousal (ZT7) and post torpor (ZT16) respectively. Significant differences within each torpor

state are marked with * = p<0.05, ** = p<0.01 and *** = p<0.001. Line graphs show differences in mRNA expression (±SEM) at four different

time points (with n = 5 for each time point) over the course of a day relative to ZT1 for hamsters remaining active (NT-SD), undergoing SDT or

FIT-SD. Significant differences are marked with different upper cases (p<0.05).

https://doi.org/10.1371/journal.pone.0186299.g005
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expression was 2.70-fold up regulated at ZT4, increased by 3.47-fold at ZT7 before decreasing

to 2.04-fold at ZT16 (ZT1 vs. ZT4: Tukey test, p = 0.008; ZT1 vs. ZT7: Tukey test, p<0.001;

ZT1 vs. ZT16: Tukey test, p = 0.020; ZT7 vs. ZT4: Tukey test, p = 0.013; ZT7 vs. ZT16: Tukey

test, p = 0.005) (Fig 6).

Relative mRNA expression of Dio2 and Mct8 over the course of a torpor bout. There

was an effect of torpor state on Dio2 mRNA expression (two-way ANOVA, p = 0.002) as well

as of torpor group (two-way ANOVA, p<0.001) showing no significant interaction between

torpor state and torpor group. During torpor entrance, Dio2 mRNA expression in FIT-SD was

0.53-fold down regulated compared to NT-SD (FIT-SD vs. NT-SD: Tukey test, p<0.001) and

was significantly lower than in SDT (FIT-SD vs. SDT: Tukey test. p = 0.015). FIT-LD showed

a 0.77-fold down regulation compared to NT-SD (FIT-LD vs. NT-SD: Tukey test, p<0.001)

and had a significantly lower expression level compared to SDT (FIT-LD vs. SDT: Tukey test,

p<0.001) and FIT-SD (FIT-LD vs. FIT-SD: Tukey test, p<0.001). During mid torpor, FIT-SD

was 0.49-fold down regulated compared to NT-SD (FIT-SD vs. NT-SD: Tukey test, p<0.001)

and Dio2 expression was significantly lower than in SDT (FIT-SD vs. SDT: Tukey test, p<

0.001). FIT-LD was 0.76-fold down regulated compared to NT-SD (FIT-LD vs NT-SD: Tukey

test, p<0.001) with reduced expression in FIT-LD compared to SDT (FIT-LD vs. SDT: Tukey

test, p<0.001) and FIT-SD (FIT-LD vs. FIT-SD: Tukey test, p = 0.002). During arousal, Dio2
expression was significantly lower in FIT LD than in NT-SD (FIT-LD vs. NT-SD: Tukey test,

p<0.001), SDT (FIT-LD vs. SDT: Tukey test, p<0.001) and FIT-SD (FIT-LD vs. FIT-SD:

Tukey test, p<0.001) with a fold change of 0.31 relative to NT-SD. Dio2 expression was sig-

nificantly lower in FIT-SD than in SDT (FIT-SD vs. SDT: Tukey test, p = 0.027). In the post

torpid state, Dio2 expression of FIT-SD was 0.36-fold down regulated relative to NT-SD

(FIT-SD vs. NT-SD: Tukey test, p = 0.038). Lowest expression level was shown by FIT-LD with

Fig 6. Relative mRNA expression of Per1. Bar graphs (with n = 5 for each bar) show fold changes of mRNA expression for hamsters

undergoing SDT (mid grey bars, ±SEM), FIT-SD (dark grey bars, ±SEM) and FIT-LD (light grey bars, ±SEM) relative to NT-SD (black bars,

±SEM) for torpor entrance (ZT1), mid torpor (ZT4), arousal (ZT7) and post torpor (ZT16) respectively. Significant differences within each torpor

state are marked with * = p<0.05, ** = p<0.01 and *** = p<0.001. Line graphs show differences in mRNA expression (±SEM) at four different

time points (with n = 5 for each time point) over the course of a day relative to ZT1 for hamsters remaining active (NT-SD), undergoing SDT or

FIT-SD. Significant differences are marked with different upper cases (p<0.05).

https://doi.org/10.1371/journal.pone.0186299.g006
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a fold change of 0.35 (FIT-LD vs NT-SD: Tukey test, p<0.001; FIT-LD vs. SDT: Tukey test,

p<0.001; FIT-LD vs. FIT-SD: Tukey test, p<0.001) (Fig 7).

There was no effect of time of day or torpor state in Dio2 expression for NT-SD and SDT

but there was an effect in Dio2 expression for FIT-SD. During FIT-SD mRNA expression was

elevated post torpor at ZT16 compared to mid torpor at ZT4 (ZT16 vs. ZT4: Tukey test,

p = 0.012) (Fig 7).

There was an effect of torpor state on Mct8 mRNA expression (two-way ANOVA, p<

0.001) as well as of torpor group (two-way ANOVA, p<0.001) showing a significant interac-

tion between torpor state and torpor group (two-way ANOVA, p<0.001). During torpor

entrance, Mct8 mRNA expression of FIT-LD was 0.48-fold down regulated and differed signif-

icantly from NT-SD (FIT-LD vs NT-SD: Tukey test, p<0.001), SDT (FIT-LD vs. SDT: Tukey

test, p<0.001) and FIT-SD (FIT-LD vs. FIT-SD: Tukey test, p<0.001). During mid torpor,

Mct8 expression was 0.34-fold down regulated in SDT (SDT vs. NT-SD: Tukey test, p = 0.044).

FIT-LD was 0.32-fold down regulated (FIT-LD vs. NT-SD: Tukey test, p<0.001) and was sig-

nificantly lower expressed than in FIT-SD (FIT-LD vs. FIT-SD: Tukey test, p = 0.011). During

arousal, Mct8 expression value was significantly lower in FIT-LD than in SDT (FIT-LD vs.

SDT: Tukey test, p = 0.018) and FIT-SD (FIT-LD vs. FIT-SD: Tukey test, p = 0.012). In the

post torpid state, Mct8 was 0.40-fold down regulated in SDT and differed significantly from

NT-SD (SDT vs. NT-SD: Tukey test, p = 0.006) and FIT-SD (SDT vs. FIT-SD: Tukey test,

p<0.001). Mct8 expression in FIT-LD was 0.31-fold down regulated and differed significantly

from NT-SD (FIT-LD vs. NT-SD: Tukey test, p<0.001) and FIT-SD (FIT-LD vs. FIT-SD:

Tukey test, p<0.001) (Fig 8).

There was no effect of time of day or torpor state in Mct8 mRNA expression for NT-SD,

but there was an effect of torpor state in SDT and FIT-SD. In SDT Mct8 mRNA expression

Fig 7. Relative mRNA expression of Dio2. Bar graphs (with n = 5 for each bar) show fold changes of mRNA expression for hamsters

undergoing SDT (mid grey bars, ±SEM), FIT-SD (dark grey bars, ±SEM) and FIT-LD (light grey bars, ±SEM) relative to NT-SD (black bars,

±SEM) for torpor entrance (ZT1), mid torpor (ZT4), arousal (ZT7) and post torpor (ZT16) respectively. Significant differences within each torpor

state are marked with * = p<0.05, ** = p<0.01 and *** = p<0.001. Line graphs show differences in mRNA expression (±SEM) at four different

time points (with n = 5 for each time point) over the course of a day relative to ZT1 for hamsters remaining active (NT-SD), undergoing SDT or

FIT-SD. Significant differences are marked with different upper cases (p<0.05).

https://doi.org/10.1371/journal.pone.0186299.g007
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during arousal at ZT7 was higher than in the post torpid state at ZT16 (ZT7 vs. ZT16, p =

0.002). Mct8 expression in FIT-SD was elevated in the post torpid state at ZT16 compared to

torpor entrance at ZT1 and mid torpor at ZT4 (ZT1 vs. ZT16: Tukey test, p = 0.001; ZT4 vs.

ZT16: Tukey test, p<0.001) (Fig 8).

Discussion

In this study, we investigated differences between spontaneous daily torpor and fasting-

induced torpor on the physiological and molecular levels in the Djungarian hamster. As previ-

ously shown, FIT-LD bouts differed from SDT in depth and duration. In FIT-LD bouts, the

plateau phase of torpor maintenance, with almost constant low metabolic rate, is missing. This

leads to shorter and shallower torpor episodes, consisting of torpor entrance directly followed

by arousal. The mid torpor phase however, is mainly responsible for the energy savings

accrued during torpor. Therefore single FIT bouts are less effective in saving energy than SDT

bouts. The lower energy savings achieved from FIT bouts can be compensated by multiple FIT

bouts per day [19,20,44]. In our study, no significant difference in depth or duration between

FIT-SD and SDT in winter adapted animals was apparent. This is in agreement with earlier

findings, showing differences in torpor depth and duration only between SDT and FIT-LD but

not for SDT and FIT-SD. However, there was a higher mean torpor incidence of animals

expressing FIT-SD compared to SDT [19]. Hence, winter adapted hamsters seem to increase

the torpor frequency to increase energy saving, whereas summer adapted hamsters are able to

use multiple torpor episodes per day to adjust energy requirements.

Fig 8. Relative mRNA expression of Mct8. Bar graphs (with n = 5 for each bar) show fold changes of mRNA expression for hamsters

undergoing SDT (mid grey bars, ±SEM), FIT-SD (dark grey bars, ±SEM) and FIT-LD (light grey bars, ±SEM) relative to NT-SD (black bars,

±SEM) for torpor entrance (ZT1), mid torpor (ZT4), arousal (ZT7) and post torpor (ZT16) respectively. Significant differences within each torpor

state are marked with * = p<0.05, ** = p<0.01 and *** = p<0.001. Line graphs show differences in mRNA expression (±SEM) at four different

time points (with n = 5 for each time point) over the course of a day relative to ZT1 for hamsters remaining active (NT-SD), undergoing SDT or

FIT-SD. Significant differences are marked with different upper cases (p<0.05).

https://doi.org/10.1371/journal.pone.0186299.g008
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To dissect out differences in potential control mechanisms of FIT and SDT, we investigated

differential gene expression in hypothalamic regulatory centers involved in the control of

acute and seasonal energy balance over the course of a torpor bout.

Expression analysis of Agrp and Npy showed dissimilar mRNA expression patterns between

SDT and FIT-SD. Agrp and Npy are up regulated when leptin and insulin actions are decreased

in the hypothalamus to stimulate food intake and reduce energy expenditure [21,23,45].

During SDT these two neuropeptides displayed no elevated mRNA expression levels in

either of the investigated torpor states. This suggests that hamsters do not experience hunger

before, during or after a spontaneously occurring torpor bout and indicates a balanced energy

homeostasis that is still maintained while expressing SDT. Thus, no obvious energetic deficit

appears to influence whether an animal enters torpor on that particular day or remains active.

This is in accordance with physiological data, showing that spontaneous torpor is entered

from a state of glucose metabolism (RQ ~1), hence metabolic balance [19].

Animals undergoing FIT-SD showed significantly up regulated Agrp expression during mid

torpor and also Npy expression was up regulated during this state, although not reaching sig-

nificance. Npy expression was also up regulated during the post torpid state of fasted hamsters.

The up regulated mRNA levels of Agrp and Npy during FIT-SD point towards an acute nega-

tive energy balance in FIT expressing animals. This is in accordance with the observation that

hamsters using FIT already exhibit a low respiratory quotient (0.79 ± 0.01) when entering the

torpid state indicating a lipid-based metabolism, hence negative energy balance [19]. Also the

increased Npy expression at night possibly indicates a state of hunger, when fasted animals are

active again. The differences in Agrp and Npy expression between SDT and FIT were smaller

than expected. Since whole hypothalamus was used for gene expression analysis, it might be

possible that differences appear less pronounced than in specific nucleus analysis, caused by

the signal to noise ratio. However, the negative energy balance caused by reduced food supply

in SD animals seems to predominantly be compensated by an elevated torpor frequency rather

than a change in single torpor bout characteristics per se. Since we only sampled the FIT-SD

group after at least two days of food restriction, to ensure FIT expression, the hamsters were

already able to adjust their torpor frequency to maintain energy balance, which is possibly

reflected in relatively balanced Agrp and Npy expression.

Interestingly, we were not able to detect altered expression patterns of Agrp or Npy within

the FIT-LD group. This could result from the extremely long fasting period, which was re-

quired to induce torpor in the obese LD adapted animals. A comparative study investigating

the effect of acute food deprivation and chronic food restriction on peptides regulating food

consumption, has shown that acute food deprivation leads to elevated Agrp expression in the

hypothalamus of rats, whereas in chronically food restricted animals Agrp expression re-

mained unaffected [46]. The same study found up regulation of Npy caused by both, acute

food deprivation and chronic food restriction, however, with a significantly lower extent of up

regulation in chronically food restricted rats [46]. In this approach, rats were fasted for 14 days

to reach a chronically food restricted state, which is way shorter than the food restriction of over

one month in our study. The extremely long period of food restriction could be the reason why

we did not observe any alterations in Npy expression within the FIT-LD group. It is also possible

that the long fasting period and accompanying body weight loss led to a decrease in energy

requirements, so that 60% food supply was sufficient to maintain energy homeostasis.

No circadian rhythm was found in either, Npy or Agrp expression. This is accordance with

in-situ hybridization data of Ellis et al. [47] who did not show a circadian rhythm for these

genes in long or short photoperiod either. The difference observed for Agrp expression in

FIT-SD between ZT1 and ZT4 reflects the torpid state rather than a circadian regulation.
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Bmal1 and Per1 are parts of the molecular circadian clockwork. Bmal1 acts as positive regu-

lator in the circadian feedback loop and interacts with CLOCK to activate transcription of Per
and Cry genes, whereas Per1 is considered as negative regulator, inhibiting its own transcrip-

tion by building a repressor complex of the PER1 protein together with CRY, which translo-

cate to the nucleus and inhibits the CLOCK:BMAL1 complex [27].

Our results showed a circadian rhythm of Bmal1 and Per1 mRNA expression during

SDT. As previously described, this indicates that the circadian clockwork is not disrupted

during daily torpor and ensures the proper timing of SDT into the animal´s resting phase

[13,29,30,48]. Some differences however, could be observed in clock gene expression between

SDT and NT-SD, suggesting at least a modulatory effect of daily torpor. Compared to NT-SD,

expression of Per1 was significantly upregulated at ZT7, Bmal1 expression already started to

decrease at ZT16, whereas the expression level of Bmal1 still remains high at ZT16 in the

NT-SD group. The higher level of Per1 combined with the earlier decrease of Bmal1 during

SDT could lead to a shortened free-running period in torpid animals that has previously been

described for Djungarian hamsters undergoing torpor [49]. A direct effect of SDT on the circa-

dian clock has previously been demonstrated, indicating alterations in phase and amplitude of

the circadian clock during SDT [29].

Expression of these two clock genes during FIT-SD was clearly different from SDT and

NT-SD. Per1 expression peak was advanced whereas Bmal1 was constantly low expressed

throughout the torpid state with a slight up regulation at ZT16. Hence, the circadian feedback

loop appears to be shifted in fasted hamsters. Fasting in general leads to an increased SIRT1

deacetylase activity [50,51]. SIRT1 is able to deacetylate BMAL1, which in turn can inactivate

the BMAL1:CLOCK complex resulting in a disruption of the normal circadian feedback loop

[52–54]. Since it is known that the major exogenous Zeitgeber for FIT expression is the feeding

schedule rather than the light-dark cycle [30,55], it is likely that the circadian rhythm in FIT

expressing animals was synchronized with the feeding schedule.

The FIT-LD group was not sampled at specific ZTs so that we were not able to investigate

circadian rhythms in long term fasted hamsters.

Dio2 showed decreased expression throughout the torpor bout in animals undergoing

FIT-SD and FIT-LD. Dio2 was also lower during mid torpor in SDT, but did not reach signifi-

cance, most likely caused by the high standard error of the NT-SD group. The decreased Dio2
expression observed in our study suggests a reduced conversion of T4 into the active metabolite

T3 and would thereby cause low T3 availability in the hypothalamus during torpor. This is in

accordance with earlier studies, demonstrating that high T3 levels specifically in the hypothala-

mus are able to block torpor in Djungarian hamsters, whereas systemically low T3 concentra-

tions increase torpor frequency, depth and duration [40–42]. Here, we confirm that a lowered

Dio2 expression and potential decrease in local T3 availability appears to be a permissive factor

for both, SDT as well as FIT in summer and winter adapted animals. Although starvation of

hamsters has previously been shown to increase Dio2 expression of SD adapted animals, we did

not observe an up regulation in food restricted hamsters. In the previous study, however, ham-

sters were starved for 48 hours and killed in a non-torpid state [35], whereas animals in the cur-

rent study still received 60% of their daily food consumption for more than two days. The

differences in metabolic state and food supply may cause the diverging expression patterns.

Another factor which could influence the local thyroid hormone status of torpid Djungar-

ian hamsters in hypothalamic neurons is the transporter protein Mct8. Our data showed

decreased Mct8 expression during mid torpor and in the post torpid state in SDT hamsters.

Decreased expression of Mct8 could support low T3 availability in the hypothalamus by reduc-

ing the thyroid hormone transport and possibly, together with the low Dio2 mRNA level, facil-

itate the occurrence of torpor. This however, only seems to be true for SDT, since Mct8 in
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FIT-SD animals showed no alteration relative to NT-SD during the torpor bout. Nevertheless,

a number of different transporters, like organic anion transporters and L-type amino acid

transporters, with the potential to transport thyroid hormones, have been identified and could

affect the thyroid hormone status [56,57].

It has been shown that Mct8 expression is higher in winter adapted animals compared to

animals in summer state [35]. This fits with our observation of the overall decreased Mct8
mRNA level within the FIT-LD group for all investigated torpor states, which is more likely

caused by the animals’ seasonal state than by torpor state.

No circadian rhythm was found in either, Dio2 or Mct8 mRNA expression within the

NT-SD groups. The isolated differences observed for Dio2 expression in FIT-SD and for Mct8
in SDT and FIT-SD seem to reflect differences caused by the torpid state rather than a circa-

dian regulation.

Taken together, our data do not clearly support the hypothesis that SDT and FIT represent

distinct physiological states. Although the circadian system is differentially regulated in the dif-

ferent torpor forms, gene expression changes in the orexigenic system only partly reflect the

physiological data. The thyroid hormone system rather appears to be regulated by torpor per
se, irrespective of the torpor form used. Studies on single hypothalamic nuclei including exam-

ination on protein level might better disentangle the regulatory mechanisms of the two torpor

forms. However, the form of torpor used should be carefully taken in consideration when

investigating and interpreting the phenomenon of torpor and its underlying mechanisms.
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