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Glycoside Hydrolases and

Non-Enzymatic Glycation Inhibitory

Potential of Viburnum opulus L.

Fruit—In Vitro Studies. Antioxidants

2021, 10, 989. https://doi.org/

10.3390/antiox10060989

Academic Editors: M. Monica Giusti,

Pu Jing and Fei Lao

Received: 26 May 2021

Accepted: 18 June 2021

Published: 21 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences,
Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; anna.podsedek@p.lodz.pl
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Abstract: Phytochemicals of various origins are of great interest for their antidiabetic potential. In
the present study, the inhibitory effects against carbohydrate digestive enzymes and non-enzymatic
glycation, antioxidant capacity, and phenolic compounds composition of Viburnum opulus L. fruits
have been studied. Crude extract (CE), purified extract (PE), and ethyl acetate (PEAF) and water
(PEWF) fractions of PE were used in enzymatic assays to evaluate their inhibitory potential against
α-amylase with potato and rice starch as substrate, α-glucosidase using maltose and sucrose as
substrate, the antioxidant capacity (ABTS, ORAC and FRAP assays), antiglycation (BSA-fructose
and BSA-glucose model) properties. Among four tested samples, PEAF not only had the highest
content of total phenolics, but also possessed the strongest α-glucosidase inhibition, antiglycation
and antioxidant activities. UPLC analysis revealed that this fraction contained mainly chlorogenic
acid, proanthocyanidin oligomers and flavalignans. Contrary, the anti-amylase activity of V. opulus
fruits probably occurs due to the presence of proanthocyanidin polymers and chlorogenic acids,
especially dicaffeoylquinic acids present in PEWF. All V. opulus samples have an uncompetitive and
mixed type inhibition against α-amylase and α-glucosidase, respectively. Considering strong anti-
glucosidase, antioxidant and antiglycation activities, V. opulus fruits may find promising applications
in nutraceuticals and functional foods with antidiabetic activity.

Keywords: V. opulus fruit; α-amylase; α-glucosidase; glycation end-products; antioxidant capacity;
phenolic compounds

1. Introduction

Type 2 diabetes mellitus (T2DM) is a global problem because it concerns hundreds
millions of people and has a significant impact on the health, quality of life and the health
care system [1]. Evidence from epidemiological studies suggests that many cases of T2DM
can be prevented by improving the main modifiable risk factors such as obesity, seden-
tary lifestyle and unhealthy diet contains large amounts of carbohydrates and fats [2,3].
Therefore, diet, weight control and exercise are essential and effective means of improving
glucose homeostasis. Some medicinal plants, fruits, and vegetables have been reported in
the literature as having been used to control diabetes [4–9]. In addition, the antidiabetic
agents from the natural resources can be an alternative to hypoglycemic drugs that are not
always satisfactory and show side effects [10,11]. The antidiabetic activity of plant-derived
foods and extracts has been attributed, inter alia, to the naturally available phenolic com-
pounds [6,12–19]. These secondary plant metabolites comprise one (phenolic acids such as
hydroxybenzoic and hydroxycinnamic acids) or more (polyphenols containing flavonoids,
tannins, lignans) aromatic rings with attached hydroxyl group in their structures [20].
These secondary plant metabolites have the capacity to inhibit activity of carbohydrate
hydrolyzing digestive enzymes, modulate the glucose transport, stimulate insulin secretion
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from pancreatic β-cells, reduce insulin resistance, increase insulin sensitivity, inhibit the ac-
tivity of protein tyrosine phosphatase, reduce the production of protein glycation products,
and improve antioxidant defenses [15,21–23]. The listed activities of phenolic compounds
largely depend on their structure [24–27]. For example, the hydroxylation on aromatic
rings of flavonoids improved the inhibition against α-amylase and α-glucosidase while
the glycosylation of hydroxyl group on flavonoids weakened the inhibitory potential [24].
Generally, the glycosylation and methylation/methoxylation of flavonoids decrease the
antiglycation effects in vitro models [28]. In addition, the antiglycation activities of flavones
were stronger than those of flavonols, flavanones or isoflavones [29].

A promising candidate capable of attenuating T2DM might be phytochemicals present
in different morphological parts of the monotypic family Viburnaceae. Supplementation of
ethanol extract of Viburnum stellato-tomentosum aerial parts at 150 mg/kg dose one a day
for 17 weeks significantly decreased fasting glucose insulin, homeostasis model assessment
of insulin resistance in high-fat diet fed C57BL/6J mice [30]. The freeze-dried powder of V.
dilatum fruit juice orally administered to streptozotocin-induced diabetes rats at 500 mg/kg
dose significantly decreased plasma glucose level without increase of insulin secretion [31].
However, studies with the Swiss albino mice with alloxane-induced diabetes showed that
water extract obtained from V. opulus leaves at 100 mg/kg dose had no effect in terms of
lowering blood glucose [32]. Our in vitro cell-based study demonstrated that phenolic
rich fraction obtained from V. opulus fruit juice and methanol-acetone extract from the
remaining pomace decreased the uptake of fluorescent glucose analogue 2-(N-(7-nitrobenz-
2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose by human adenocarcinoma Caco-2 cells [33].
The next study demonstrated that V. opulus fruit juice and juice enriched with phenolics
decreased glucose-stimulated insulin secretion in the mouse insulinoma cell line MIN6 and
increased insulin secretion at low glucose concentrations [34]. Furthermore, both juices
intensified free fatty acid uptake and lipid accumulation in MIN6 cells cultured in the
presence of an elevated concentration of palmitic acid. Additionally, a screening study with
a cell-free assay identified V. opulus fruit pulp acetone extract as inhibitors of carbohydrates
hydrolyzing enzymes (α-amylase and α -glucosidase) or protein tyrosine phosphatase,
which is known as the major negative regulator in insulin signaling [35]. In addition to
antidiabetic activity, in vitro studies have demonstrated anti-obesity, anti-inflammatory,
anti-cancer, and antimicrobial effects of V. opulus fruits. In animal studies, a beneficial effect
on the urinary system and vasorelaxant activities were also demonstrated [36]. V. opulus is
common in natural habitats on the European continent and in some regions of North Africa
and North Asia, and also in the central zone of Russia. It is known by many names, like
the Guelder rose, European guelder, European cranberrybush, rose elder, Rose Ebru, and
as gilaburu in Turkey [36]. V. opulus fruits have been suggested as a rich source of phenolic
compounds, including phenolic acids, proanthocyanidins, anthocyanins, flavonols, and
flavalignans [36,37].

The aim of the presented research was to determine the antidiabetic activity of V.
opulus fruit components by determining the effect on: (1) α-amylase activity in the presence
of potato and rice starch; (2) α-glucosidase activity with maltose and sucrose as substrate;
(3) the formation of glycation end products (AGE) in the BSA-fructose and BSA-glucose
model, and also to estimation the antioxidant capacity using ABTS, FRAP and ORAC
methods. Especially the objective of this study was to establish which phenolic compounds
are responsible for the tested properties. For this purpose, the four samples were obtained
such as the crude acetone extract (CE), purified extract (PE), and also water and ethyl
acetate fractions obtained from PE, and their phenolic profiles were identified by the
UPLC/MS method.

2. Materials and Methods
2.1. Standards and Reagents

Intestinal acetone powder from rat sources of α-glucosidase, α-amylase from porcine
pancreas type VI-B, TRIS-base, D-glucose, D-fructose, aminoguanidine hydrochloride,
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sodium azide, bovine serum albumin (BSA), acarbose, caffeic acid, (+)-catechin, cincho-
nine, starch from rice, sodium chloride, maltose, sucrose, formic acid, phosphate buffered
saline, 2,2′- azobis(2-amidinopropane) dihydrochloride (AAPH), 2,2′-azinobis(3-ethyl-
benzthiazoline-6-sulphonic acid) (ABTS), fluorescein, 6-hydroxy-2,5,7,8-tetramethychroman-
2-carboxylic acid (Trolox), iron(III) chloride, potassium persulfate, 2,4,6-tris-2-pyridyl-s-
triazine (TPTZ), and acetonitrile were obtained from Sigma Aldrich (Steinheim, Germany).
Acetone, methanol, ethyl acetate, hydrochloric acid, iodine, potassium iodide, disodium
phosphate and monosodium phosphate were purchased from Chempur (Piekary Śląskie,
Poland). Potato starch and calcium chloride were purchased from POCH (Gliwice, Poland).
Chlorogenic acid, cyanidin, quercetin 3-glucoside, quercetin 3-rutinoside, and quercetin
3-rhamnoside were obtained from Extrasynthese (Lyon, France). Neochlorogenic acid, cryp-
tochlorogenic acid, procyanidin C1 were purchased from PhytoLab (Vestenbergsgreuth,
Germany). Ultrapurity water was prepared in the laboratory using a Simplicity Water
Purification System (Millipore, Marlborough, MA, USA).

2.2. Plant Material and Samples Preparation

The dried fruits of V. opulus were purchased from “Natura Wita Ltd.” (Kopernia,
Poland; https://natura-wita.pl/kontakt.html, accessed on 15 June 2021). Before the extrac-
tion process, dry fruits were ground in a coffee grinder and extracted with 70% acetone
(1:20, w/v) on a magnetic stirrer at room temperature for 3 h. Then, the mixture was
incubated at room temperature for 18 h followed by the extraction on a magnetic stirrer at
room temperature for 3 h. After centrifugation at 5000 rpm for 10 min the supernatant was
evaporated at 40 ◦C under reduced pressure in order to remove acetone and lyophilized to
obtain the crude extract (CE). The part of CE was applied onto a Sep-Pak C18 cartridge (10g
capacity, Waters Corp., Milford, MA, USA) that was previously activated with methanol
and water. The column was washed with water in order to eliminate carbohydrates,
proteins and other polar compounds. The phenolic compounds were then eluted with
methanol. Methanol fraction was evaporated under reduced pressure (T < 40 ◦C), and the
aqueous phase was lyophilised to afford purified extract (PE). The part of PE (300 mg) was
suspended in 30 mL of water, and then, partitioned with 30 mL of ethyl acetate, repeated
three times. The ethyl acetate fraction was evaporated to dryness, solubilized with water
and lyophilised. This sample was named ethyl acetate fraction of purified extract (PEAF).
Water fraction was concentrated, lyophilised and called water fraction of purified extract
(PEWF). The yield and abbreviations for each of V. opulus samples are shown in Figure 1.
For in vitro analysis CE, PE, PEWF and PEAF were dissolved in water at a concentration
10 mg/mL.

2.3. Quantification of Individual Phenolic Compounds

UPLC analysis was performed on an ultra-performance liquid chromatograph (Waters
Acquity UPLC system, Milford, MA, USA) equipped with a binary pump, an autosampler,
a column compartment and a diode array detector. Briefly, samples were eluted with
a gradient of solvent A (4.5% formic acid in ultrapure water) and B (acetonitrile) on
an Acquity UPLC HSS T3 C18 column (150 × 2.1 mm, 1.8 µm; Waters) operating at
30 ◦C as described in the previous work [38]. The gradient program was as follows:
initial conditions 99% (A), 12 min 75% (A), 12.5 min 100% (B), 15.0 min 99% (A). The
flow rate was 0.45 mL/min and the injection volume was 5 µL. The identification of
phenolic compounds was described in detail previously [39]. The content of neochlorogenic
acid, chlorogenic acid, cryptochlorogenic acid, caffeic acid, procyanidin C1, quercetin
3-glucoside, quercetin 3-rutinoside, and quercetin 3-rhamnoside were quantified using
corresponding standard calibration curves. A quantificative analysis of other phenolics
was based on the standards as follow: chlorogenic acid was used for the hydroxycinnamic
acid derivatives, (+)-catechin for (epi)-catechin hexoside, procyanidin C1 for procyanidin
tetramer, cinchonine for cinchonain Ix derivatives, quercetin 3-glucoside for quercetin
3-sambubioside. The results were expressed as mg/g CE, PE, PEWF, and PEAF.

https://natura-wita.pl/kontakt.html
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2.4. Total Proanthocyanidins Content

The content of total proanthocyanidins was determined after their acid depolymeriza-
tion to the corresponding anthocyanidins as described by Rösch et al. [40] and calculated
by the molar extinction coefficient of cyanidin (ε = 17,360 L/mol−1·cm−1 and molar mass
287 g/mol), and was expressed as mg of cyanidin equivalents (CYE)/g of V. opulus samples.

2.5. α-Amylase Inhibition Assay

The α-amylase inhibition assay was based on a previously-described spectrophotomet-
ric method [41] with some modifications. All reagents were prepared with 0.1 M phosphate
buffer containing 6 mM CaCl2 (pH 6.9). Briefly, 20 µL of diluted V. opulus samples and
40 µL of potato starch (0.83 g/L) or starch from rice (1 g/L) solution were mixed with
20 µL of α-amylase (0.1 mg/mL for potato starch and 0.2 mg/mL for starch from rice) in a
96-well plate. After incubation at 37 ◦C for 10 min, the reaction was stopped by addition
of 80 µL of 0.4 M HCl followed by 100 µL of 5 mM I2 in 5 mM KI. The absorbance was
read at 600 nm using a microplate reader (Synergy2, Biotek Instruments Inc., Winooski, VT,
USA). Acarbose and chlorogenic acid were also used as a positive control and reference
phenolic compound, respectively. Each sample was measured in triplicate. The IC50 value
was calculated by regression analysis as the mean concentration of tested sample required
to demonstrating at 50% inhibition against α-amylase in this condition.

2.6. α-Glucosidase Inhibition Assay

The assessment of the α-glucosidase activity was slightly modified according to
Adisakwattana et al. [42] and Gao et al. [43]. Briefly, 125 mg of rat intestinal acetone
powder was mixed with 2.5 mL of 0.9% NaCl solution. Enzyme isolation was performed
in an ultrasonic cleaner (for 30 sec) in an ice bath, then 30 sec without ultrasonic. This step
was repeated 12 times. After that, the solution was centrifuged at 4 ◦C (3000 rpm, 30 min).
50 µL of diluted V. opulus samples were mixed with 50 µL of enzyme supernatant (diluted
2 times for reaction with maltose). After incubation at 37 ◦C for 10 min, 50 µL of substrate
(0.1 M maltose or 0.5 M sucrose solution prepared in 0.1 M phosphate buffer, pH 6.9) was
added and incubated in a 96-well microplate at 37 ◦C for 20 min for maltose and 60 min
for sucrose. The reaction was stopped by adding 150 µL of 2 M Tris-HCl buffer (pH 7.0).
The concentration of glucose released from the reaction mixture was determined by the
commercial glucose test (BIOMAXIMA SA, Lublin, Poland). Acarbose and chlorogenic
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acid were also used as a positive control and reference phenolic compound, respectively.
The concentration of the tested sample able to inhibit the α-glucosidase by 50% (IC50 value)
was calculated by regression analysis.

2.7. Mode of Enzyme Inhibition

The α-amylase and α-glucosidase inhibition modes of different V. opulus fruit sam-
ples (PE, PEWF, PEAF) and reference substances (chlorogenic acid and acarbose) were
determined by Lineweaver-Burk model. The enzymes activities without and with tested
samples were studied using the methods described in Sections 2.5 and 2.6. A double
reciprocal graph (1/v versus 1/S, where “v” is the reaction rate and “S” the concentration
of the substrate), was plotted. All samples were tested at three different doses using six
concentrations of substrate.

2.8. Fluorescence Measurements

The effect of PE on fluorescence spectra of α-amylase and α-glucosidase at different
concentrations of PE (from 0.014 to 0.136 mM) were performed using FluoroMax 4 (Jobin
Yvon Spex, UK, Stanmore, Middlesex) spectrofluorometer (Horiba Scientific, Piscataway, NJ,
USA) using a method described by Zhu et al. [44]. The fluorescence spectra of enzymes and
their changes upon adding increasing amounts of PE of V. opulus fruits were recorded in the
wavelength range of 315–450 nm upon excitation at 295 nm. Both excitation and emission
slit widths were set at 2 nm. All measurements were performed in a standard quartz
cuvette at 20 ◦C. A 2.5 mL solution containing 2 × 10−6 M α-amylase and 1.3 × 10−6 M
α-glucosidase in 0.01 M PBS (pH 7.4), was titrated by successive additions of PE to give a
final concentration 1.36 × 10−4 M. The PE concentrations were expressed as chlorogenic
acid (M = 354.31 g/mol) equivalents.

The time-resolved fluorescence of α-amylase and α-glucosidase before and after
adding increasing concentrations of PE was measured using the FL900CDT time-correlated
single-photon counting fluorimeter (Edinburgh Analytical Instruments, Edinburgh, UK).
The excitation and emission wavelengths were set to 295 and 350 nm, respectively. The
instrumental response function was ~1.18 ns (FWHM full width at half-maximum). The
time-resolved measurements were performed at 20 ◦C in a standard quartz cuvette. Data
acquisition and analysis of the obtained results were performed with the use of software
provided by Edinburgh Analytical Instrumentation (F900). The goodness of fit was esti-
mated by using χ2 values.

2.9. Protein Glycation Inhibition Assay

The bovine serum albumin (BSA) and glucose/fructose assay was carried according
to the method of Błaszczak et al. [45] with some modifications. We prepared 25 mL of the
test solution containing D-glucose or D-fructose (1.0 M), BSA (10 mg/mL) and sodium
azide (0.1 mg/mL) in the phosphate buffer (0.1 M, pH 7.4). The test solution (1 mL) was
incubated in the dark at 37 ◦C for 13 days for glucose and for 6 days for fructose with or
without 0.5 mL of tested V. opulus samples. Aminoguanidine was used as positive control in
the concentration from 41.67 to 166.67 µg/mL for glucose and from 22.22 to 133.33 µg/mL
for fructose. Next, the formation of AGE was evaluated based on fluorescence intensity at
λ = 330 nm (excitation wave) and λ = 460 nm (emission wave). Fluorescence intensity was
measured in 96-well plates (black, OptiPlate-96 F, PerkinElmer, UK) in a microplate reader
(Synergy2, BioTek Instruments Inc., Winooski, VT, USA).

2.10. In Vitro Antioxidant Assays

Antioxidant capacity of V. opulus fruit samples was determined by ABTS radical
cation (ABTS), oxygen radical (ORAC) scavenging capacity, and as ferric reducing power
(FRAP). Antioxidant capacity was expressed as mM Trolox equivalents (TE) per g of CE
and PE extracts, and PEAF and PEWF fractions. ABTS and FRAP assays procedures have
been detailed in our previous works [41,46]. The ABTS•+ monocation was generated by
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oxidation of ABTS with potassium persulphate. The tested sample (20 µL) was added to
the ABTS•+ solution (1 mL) and after 6 min, the absorbance at 734 nm was measured. In the
FRAP assay, 90 µL of tested sample was mixed with 0.27 mL of water and freshly prepared
FRAP reagent (2.7 mL). After 10 min the absorbance at 593 nm was measured. ORAC assay
was carried out using a SynergyTM2 microplate reader (BioTek Instruments Inc., Winooski,
VT, USA). Peroxyl radicals were generated by the spontaneous decomposition of AAPH
at 37 ◦C. The loss of fluorescence of fluorescein was an indication of the extent of damage
from its reaction with the peroxyl radicals. Fluorescence was read at 485 nm excitation and
520 nm emission every 2 min for 2 h.

2.11. Statistical Analysis

All samples were assayed in triplicate and results are given as the mean ± standard
deviation using Microsoft Excel XP. Significance differences were calculated using one-way
analysis of variance (ANOVA) using Statistica Ver. 6.0 (TIBCO Software Inc., Palo Alto, CA,
USA) followed by post hoc Tukey test. Statistically significant differences were set at p < 0.05.

3. Results
3.1. Effects of V. opulus Fruit Components on α-Amylase and α-Glucosidase Activity

The inhibitory effects of different samples separated from V. opulus dried fruits such
as crude extract (CE), purified extract (PE), and two fractions separated from PE, called
water fraction (PEWF) and ethyl acetate fraction (PEAF), were analyzed by the dose-effect
plots (Supplementary Figure S1). In the present study, the α-amylase assay was performed
in two systems using potato starch or starch from rice as substrates. Measurement of
α-glucosidase activity was also carried out in two systems using sucrose or maltose as
substrates. Inhibitory activity of extracts and fractions of V. opulus dried fruit had a direct
linear relationship between concentration and percentage inhibitory activity.

The degree of inhibition of the tested enzymes depended on both the type of V. opulus
sample and the type of substrate used. The V. opulus samples differed significantly (p < 0.05)
in their IC50 values (Table 1). PEWF was the strongest inhibitor of porcine pancreatic α-
amylase while PEAF against α-glucosidase as indicated by the lowest IC50 values. CE
and PEAF performed a weak inhibitory effect on α-amylase while CE on α-glucosidase.
Purification of CE by solid-phase extraction on the C18 bed increased the inhibitory activity
of PE against α-amylase 6.5-fold and almost 4-fold using potato starch or starch from rice,
respectively. In the case of α-glucosidase, the inhibitory activity of PE exceeded almost 11-
fold and more than 7-fold the effectiveness of CE in the assay system containing maltose or
sucrose as a substrate, respectively. However, the comparison of the IC50 values for PEWF
and PEAF, i.e., fractions separated from PE by liquid-liquid extraction with ethyl acetate,
indicates a higher affinity of α-amylase inhibitors to water, and α-glucosidase inhibitors
to ethyl acetate. All V. opulus fruit samples showed lower inhibitory activity against both
enzymes compared to acarbose, with greater differences occurring with α-glucosidase.
Chlorogenic acid—the reference phenolic compound—was a weaker inhibitor of both
glycoside hydrolases compared to acarbose, and the weaker α-amylase inhibitor compared
to all V. opulus fruit samples. In contrast, in the case of α-glucosidase, chlorogenic acid showed
comparable inhibition efficiency to PEAF in the assay system with sucrose, but exhibited
1.7-fold lower inhibitory activity than PEAF in the system using maltose as a substrate.

A Lineweaver-Burk plot between 1/[substrate] and 1/V (reaction rate) was used
to examine the action type of the most active V. opulus samples (PE and PEWF) against
α-amylase (Supplementary Figure S2), or PE and PEAF samples against α-glucosidase
(Supplementary Figure S3). For comparison, chlorogenic acid and acarbose were also tested.

In the study, the kinetic Michaelis-Menten parameters such as Michaelis constant (Km),
maximum rate (Vmax), and inhibition constant (Ki) were calculated from Lineweaver-Burk
graphs (Supplementary Figures S2 and S3) and are summarized in Table 2. All tested V.
opulus samples similar to acarbose have an uncompetitive type inhibition against α-amylase
while chlorogenic acid inhibits this enzyme activity in competitive manner, regardless of
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the type of starch. Whereas, in the case of α-glucosidase, the tested V. opulus samples and
acarbose have a mixed type of inhibition (competitive and noncompetitive), regardless of
the type of disaccharide as substrate. The results also suggest that chlorogenic acid has a
noncompetitive-type inhibition against this enzyme in both assay models.

Table 1. IC50 values (µg/mL) of the V. opulus fruit samples and reference substances (chlorogenic
acid and acarbose) for the inhibition of α-amylase and α-glucosidase in the presence of different
substrates.

Sample

α-Amylase α-Glucosidase

Substrate

Potato Starch Starch from Rice Maltose Sucrose

CE 400.70 ± 8.29d 572.12 ± 19.41d 1922.83 ± 77.14e 3244.88 ± 111.28d
PE 61.51 ± 0.72b 132.42 ± 3.33b 180.09 ± 4.67cd 447.60 ± 29.22c

PEAF 378.71 ± 3.64c 509.22 ± 1.81c 61.87 ± 1.97ab 110.06 ± 1.12b
PEWF 24.17 ± 0.23a 124.90 ± 2.70b 253.71 ± 6.79d 324.93 ± 11.32c

Chlorogenic acid 833.61 ± 16.34e 1963.57 ± 30.49e 103.37 ± 5.29bc 99.81 ± 0.75ab
Acarbose 13.33 ± 0.17a 30.57 ± 1.19a 0.051 ± 0.001a 1.37 ± 0.04a

The values within a same column with different letters are significantly different (p < 0.05).

Table 2. Related parameter on the inhibitory kinetics of the highest concentration of V. opulus samples, chlorogenic acid and
acarbose on α-amylase and α-glucosidase.

Enzyme Substrate Sample Concentration
(µg/mL)

Km
(µg/mL)

Vmax
(OD/min) Ki (µg/mL) Inhibition Type

α-amylase

Potato starch

Control
PEWF

-
25.64

1.25
0.32

1.32
0.40

/
11.14 uncompetitive

Control
PE

-
54.95

1.00
0.21

1.10
0.24

/
15.22 uncompetitive

Control
Chlorogenic acid

-
769.23

0.59
0.83

0.80
0.80

/
1225.78 competitive

Control
Acarbose

-
6.62

1.43
0.20

1.41
0.22

/
1.24 uncompetitive

Rice starch

Control
PEWF

-
153.86

1.25
0.18

0.63
0.08

/
20.82 uncompetitive

Control
PE

-
153.86

1.00
0.15

0.51
0.07

/
22.84 uncompetitive

Control
Chlorogenic acid

-
1923.1

1.67
3.33

0.60
0.60

/
1886.20 competitive

Control
Acarbose

-
19.86

2.50
0.19

1.27
0.10

/
1.78 uncompetitive

α-glucosidase

Maltose

Control
PEAF

-
61.73

0.40
0.63

0.021
0.014

/
46.44 mixed

Control
PE

-
185.19

0.18
0.69

0.023
0.013

/
89.25 mixed

Control
Chlorogenic acid

-
191.31

0.40
0.40

0.021
0.009

/
145.41 noncompetitive

Control
Acarbose

-
0.05

0.40
0.69

0.021
0.012

/
0.021 mixed

Sucrose

Control
PEAF

-
111.11

6.67
9.09

0.006
0.005

/
159.10 mixed

Control
PE

-
476.19

5.56
6.67

0.008
0.004

/
379.75 mixed

Control
Chlorogenic acid

-
191.31

7.69
7.69

0.005
0.003

/
181.21 noncompetitive

Control
Acarbose

-
1.35

6.67
8.33

0.006
0.004

/
1.52 mixed

“/”—represents no inhibition constants (Ki) value.
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3.2. Effect of PE on α-Amylase and α-Glucosidase Spectra

The fluorescence spectra of α-amylase and α-glucosidase at different concentrations
of PE (0.014–0.136 mM as chlorogenic acid equivalents) are depicted in Figure 2. It was
evident that with the increasing concentration of PE, the fluorescence intensity of both
enzymes reduced progressively, which is indicative of molecular interactions between PE
components and α-amylase as well as α-glucosidase. From Figure 2A,B it can be seen that
addition of PE to α-amylase or α-glucosidase solution resulted in tryptophan fluorescence
quenching. Moreover, a slight redshift of the tested enzymes emission spectra maximum
may be observed. Due to the presence of this alteration to the fluorescence maximum,
the Stern–Volmer plots (Figure 2C,D) were obtained from the integrated fluorescence
intensities (the area under the spectrum with the wavelength range of 310–450 nm). The
determined value of the Stern–Volmer constant was 7.790 ± 0.226 × 103/M for α-amylase
and 6.249 ± 0.060 × 103/M for α-glucosidase. The results of time-resolved fluorescence
measurements (Table 3) have indicated that the average lifetimes (<τ>) of α-amylase and
α-glucosidase (<τ> of around 12 and 11 ns, respectively) have not changed significantly
upon adding PE up to the concentration 1.36 × 10−4 M. This observation may indicate
that PE quenches the tryptophan fluorescence of α-amylase or α-glucosidase via a static
quenching mechanism.
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Figure 2. Fluorescence quenching spectra of α-amylase (A) and α-glucosidase (B) at λex = 295 nm.
PE concentration increased from 0 to 1.36 × 10−4 M. The Stern–Volmer plots for α-amylase (C) and
α-glucosidase (D) fluorescence quenching by PE.s.

Table 3. The changes in fluorescence lifetimes (τ1 [ns], τ2 [ns], τ3 [ns], <τ> [ns]) and their fractional
fluorescence of the tested enzymes and their changes upon addition of PE to the final concentration
1.36 × 10−4 M.

Sample τ1 [ns] f1 [%] τ2 [ns] f2 [%] τ3 [ns] f3 [%] <τ> * [ns] χ2

α-Amylase 0.89 ± 0.04 13.73 3.13 ± 0.05 58.35 8.90 ± 0.11 27.92 12.40398 1.169
α-Amylase + PE 0.84 ± 0.04 14.18 3.10 ± 0.05 58.66 8.83 ± 0.11 27.17 12.12822 1.210
α-Glucosidase 0.62 ± 0.03 11.51 3.02 ± 0.04 62.61 7.02 ± 0.11 25.88 11.00854 1.196

α-Glucosidase + PE 0.66 ± 0.03 12.29 3.12 ± 0.05 64.20 7.19 ± 0.13 23.51 11.50588 1.028

* Defined as <τ> = Σfi·τi; PE concentration = 1.36 × 10−4 M chlorogenic acid equivalents.
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The bimolecular quenching constant of tryptophan α-amylase or α-glucosidase fluo-
rescence by PE was determined from the following equation

F0

F
= 1 + kq〈τ〉0[Q] = 1 + KSV[Q] (1)

F0 and F are the fluorescence in the absence and presence of quencher, respectively, kq
is the bimolecular quenching constant, τ0 is the native lifetime of the fluorophore, and [Q]
is the concentration of quencher. It is equal to 6 × 1011 1/M × s.

3.3. Antiglycation Capacity of V. opulus Fruit Samples

The V. opulus fruit samples and reference substances (chlorogenic acid and aminoguani-
dine) were assessed in vitro for inhibitory effects on end glycation products (AGE) forma-
tion through fluorometric detection of fluorescent AGE. Inhibitory activity of extracts and
fractions of V. opulus dried fruit had a direct linear relationship between concentration
and percentage inhibitory activity of AGE formation (Supplementary Figure S4). The
inhibitory effects of V. opulus fruit samples as well as chlorogenic acid and aminoguanidine
(therapic agent for the inhibition of AGE formation) expressed as IC50 value is summarized
in Table 4. The antiglycation capacity of V. opulus fruit samples depended on both the type
of sample and the type of sugar used.

Table 4. IC50 values (µg/mL) of the V. opulus fruit samples and reference substances (chlorogenic
acid and aminoguanidine) for the inhibition of AGE formation.

Sample BSA-Fructose Model BSA-Glucose Model

CE 182.03 ± 2.52e 4966.22 ± 110.32d
PE 40.78 ± 0.02b 895.33 ± 9.39c

PEAF 32.32 ± 0.28a 577.50 ± 5.32b
PEWF 33.96 ± 0.27a 803.27 ± 4.79c

Chlorogenic Acid 58.87 ± 0.93c 869.94 ± 6.25c
Aminoguanidine 106.08 ± 3.17d 137.80 ± 3.44a

Values that are followed by different letters within each column are significantly different (p < 0.05).

PEAF and PEWF with IC50 value equal to 32.32 µg/mL and 33.96 µg/mL exhibited
the strongest inhibition of AGE formation in the BSA-fructose in vitro model. In addition,
PE, PEWF and PEAF demonstrated stronger antiglycation effect than aminoguanidine
(IC50 = 106.08 µg/mL) and chlorogenic acid (IC50 = 58.87 µg/mL). Alternatively, testing the
same group of samples for their antiglycation activity in the BSA-glucose model showed
aminoguanidine as the strongest inhibitor (IC50 = 137.80 µg/mL) followed by PEAF with
IC50 value equal to 577.50 µg/mL. Antiglycation effects of PE, PEWF and chlorogenic acid
in the BSA-glucose assay did not differ significantly (p < 0.05)

3.4. Antioxidant Capacity of V. opulus Fruit Samples

Antioxidant properties of V. opulus samples were estimated by three different methods,
as scavenging potential towards stable, synthetic ABTS•+ radical cation (ABTS) and towards
peroxyl radical (ORAC), and as the potential to reduce ferric to ferrous ion (FRAP). Trolox—
a water-soluble analog of vitamin E—was used as an antioxidant standard to determine the
Trolox Equivalent (TE). The results for antioxidant capacity of tested samples are presented
in Table 5. Significant differences (p < 0.05) were found among the analyzed V. opulus
samples in the antioxidant capacity. The TE values varied from 0.61 to 6.41 mM TE/g
of extract or fraction in ABTS assay, from 0.40 to 5.18 mM/g in ORAC assay, and in the
range 1.15–24.12 mM/g in FRAP method. The antioxidant capacity of V. opulus samples
investigated was in the following order: PEAF > PEWF > PE > CE, regardless of the
method used.
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Table 5. Antioxidant capacity of the V. opulus fruit samples expressed as Trolox equivalents (mM TE/g
of sample).

Sample ABTS FRAP ORAC

CE 0.61 ± 0.02a 0.40 ± 0.01a 1.15 ± 0.03a
PE 2.24 ± 0.03b 1.80 ± 0.08b 3.33 ± 0.10b

PEAF 6.41 ± 0.25d 5.18 ± 0.06c 24.12 ± 0.91d
PEWF 5.13 ± 0.08c 5.02 ± 0.15c 10.70 ± 0.40c

Values that are followed by different letters within each column are significantly different (p < 0.05).

3.5. The Phenolic Compounds Content of V. opulus Fruit Samples

The results of quantitative analysis of V. opulus fruit extracts (CE, PE) and fractions
(PEAF, PEWF) determined by UPLC method are presented in Tables 6 and 7. Figure 3
presents the chromatograms of V. opulus fruit samples at 280 nm.

Table 6. The content (mg/g of extract or fraction) of phenolic compounds of V. opulus fruit samples.

Phenolic Compounds
V. opulus fruit Sample

CE PE PEAF PEWF

Flavanols 1 11.53 ± 0.07a 52.63 ± 1.76b 98.50 ± 3.90c -
Flavalignans 1 1.13 ± 0.04a 8.42 ± 0.20b 40.70 ± 0.27c -

Hydroxycinnamic acids 1 73.90 ± 0.51a 352.26 ± 3.57c 829.26 ± 0.51d 201.81 ± 0.63b
Flavonols 1 0.86 ± 0.01a 5.08 ± 0.12b 8.62 ± 0.17c 5.06 ± 0.05b

Total phenolics 1 87.42 ± 0.63a 418.39 ± 5.65c 977.08 ± 4.85d 206.87 ± 0.68b
Total proanthocyanidins 2 12.26 ± 0.46a 74.72 ± 7.90d 21.96 ± 1.35b 57.33 ± 1.85c

“-”—not identified; 1 determined by UPLC analysis; 2 determined by spectrophotometric method; The values
within a same raw with different letters are significantly different (p < 0.05).

According to UPLC analysis, the CE, PE and PEAF showed the presence of four
groups of phenolic compounds, such as flavanols, flavalignans, hydroxycinnamic acids,
and flavonols. For comparison, no flavanols and flavalignans were found in PEWF fraction.
On the basis of our results from the UPLC assay concerning low molecular weight phenolics,
hydroxycinnamic acids dominated in all samples, while flavonols were the lowest (Table 6).
Hydroxycinnamic acids accounted for approximately 84% of the total phenolics in CE,
PE and PEAF, and almost 98% of the phenolic compounds determined in PEWF. The
purification process on the Sep-Pak C18 column was effective in removing CE non-phenolic
compounds as PE was characterized by an approximately 5-fold increase in flavanols and
hydroxycinnamic acids, a 6-fold increase in flavonols and proanthocyanidins, and a 7.5-fold
increase in flavalignans. As a result of fractionation of the aqueous solution of PE with
ethyl acetate, the acetate fraction (PEAF) was 4.7-fold and 4-fold richer in total phenolics
and hydroxycinnamic acids, respectively, than the aqueous residue. Moreover, flavanols
and flavalignans were only present in PEAF, with the recovery relative to PE being 28.2%
and 72.9%, respectively.

In the tested samples, there were 24, 23, 18, and 14 phenolic compounds detected in PE,
CE, PEAF and PEWF, respectively (Table 7 and Figure 3). UPLC results revealed that the
contents of selected phenolic compounds in different V. opulus samples showed significant
differences (p < 0.05). As the main phenolic compound in all samples, the chlorogenic acid
amount in CE was equal to 65.62 mg/g, whereas in PE, PEAF and PEWF it reached 300.23
mg/g, 795.72 mg/g and 152.05 mg/g, respectively. Quantitatively, (epi)-catechin hexoside
was the second-most prominent component in all samples with the exception of PEWF in
which dicaffeoylquinic acid derivatives were found next after chlorogenic acid.
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Figure 3. UPLC chromatograms of phenolic compounds in V. opulus fruit samples at 280 nm. Refer to Table 7 for the
identification of each numbered peak. CE—crude extract, PE—purified extract, PEAF—ethyl acetate fraction of PE,
PEWF—water fraction of PE.

Table 7. The phenolic compounds content in V. opulus fruit samples.

Peak Phenolic Compound
CE PE PEAF PEWF

mg/g of Extract mg/g of Fraction

Flavanols
1 Procyanidin tetramer a 0.23 ± 0.00a 1.81 ± 0.03c 1.28 ± 0.04b -
2 Procyanidin C1 0.80 ± 0.00a 2.03 ± 0.11c 0.99 ± 0.03b -
3 (Epi)-catechin hexoside b 10.50 ± 0.07a 48.79 ± 1.62b 96.23 ± 3.83c -

Flavalignans
4 Cinchonain Ix c - 0.72 ± 0.02a 3.88 ± 0.02b -
5 Cinchonain Ix c 0.19 ± 0.03a 1.90 ± 0.06b 23.13 ± 0.21c -
6 Cinchonain Ix c 0.54 ± 0.01a 3.23 ± 0.07b 11.55 ± 0.04c -
7 Cinchonain Ix c 0.40 ± 0.00a 2.57 ± 0.05c 2.14 ± 0.00b -

Hydroxycinnamic acids
8 Neochlorogenic acid 0.20 ± 0.00a 1.41 ± 0.05b 1.97 ± 0.03c 1.39 ± 0.00b
9 Dicaffeolquinic acid I d 0.20 ± 0.00a 1.69 ± 0.08b - 1.66 ± 0.00b

10 Dicaffeolquinic acid II d 0.09 ± 0.00a 1.38 ± 0.05b - 1.58 ± 0.00c
11 Dicaffeolquinic acid III d 0.23 ± 0.00a 0.55 ± 0.02b - 1.22 ± 0.00c
12 Dicaffeolquinic acid IV d 2.39 ± 0.01a 15.14 ± 0.47b - 17.35 ± 0.01c
13 Dicaffeolquinic acid V d 2.92 ± 0.00a 20.04 ± 0.20c - 19.68 ± 0.04b
14 Dicaffeolquinic acid VI d 0.68 ± 0.00b 4.37 ± 0.12c 0.37 ± 0.00a 4.40 ± 0.01c
15 Chlorogenic acid 65.62 ± 0.49a 300.23 ± 2.33c 795.72 ± 0.03d 152.05 ± 0.52b
16 Cryptochlorogenic acid 0.40 ± 0.00a 1.81 ± 0.05c 4.78 ± 0.01d 0.97 ± 0.01b
17 Caffeic acid 0.38 ± 0.01a 1.67 ± 0.02b 8.37 ± 0.11c -
18 Caffeoylquinic acid d 0.10 ± 0.00a 0.66 ± 0.06b 3.84 ± 0.24c 0.40 ± 0.02ab
19 Coumaroylquinic acid d 0.46 ± 0.00a 2.48 ± 0.09c 9.99 ± 0.01d 1.11 ± 0.02b
20 Feruoylquinic acid d 0.23 ± 0.00a 0.83 ± 0.03b 4.22 ± 0.08c -

Flavonols
21 Quercetin 3-sambubioside e 0.27 ± 0.00a 1.35 ± 0.04b - 2.01 ± 0.00c
22 Quercetin 3-rutinoside 0.41 ± 0.00a 2.22 ± 0.02c 1.70 ± 0.15b 2.80 ± 0.03d
23 Quercetin 3-glucoside 0.07 ± 0.01a 0.46 ± 0.03b 2.05 ± 0.01c -
24 Quercetin 3-rhamnoside 0.11 ± 0.00a 1.05 ± 0.03c 4.87 ± 0.01d 0.25 ± 0.02b

“-”—not identified. The content expressed as equivalents of: a—procyanidin C1, b—(+)-catechin, c—cinchonine, d—chlorogenic acid,
e—quercetin 3-glucoside. The means within a same raw with different letters are significantly different.
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4. Discussion

In Poland, V. opulus L. is mainly cultivated as an ornamental shrub and its red and
shiny fruits are rarely used as food. However, in Turkey, Russia and Ukraine, these fruits
are used in traditional cuisine. V. opulus fruits are widely used in natural medicine for the
relief of asthma, cold, fever, cough, nervousness, rheumatoid diseases, menstrual cramps,
uterine and urinary tract infections, and to treat high blood pressure [36]. Our previous
studies conducted both in cell-based and cell-free models, revealed that the compounds
included in the V. opulus fresh fruits exhibited antidiabetic properties [33–35]. Contrary to
the previous studies, we chose dried fruits as the research material due to their commercial
availability. The present research is in line with the trend of searching safe and effective
antidiabetic agents from natural sources.

This is the first study of the effect of V. opulus dried fruit extracts on both the activity
of carbohydrate digestive enzymes and the process of AGE formation. Inhibition of α-
glucosidase and α-amylase can prevent the postprandial surge of glucose and help to
maintain its safe level in blood which is one of the primary targets for the treatment and
management of the early stage of T2DM [47]. Additionally, inhibition of AGE formation
is another approach in delaying or preventing the onset of diabetic complications [48].
Many studies conducted on fruits indicated that phenolic compounds were the functional
components that played a major role in their hypoglycemic effect [7–9,12,27,31,49–52].
Thus, in order to verify this hypothesis in our research, the V. opulus fruit samples varying
in terms of degree of purification of phenolic compounds and thus in the presence of other
non-phenolic components were used. In this study four samples were obtained from V.
opulus dried fruits. CE was prepared using 70% acetone as a solvent, PE was obtained from
CE by solid phase extraction method as a purification step, and next PE was fractionated
into ethyl acetate and water phase (PEAF and PEWF). Two analyzed V. opulus fruit extracts
were characterized by different content of phenolic compounds, from 87.42 mg/g of CE to
418.39 mg/g of PE (Table 6). Moreover, as a result of PE fractionation by the liquid–liquid
extraction method, PEAF (the ethyl acetate fraction) contained as much as 977.08 mg of
total phenolics per gram and PEWF (the water fraction) with 206.87 mg/g of fraction.
In addition, PE was the most abundant in proanthocyanidins, almost 95% converted
to PEWF, which may indicate the presence of proanthocyanidins with a high degree of
polymerization. According to Saucier et al. [53] the proanthocyanidin oligomers are soluble
in ethyl acetate while the polymers remain in the aqueous phase. The presence of tannins
in the form of polymers was also confirmed by the absence of peaks corresponding to the
flavanols in the UPLC chromatograms of PEAF (Figure 3 and Table 7). According to Perova
et al. [54], proanthocyanidins are a quantitatively significant component of the fresh V.
opulus fruits with content 201–528 mg/100 g fresh weight and they accounted over 49.9% of
total phenolics. However, UPLC results showed hydroxycinnamic acids dominated in all
V. opulus samples tested. This group of simple phenolic compounds constituted over 84%
of the total phenolics in the analyzed samples, with the highest participation (over 97%) in
PEWF. Chlorogenic acid was identified as the major phenolic compound in all V. opulus
fruit samples with amount 65.62 mg/g of CE, whereas in PE, PEAF and PEWF it reached
300.23 mg/g, 795.72 mg/g, and 152.05 mg/g, respectively. Chlorogenic acid has also been
indicated as the main phenolic compound of V. opulus fruit by other authors [46,55–57].

According to our results, the composition of phenolic compounds of V. opulus fruit
samples had a significant impact on both the activity of α-amylase and α-glucosidase, the
process of AGE formation, as well as the antioxidant activity of the analyzed V. opulus fruit
samples. In this study, the porcine pancreatic α-amylase and rat intestinal α-glucosidase
models have been used because these enzymes play a crucial role in starch breakdown
during digestion and glucose uptake. Pancreatic α-amylase is an endoglucosidase presents
in pancreatic juice secreted into the intestinal lumen [7] and it digests the starch to maltose,
maltotriose and dextrins, which are then broken down into glucose by other carbohydrases,
e.g., α-glucosidase [19]. α-Glucosidase is a specific membrane-bound enzyme in the small
intestine catalyzing the hydrolytic cleavage of disaccharides into monosaccharides [58]. In
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our study, crude extract (CE) showed the lowest inhibitory potential against carbohydrate
digestive enzymes, regardless of both enzyme and substrate types (Table 1). Removal of
non-phenolic compounds from CE by the solid phase extraction method increased the
inhibitory activity of PE on average 5-fold in the case of α-amylase and 9-fold in the case of
α-glucosidase. The most active inhibitor of α-amylase was PEWF while PEAF exhibited
the highest inhibitory activity against α-glucosidase. The reference of the obtained results
to the phenolic composition of these fractions suggests that proanthocyanidin polymers,
which remain in the aqueous phase, are mainly responsible for the anti-amylase activity of
V. opulus fruits, and hydroxycinnamic acids, as well as flavanol oligomers and flavalignans
for α-glucosidase inhibition. PEWF contained 2.6-fold more proanthocyanidins, but 4-fold
less hydroxycinnamic acids and 1.7-fold less flavonols than PEAF (Table 6). Proanthocyani-
dins from grape seed and skin, acacia bark, persimmon peel and leaf, apple, and almond
peel skin have been previously reported to inhibit α-amylase [59]. Additionally, proan-
thocyanidins with a high degree of polymerization compared to those with low degree
had a greater effect on α-amylase activity in mice [60]. The higher activity of PEWF than
PEAF on α-amylase may be due not only to the presence of proanthocyanidins but also to
dicaffeoylquinic acids which were not generally present in PEAF. Narita and Inouye [61]
showed that the decreasing rank of hydroxycinnamic acid derivatives on porcine pancreas
α-amylase isozyme I was as follows: dicaffeoylquinic acids > caffeoylquinic acids > fer-
uoylquinic acids. Our results demonstrated a very weak inhibitory activity of chlorogenic
acid towards α-amylase (the highest IC50 values, on average 2.7-fold and 14-fold higher
than the IC50 values for CE and PE, respectively).

The dominant role of hydroxycinnamic acids, including chlorogenic acid in inhibition
of α-glucosidase is confirmed by similar IC50 values for chlorogenic acid and PEAF—the
most active V. opulus sample (Table 1). Oki et al. [62] demonstrated that the activity of rat
α-glucosidase depends on disaccharide type. Thus, both maltose (a breakdown product
of starch) and sucrose (the major disaccharide in food) were used as substrates for rat
intestine α-glucosidase in the test systems used. The IC50 values of all V. opulus fruit
samples and acarbose (a well-known and standard antidiabetic drug) were lower in the
maltose-containing system. These differences are due to the different affinity of the enzyme
for the substrate as demonstrated by Oki et al. [62] because maltose had near 8-fold higher
affinity for rat α-glucosidase than sucrose (Michaelis constants were equal to 3.0 and
22.8 mM, respectively). On the other hand, the inhibitory activity of chlorogenic acid (the
dominant phenolic compound in V. opulus samples) was comparable in both assay systems.
Study of Iwai and co-workers [31] confirmed inhibitory activity of chlorogenic acid against
sucrase and maltase from rat small intestine with IC50 equal to 0.50 and 8.81 mg/mL,
respectively. This study also showed weaker inhibitory activity of this phenolic acid on α-
amylase porcine pancreas (IC50 = 13.17 mg/mL) which is in line with our results. However,
Pollini et al. [26] demonstrated that chlorogenic acid had higher inhibitory activity against
α-amylase than other phenolics acids (e.g., caffeic acid, p-coumaric acid, sinapic acid, and
syringic acid) and 5-fold lower activity compared to acarbose. In addition, the inhibitory
activities of the V. opulus fruit samples against both α-amylase and α-glucosidase were
lower than the acarbose, probably due to the complexity of the chemical composition of
fruit matrices, and weak inhibitory activity of chlorogenic acid—quantitatively the main
component of the tested samples.

The evaluation of the inhibition mode showed that PE and PEWF (the most active V.
opulus samples against α-amylase) and acarbose inhibited the α-amylase uncompetitively
(Supplementary Figure S2, Table 2). In this case, inhibitor binds only to the complex
form between the enzyme and the substrate, i.e., potato or rice starch. On the other
hand, PE and PEAF (the most active V. opulus samples against α-glucosidase) as well
as acarbose displayed mixed mode of inhibition towards α-glucosidase (Supplementary
Figure S3, Table 2). This means that the inhibitor may bind to the enzyme whether or
not the enzyme has already bound the substrate, but has a greater affinity for one state
or the other. Contrary, the Lineweaver–Burk plots showed that chlorogenic acid inhibits
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α-amylase noncompetitively and has a competitive mode towards α-glucosidase. Karim
et al. [63] and Sun et al. [64] reported that chlorogenic acid has a mixed type inhibitory
effect on porcine pancreatic α-amylase hydrolysis of potato and maize starch, respectively.
In line with our results, a chlorogenic-rich fraction from Smilax aristolochiifolia root inhibited
α-amylase activity in an uncompetitive manner and α-glucosidase in a noncompetitive
mode [65]. To the best of our knowledge, the inhibitory mode of V. opulus fruit extracts and
fractions are reported for the first time.

Interactions between both enzymes and V. opulus fruit components were also con-
firmed by fluorescence spectroscopy for PE. Under our measurement condition, PE reduced
the fluorescence intensity of α-amylase and α-glucosidase, and the maximal absorption
peak was slightly red-shifted. The same effects were found with the addition of chlorogenic
acid and its derivatives to the α-glucosidase from Saccharomyces cerevisiae [66]. The authors
suggested that these changes led to a polarity variation for tryptophan (Trp) residues in the
enzyme and made the microenvironment change from hydrophilic to hydrophobic, which
resulted in greater exposure of Trp residues and development of the protein structure. In
the present study, the value of the bimolecular quenching constant is equal to 6 × 1011

1/M × s, and is above the diffusion-limited rate constant of the biomolecule equal to
1 × 1010 1/M × s [67]. It suggests the involvement of static mechanism in the fluorescence
quenching of the α-amylase and α-glucosidase with PE. Thus, the binding affinity of PE to
the studied enzymes may be estimated by the determined Stern–Volmer constants.

Chronic hyperglycemia promotes the formation of free radicals, that further increases
the formation of reactive oxygen species, which in turn lead to a state of oxidative stress—a
key factor in the development of diabetic complications [48]. There are increasing evidence
that phenolic compounds due the antioxiadant properties may protect cell constituents
against oxidative damage and, therefore, limit the risk of various degenerative diseases
associated with oxidative stress [68,69]. In the current study, all V. opulus fruit samples
demonstrated antioxidant activity, indicated by scavenging potential towards stable, syn-
thetic ABTS•+ radical cation (ABTS) and towards peroxyl radical (ORAC), and as Fe3+

reducing activity (FRAP). The antioxidant capacity of these samples followed this order:
PEAF > PEWF > PE > CE, regardless of the method (Table 5). Chlorogenic acids, including
mono- and dicaffeoylquinic acids as well as coumaroylquinic and feruoylquinic acid which
were identified in V. opulus fruit samples by UPLC method (Table 7) are known to be potent
antioxidants [70]. Dicaffeoylquinic acids possessed better antioxidant activities, mostly
because they have more hydroxyl groups than caffeoylquinic acids. On the other hand,
caffeoylquinic acid isomers showed quite similar antioxidant activities, indicating that the
position of esterification on the quinic moiety of caffeoylquinic acid had no effect on its
antioxidant activities.

At the early stage of T2DM, there is a relationship between hyperglycemia, increased
oxidative stress, and excessive AGE formation [48]. The prevention of protein glycation is a
viable strategy to prevent AGE formation since these molecules have ability to modify the
chemical and functional properties of various biological structures [71]. All V. opulus fruit
samples (extracts and fractions), as well as chlorogenic acid, showed inhibitory activity
against AGE formation and had significantly (p < 0.05) lower IC50 values than the positive
control, aminoguanidine in the BSA-glucose model (Table 4). Other relationships were
found in the BSA-fructose measurement system, where only crude extract (CE) of V. opulus
fruit was a weaker inhibitor of AGE formation compared to aminoguanidine. The higher
IC50 values obtained with BSA-glucose compared to BSA-fructose are probably due to
higher reactivity of ketose sugar than which has a more open-chain structure than aldose
sugar [51]. Regardless of the test used, the ethyl acetate fraction (PEAF) showed the
strongest inhibitory properties against the formation of fluorescent AGE. In studies by
Justino et al. [52] ethyl acetate fraction from both ethanol and aqueous crude extracts
of Eugenia dysenterica fruit pulp also showed the lowest IC50 values in the BSA-fructose
model. This fraction in both studies was characterized by the highest concentrations
of phenolic compounds. The ethyl acetate fraction of V. opulus fruit contained different
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groups of phenolics with a predominance of chlorogenic acid and much less flavanols
and flavalignans. This fraction of E. dysenterica fruit was composed of various phenolic
compounds such as ferulic acid derivatives, flavonols and flavanols. These results may
indicate that simple phenolic acids as well as more complex flavonoids can be able to
inhibit the AGEs formation. In addition, some studies showed antiglycation activity of
V. opulus fruit components such as 3,5-dicaffeoylquinic acid [72], chlorogenic and caffeic
acid [73,74], catechins and procyanidins [75]. The antiglycation potential of V. opulus fruit
had not been previously studied.

5. Conclusions

The potential ability of V. opulus dried fruit extracts, especially enriched with phenolic
compounds to inhibit α-amylase and α-glucosidase, and AGE formation, and exhibition of
antioxidative activities could be some of antidiabetic properties. The effects listed above
are likely attributed to fruit phenolic compounds. The purification of crude extract resulted
in extract enriched with phenolic compounds showing higher inhibitory activity against
carbohydrate hydrolases and AGE formation, as well as antioxidant capacity. Further
separation of the aqueous PE solution with ethyl acetate led to the obtaining of the acetate
fraction rich in chlorogenic acid, proanthocyanidin oligomers and flavalignans with the
highest inhibitory activity against α-glucosidase, formation of glycation products and
antioxidant potential. The highest inhibitory activity of the water fraction of PE against
α-amylase is related to proanthocyanidin polymers and chlorogenic acids, especially
dicaffeoylquinic acids. This study suggested that the V. opulus fruits can serve as prospective
source of natural phenolics, which could be developed as potential effective component
of nutraceuticals and functional foods, especially after isolating a bioactive fraction, e.g.,
with ethyl acetate. The present results broaden knowledge regarding phytochemical and
biological potential of non-conventional fruits, especially those related to the inhibition of
AGE formation and enzymes activity that hydrolyze carbohydrates.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antiox10060989/s1. Figure S1: Inhibitory effects of V. opulus fruit samples on α-amylase
activity in the presence of potato starch (A) and starch from rice (B), and on α-glucosidase activity in
the presence of maltose (C) and sucrose (D), Figure S2: Inhibition mode of the V. opulus fruit samples
(PE and PEWF) and reference substance (chlorogenic acid and acarbose) on α-amylase in the presence
of potato starch (A) and starch from rice (B), Figure S3: Inhibition mode of the V. opulus fruit samples
(PE and PEAF) and reference substance (chlorogenic acid and acarbose) on α-glucosidase in the
presence of maltose (A) and sucrose (B), Figure S4: The inhibitory effects of V. opulus fruit samples on
advanced glycation-end products (AGE) formation in BSA-fructose (A) and BSA-glucose (B) models.
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