
RESEARCH ARTICLE

Interpreting blood GLUcose data with R

package iglu

Steven Broll1¤a, Jacek Urbanek2, David Buchanan1, Elizabeth Chun3, John Muschelli4,

Naresh M. Punjabi2¤b, Irina GaynanovaID
1*

1 Department of Statistics, Texas A&M University, College Station, TX, United States of America, 2 School of

Medicine, Johns Hopkins University, Baltimore, MD, United States of America, 3 Department of Biology,

Texas A&M University, College Station, TX, United States of America, 4 Johns Hopkins Bloomberg School of

Public Health, Johns Hopkins University, Baltimore, MD, United States of America

¤a Current address: Department of Statistics and Data Science, Cornell University, Ithaca, NY, United States

of America

¤b Current address: Miller School of Medicine, University of Miami, Miami, FL, United States of America

* irinag@stat.tamu.edu

Abstract

Continuous Glucose Monitoring (CGM) data play an increasing role in clinical practice as

they provide detailed quantification of blood glucose levels during the entire 24-hour period.

The R package iglu implements a wide range of CGM-derived metrics for measuring glu-

cose control and glucose variability. The package also allows one to visualize CGM data

using time-series and lasagna plots. A distinct advantage of iglu is that it comes with a

point-and-click graphical user interface (GUI) which makes the package widely accessible

to users regardless of their programming experience. Thus, the open-source and easy to

use iglu package will help advance CGM research and CGM data analyses. R package

iglu is publicly available on CRAN and at https://github.com/irinagain/iglu.

Introduction

Continuous Glucose Monitors (CGMs) are small wearable devices that record measurements

of blood glucose levels at frequent time intervals. As CGM data provide a detailed quantifica-

tion of the variation in blood glucose levels, CGMs play an increasing role in clinical practice

[1]. While multiple CGM-derived metrics to assess the quality of glycemic control and glyce-

mic variability have been developed [2], their complexity and variety pose computational chal-

lenges for clinicians and researchers. While some metrics (e.g. mean) can be directly calculated

from the data, others require additional pre-processing steps, such as projecting glucose mea-

surements on an equidistant time grid (e.g. CONGA, SDbdm) or the imputation of missing

data.

We are aware of two existing R packages for CGM data analyses: CGManalyzer [3] and

cgmanalysis [4]. These packages are primarily designed to read and organize CGM data,

rather than provide an easy-to-use interface for a comprehensive evaluation of available CGM

characteristics. While their analytical utility is undeniable, a substantial number of CGM met-

rics summarized in [2] is not available. Moreover, both packages require the users to have
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considerable programming experience, which might be a limiting factor for researchers seek-

ing robust and accessible analytical solutions. EasyGV is another free CGM software in the

form of a macro-enabled Excel workbook [5], and thus is more accessible compared to CGMa-
nalyzer and cgmanalysis. However, it only allows calculation of 10 metrics. Further-

more, unlike R, Excel is not a script-based programming language, which makes it less

desirable for those users who want to create reproducible scripts for all data processing and

metric calculation steps. Thus, there remains a need for open-source software that (i) com-

putes most of the CGM metrics available from the literature, and (ii) meets the needs of

researchers with varying levels of programming experience.

Our R package iglu calculates all CGM metrics summarized in [2] in addition to several

others [6, 12, 19], a full list of currently implemented metrics is summarized in Table 1. A com-

parison of functionality with CGManalyzer [3] and cgmanalysis [4] is in Table 2. Addi-

tional improvements include advanced visualization with lasagna plots [21], and provided

example CGM datasets that make it easy to get started. Finally, a distinct advantage of iglu
over existing open-source CGM software is a point-and-click graphical user interface (GUI)

which makes the package accessible to users with little to no R experience.

Features

Example data

The iglu package is designed to work with CGM data provided in the form of a data frame

with three columns: id (subject identifier), time (date and time stamp) and gl (corresponding

blood glucose measurement in mg/dL). The package comes with two example datasets that fol-

low this structure. example_data_5_subject contains Dexcom G4 CGM measure-

ments from subjects with Type II diabetes.

example_data_5_subject[1:2,]
id time gl

1 Subject 1 2015-06-06 16:50:27 153
2 Subject 1 2015-06-06 17:05:27 137
example_data_1_subject is a subset corresponding to one subject. These data are

part of a larger study analyzed in [22].

Illustration of metrics use

Table 1 summarizes all the metrics implemented in the package, which can be divided into

two categories: time-independent and time-dependent. All the functions assume that the glu-

cose value are given in mg/dL units. Each function has detailed documentation that describes

all the input parameters (and their default values) as well as the specific algorithm used for

metric calculation. Full documentation can be accessed from the R console after loading the

iglu package (e.g. ? active_percent) or from the accompanying website (https://

irinagain.github.io/iglu/).

One example of a time-independent metric is Hyperglycemia index [2], the corresponding

iglu function returns a single value for each subject in a tibble object [23]. Subject id will

always be printed in the id column, and metrics will be printed in the following columns.

hyper_index(example_data_5_subject)
# A tibble: 5 x 2
id hyper_index
<fct> <dbl>

1 Subject 1 0.391
2 Subject 2 4.17
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3 Subject 3 1.18
4 Subject 4 0.358
5 Subject 5 2.21
In this example, Subject 2 has the largest Hyperglycemia index, indicating the worst hyper-

glycemia. This is reflected in percent of times Subject 2 spends above fixed glucose targets.

above_percent(example_data_5_subject)
# A tibble: 5 x 4
id above_140 above_180 above_250
<fct> <dbl> <dbl> <dbl>

Table 1. Summary of CGM metrics implemented in iglu.

Metric name iglu function Reference Time-dependent

Active percent active_percent Danne et al. (2017) [6] Yes

ADRR adrr Kovatchev et al. (2006) [7] Yes

AUC auc Danne et al. (2017) [6] Yes

COGI cogi Leelarathna et al. (2019) [8] No

CONGA conga McDonnell et al. (2005) [9] Yes

CV cv_glu Rodbard (2009) [2] No

CV subtypes cv_measures Umpierrez & Kovatchev (2018) [10] Yes

eA1c ea1c Nathan et al. (2008) [11] No

GMI gmi Bergenstal et al. (2018) [12] No

GRADE grade Hill et al. (2007) [13] No

GRADEeu grade_eugly Hill et al. (2007) [13] No

GRADEhyper grade_hyper Hill et al. (2007) [13] No

GRADEhypo grade_hypo Hill et al. (2007) [13] No

GVP gvp Peyser et al. (2018) [14] Yes

HBGI hbgi Kovatchev et al. (2006) [7] No

LBGI lbgi Kovatchev et al. (2006) [7] No

Hyper Index hyper_index Rodbard (2009) [2] No

Hypo Index hypo_index Rodbard (2009) [2] No

IGC igc Rodbard (2009) [2] No

IQR iqr_glu No

J-index j_index Wojcicki (1995) [15] No

MAD mad_glu No

MAG mag Hermanides et al. (2010) [16] Yes

MAGE mage Service & Nelson (1980) [17] No

Mean mean_glu No

Median median_glu No

MODD modd Service & Nelson (1980) [17] Yes

M-value m_value Schlichtkrull et al. (1965) [18] No

Percent Above above_percent No

Percent Below below_percent No

Percent in range in_range_percent No

Quantiles quantile_glu No

Range range_glu No

ROC (Rate Of Change) roc Clarke & Kovatchev (2009) [19] Yes

SD of ROC sd_roc Clarke & Kovatchev (2009) [19] Yes

SD sd_glu No

SD subtypes sd_measures Rodbard (2009) [20] Yes

https://doi.org/10.1371/journal.pone.0248560.t001
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1 Subject 1 26.7 8.40 0.446
2 Subject 2 96.8 74.4 26.7
3 Subject 3 51.5 18.9 5.74
4 Subject 4 32.9 4.97 0
5 Subject 5 70.8 38.1 11.6
The default target values of 140, 180 and 250 mg/dL in above_percent can be adjusted

by the user.

Examples of time-dependent metrics include measures of glycemic variability such as

CONGA [9] and standard deviation of rate of change [19]. In the example data, the standard

deviation of rate of change is the highest for Subject 5:

sd_roc(example_data_5_subject)
# A tibble: 5 x 2
id sd_roc
<fct> <dbl>

1 Subject 1 0.620
2 Subject 2 0.642
3 Subject 3 0.831
4 Subject 4 0.617

Table 2. Comparison of iglu functionality with existing R packages for CGM data.

Metric name CGManalyzer cgmanalysis iglu

Active percent × ✓ ✓

ADRR × × ✓

AUC × ✓ ✓

COGI × × ✓

CONGA ✓ ✓ ✓

CV subtypes (mean, sd) × ✓ ✓

CV median × ✓ ×
eA1c × ✓ ✓

Excursions count (over/under) × ✓ ×
GMI × ✓ ✓

GRADE × × ✓

GVP × × ✓

HBGI/LBGI × ✓ ✓

IGC × × ✓

J-index × ✓ ✓

MAG × × ✓

MAGE × ✓ ✓

MODD ✓ ✓ ✓

M-value × × ✓

Multiscale entropy ✓ × ×
Percent in range × ✓ ✓

Time in range ✓ ✓ ×
ROC (Rate of Change) × × ✓

SD subtypes × × ✓

Summary statistics ✓ ✓ ✓

Day/night metrics (SD, min, max, AUC) × ✓ ×
GUI for calculation × × ✓

https://doi.org/10.1371/journal.pone.0248560.t002
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5 Subject 5 1.05
This provides an additional level of CGM data interpretation, since frequent or large glu-

cose fluctuations may contribute to diabetes-related complications independently from

chronic hyperglycemia [24]. Other metrics of glycemic variability confirm the high fluctua-

tions in Subject 5, with all but one of the subtypes of standard deviation being the largest for

Subject 5 [20]:

sd_measures(example_data_5_subject)
# A tibble: 1 x 7
id SdW SdHHMM SdWSH SdDM SdB SdBDM
<fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Subject 1 26.4 19.6 6.54 16.7 27.9 24.0
2 Subject 2 36.7 22.8 7.62 52.0 48.0 35.9
3 Subject 3 42.9 14.4 9.51 12.4 42.8 42.5
4 Subject 4 24.5 12.9 6.72 16.9 25.5 22.0
5 Subject 5 50.0 29.6 12.8 23.3 50.3 45.9
The calculations of these variability metrics require evenly spaced glucose measurements

across time; however, this is not always the case in practice due to missing values and misalign-

ment of CGM measurement times across subjects (e.g. measurement at 17:30 for Subject 1, but

at 17:31 for Subject 2). In order to create a uniform evenly spaced grid of glucose measure-

ments, iglu provides the function CGMS2DayByDay. This function is automatically called

for metrics requiring the evenly spaced grid across days, however the user can also access the

function directly. The function works on a single subject’s data, and has three outputs.

str(CGMS2DayByDay(example_data_1_subject))
List of 3
$ gd2d : num [1:14, 1:288] NA 112.2 92 90.1 143.1 . . .

$ actual_dates: Date[1:14], format: “2015-06-06”
“2015-06-07” . . .

$ dt0 : num 5
The first part of the output, gd2d, is the interpolated grid of values. Each row corresponds

to one day of measurements, and the columns correspond to an equi-distant time grid cover-

ing a 24 hour time span. The grid is chosen to match the frequency of the sensor (5 minutes in

this example leading to (24�60)/5 = 288 columns), which is returned as dt0. The linear inter-

polation is only performed between observed CGM values that are less than inter_gap
minutes apart, otherwise missing values are inserted. By default, the function uses

inter_gap = 45 minutes, however this value can be adjusted by the user. The returned

actual_dates allows one to map the rows in gd2d back to original dates. The achieved

alignment of glucose measurement times across the days enables both the calculation of corre-

sponding metrics, and the creation of lasagna plots discussed in the next section.

Finally, iglu also allows one to assess the reliability of estimated CGM metrics by provid-

ing information on the number of days of data collection together with % of time the CGM

device was active during those days (% of non-missing measurements). This information is

automatically provided as part of the standardized AGP output discussed in the next section,

and can also be obtained directly by calling the function active_percent.

active_percent(example_data_5_subject)
# A tibble: 5 x 5
id active_percent ndays start_date end_date
<fct> <dbl> <drtn> <dttm> <dttm>

1 Subject 1 79.8 12.7 days 2015-06-06 16:50:27 2015-06-19
08:59:36
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2 Subject 2 58.9 16.7 days 2015-02-24 17:31:29 2015-03-13
09:38:01
3 Subject 3 92.1 5.8 days 2015-03-10 15:36:26 2015-03-16

10:11:05
4 Subject 4 98.7 12.9 days 2015-03-13 12:44:09 2015-

03-26 10:01:58
5 Subject 5 95.8 10.6 days 2015-02-28 17:40:06 2015-

03-11 08:04:28
According to [25], 10-14 days of CGM measurements are generally sufficient for assessing

outcomes in clinical trials, and for determining potential adjustments to diabetes management

based on retrospective review. Given these recommendations, the estimates of CGM parame-

ters for Subject 3 are less reliable than the estimates for other subjects in the example dataset.

To investigate the agreement of metrics calculations with existing software, we selected a

subset of metrics for cross-comparison of CGManalyzer, cgmanalysis and iglu on the

example dataset. We found that the summary statistics (min, max, mean, quantiles, total SD)

are in perfect agreement for all 5 subjects across all three packages. Additionally, cgmanaly-
sis and iglu have perfect agreement in the values of GMI, eA1C, CV, % of glucose values in

range and J-index. There is a slight (less than 1%) disagreement in % of time CGM is active

between iglu and cgmanalysis, which we suspect is due to varying rounding precision.

There is also some disagreement in all three packages in CONGA values (using a common

parameter of n = 1 hour), which we suspect is due to differences in handling missing values

and in grid interpolation schemes. Overall, the results show good agreement between the three

packages as the calculated metrics either match perfectly or are close. Table 3 shows explicit

values for Mean, SD, % time CGM is active, GMI, J-index and CONGA (n = 1 hour) for all

five subjects across all three packages.

Visualizations

The iglu package has several visualization capabilities, which are summarized in Table 4. The

main function is plot_glu, which by default provides a time series plot for each subject. The

glucose values are plotted on a linear scale, however an optional log parameter can be used to

display glucose on a semilogarithmic scale [26]. Fig 1 illustrates the default output on example

data with the horizontal red lines indicating user-specified target range, the default range is

[70, 180] mg/dL [27]. The visual inspection of the plots confirm the previous conclusions from

comparison of Hyperglycemia index and metrics of glycemic variability across subjects: the

majority of measurements for Subject 2 are above 180 mg/dL, however the variability is larger

for Subject 5.

Another visualization type is provided via lasagna plots [21], which use a color grid rather

than a number scale to visualize trends in data over time. The lasagna plots in iglu can be

single-subject or multi-subject. The single-subject lasagna plot has rows corresponding to each

day of measurements with a color grid indicating glucose values (Fig 2A). An optional within-

time sorting across days allows one to investigate average glucose patterns as a function of 24

hour time periods (Fig 2B). The multi-subject lasagna plot has rows corresponding to subjects,

with a color grid indicating glucose values across the whole time domain, or average glucose

values across days. The highest glucose values are displayed in red, whereas the lowest are dis-

played in blue. Thus, the numerical glucose values are mapped to color using the gradient

from blue to red (Fig 2), which corresponds to the default ‘blue-red’ color scheme. An

alternative ‘red-orange’ color scheme can be selected by the user by corresponding modi-

fication of the ‘color_scheme’ parameter (using the gradient from red to green to yellow
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to orange, with green corresponding to values in specified glucose range). Fig 2C displays a

customized multi-subject lasagna plot for example data that displays average glucose values

across days for each subject; this plot is produced by the following call.

plot_lasagna(example_data_5_subject, datatype = “average”,
midpoint = 140, limits = c(60,

400))

Table 3. Comparison of selected metrics across R packages using example dataset.

Metric name Subject id CGManalyzer cgmanalysis iglu

Mean Subject 1 123.7 123.7 123.7

Subject 2 218.5 218.5 218.5

Subject 3 154.0 154.0 154.0

Subject 4 129.7 129.7 129.7

Subject 5 174.6 174.6 174.6

SD Subject 1 33.3 33.3 33.3

Subject 2 52.4 52.4 52.4

Subject 3 44.8 44.8 44.8

Subject 4 29.1 29.1 29.1

Subject 5 55.6 55.6 55.6

% Time CGM is Active Subject 1 × 79.0 79.8

Subject 2 × 58.0 58.9

Subject 3 × 92.0 92.1

Subject 4 × 98.0 98.7

Subject 5 × 95.0 95.8

GMI Subject 1 × 6.3 6.3

Subject 2 × 8.5 8.5

Subject 3 × 7.0 7.0

Subject 4 × 6.4 6.4

Subject 5 × 7.5 7.5

J-index Subject 1 × 24.6 24.6

Subject 2 × 73.3 73.3

Subject 3 × 39.5 39.5

Subject 4 × 25.2 25.2

Subject 5 × 54.4 54.4

CONGA (n = 1 hour) Subject 1 24.7 25.7 25.9

Subject 2 19.9 25.1 25.7

Subject 3 38.2 41.0 39.5

Subject 4 23.2 22.6 23.3

Subject 5 49.0 50.0 49.3

https://doi.org/10.1371/journal.pone.0248560.t003

Table 4. Summary of iglu visualization capabilities.

Function call Visualization description Main parameters

plot_glu Multiple plot types: time series and lasagna plottype, lasagnatype

plot_lasagna Lasagna plot of glucose values for multiple subjects datatype, lasagnatype

plot_lasagna_1subject Lasagna plot of glucose values for a single subject lasagnatype

plot_roc Time series of glucose values colored by rate of change (ROC) subjects, timelag

hist_roc Histogram of rate of change (ROC) values subjects, timelag

agp Ambulatory Glucose Profile (AGP) maxd, daily

https://doi.org/10.1371/journal.pone.0248560.t004
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The midpoint specifies the glucose value (in mg/dL) at which the color transitions from

blue to red (the default is 105 mg/dL), whereas the limits specify the range (the default is

[50, 500] mg/dL). From Fig 2 one can for example infer that the glucose values for Subject 1

tend to be the highest in late afternoon (� 15:00—20:00). One can also infer that Subject 1

Fig 1. Time series plots for five subjects. Selected target range is [70, 180] mg/dL.

https://doi.org/10.1371/journal.pone.0248560.g001

Fig 2. Lasagna plots. (A) unsorted and (B) time-sorted lasagna plot for Subject 1; (C) unsorted customized multi-subject lasagna plot based on average

values across days.

https://doi.org/10.1371/journal.pone.0248560.g002
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tends to have the lowest glucose values during night time hours (0:00—6:00) compared to the

other four subjects.

While lasagna plots are very similar to stacked bar charts introduced in [28], there are two

main differences. First, the stacked bar charts split the glucose values into a fixed number of

categories (based on specified glucose cutoffs), where the same color is used within each cate-

gory. In contrast, the lasagna plots use gradient fill, thus the gradient of the color changes con-

tinuously with the change in glucose values. We believe this provides more detailed

information on the subject’s glucose profile. Secondly, the stacked bar charts in [28] are cre-

ated for one subject at a time. In contrast, iglu allows one to create lasagna plots for multiple

subjects at once. Using datatype = ‘average’ with lasagnatype = ‘subject-
sorted’ facilitates direct cross-comparison of glucose distributions across subjects, whereas

lasagnatype = ‘timesorted’ facilitates assessment of population-level trends. Fig 3

shows both types of plots. Fig 3A shows that Subject 2 has the highest levels of hyperglycemia,

whereas Subjects 1 and 4 have the lowest levels of hyperglycemia. Fig 3B shows that among the

5 subjects, hyperglycemia is most common in the later afternoon, with the times around 4pm

(16:00) and 9pm (21:00) showing the highest glucose values.

In addition to visualizing absolute glucose values, iglu also allows one to visualize local

changes in glucose variability as measured by rate of change [19]. There are two types of visual-

izations associated with rate of change. The first is a time series plot of glucose values where

each point is colored by the rate of change at that given time. Points colored in white have a

stable rate of change, meaning the glucose is neither significantly increasing nor decreasing at

that time point. Points colored red or blue represent times at which the glucose is significantly

rising or falling, respectively. Thus colored points represent times of glucose variability, while

white points represent glucose stability. Fig 4A shows a side by side comparison of rate of

change time-series plots for two subjects. Subject 1 shows significantly less glucose variability

than Subject 5. The function call to produce this plot is as follows.

plot_roc(example_data_5_subject, subjects = c(“Subject 1”,
“Subject 5”))

Fig 4B shows a side by side comparison of rate of change histogram plots for the same sub-

jects. Once again, the colors show in what direction and how quickly the glucose is changing.

The histogram plots allow one to immediately assess the variation in rate of change. Extreme

values on either end of the histogram indicate very rapid rises or drops in glucose—a high

degree of local variability. In Fig 4, Subject 1 once again shows lower glucose variability by hav-

ing a narrower histogram with most values falling between -2 mg/dl/min and 2 mg/dl/min.

Subject 5 has a shorter, more widely distributed histogram indicating greater glucose variabil-

ity. The function call to produce this plot is as follows.

hist_roc(example_data_5_subject, subjects = c(“Subject 1”,
“Subject 5”))

Finally, iglu allows one to generate an Ambulatory Glucose Profile (AGP) report in accor-

dance with recommendations in [29]. Fig 5 shows an example report for Subject 1, which

includes information on data collection period, time spent in standardized glycemic ranges

(cutoffs of 54, 70, 180 and 250 mg/dL) displayed as a stacked bar chart [28], glucose variability

as measured by %CV, and visualization of quantiles of the glucose profile across days together

with daily glucose views.

Relationship between metrics

To illustrate the relationships between different metrics and their interpretation, we calculated

all metrics for example data of 5 subjects. Fig 6 shows the heatmap of resulting metrics
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(centered and scaled across all subjects to aid visualization) created using R package pheat-
map [30]. The hierarchical clustering of glucose metrics results in six meaningful groups with

the following interpretation (from top to bottom): (1) in range metrics; (2) hypoglycemia met-

rics; (3) hyperglycemia metrics; (4) a mixture of variability and hyperglycemia metrics; (5)

CVsd (standard deviation of CV, coefficient of variation, across days); (6) glucose variability

metrics. Interestingly, while CVsd is a measure of glucose variability, it behaves quite differ-

ently from other variability metrics in these 5 subjects. The hierarchical clustering of subjects

confirms our previous observations that Subject 2 has the worst hyperglycemia (highest values

Fig 3. Multi-subject lasagna plots in ‘red-orange’ color scheme. (A) sorted within each subject and (B) sorted within each time point across subjects.

https://doi.org/10.1371/journal.pone.0248560.g003

PLOS ONE Interpreting glucose data with iglu

PLOS ONE | https://doi.org/10.1371/journal.pone.0248560 April 1, 2021 10 / 17

https://doi.org/10.1371/journal.pone.0248560.g003
https://doi.org/10.1371/journal.pone.0248560


for metrics in group (2)), whereas Subject 5 has the highest glucose variability (highest values

for metrics in group (6)). The relationship between a reduced list of metrics has also been stud-

ied in [31, 32] using sparse principal component analysis. While [31, 32] focus on selection of

a few key metrics to describe glucose variability, our goal here is exploratory analysis to illus-

trate differences and similarities between all metrics on a given dataset.

GUI via shiny application

The iglu package comes with a shiny application [33], which provides a point-and-click graph-

ical user interface (GUI) for all metric calculations and visualizations. The interface can be

accessed from R console by calling

iglu::iglu_shiny()
or directly at https://irinagain.shinyapps.io/shiny_iglu/. The users can load their CGM data in

.csv format, and export metrics output to the user’s clipboard or to .csv, .xlsx, or .pdf files (Fig

7A and 7B). Fig 7C shows an example of shiny interface for creating customized visualization

plots based on user-loaded data.

Conclusion

The iglu package is designed to simplify computations of CGM-derived glucose metrics, and

assist in CGM data visualization. The current version includes all of the metrics summarized

in [2] as well as many others (see Table 1). New metrics will be incorporated into the future

versions as they develop. More details on the package functionality together with the full docu-

mentation are provided in the package website at https://irinagain.github.io/iglu/.

Several limitations exist when compared to existing CGM software. First, the R interface

assumes that the CGM data is already loaded into R as a data frame, which requires users to

have sufficient R knowledge for data processing. The Shiny app currently only allows one to

load CGM data in .csv format, and thus it also requires initial pre-processing by the user, albeit

not necessarily in R. This is not the case for CGManalyzer or cgmanalysis, which can

work directly with specialized data formats from many popular CGMs. Nevertheless, continu-

ous development of new CGM meters coupled with varying data formats across meters present

definite challenges for any CGM software. Secondly, while the list of metrics implemented in

iglu is more comprehensive compared to other R packages on CGM (Table 3), it still lacks

some functionality that may be desired as part of the AGP output [6], specifically the count of

hypoglycemia/hyperglycemia excursions, and separation of metrics into sleep/wake time peri-

ods. Thirdly, while the agreement of metric values across software packages is encouraging, it

does not necessarily signify the agreement with gold standard (see also the discussion in [4]).

Furthermore, a comprehensive cross-comparison across packages is quite difficult as it

Fig 4. Rate of change visualizations. (A) time-series and (B) histogram plots of rate of change for two selected subjects from example dataset.

https://doi.org/10.1371/journal.pone.0248560.g004
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requires a careful adjustment for potential differences in default parameters used in metrics

calculations, in handling of missing values, and in underlying algorithms used. However, we

believe that the explicit metric values provided in Table 3 coupled with public availability of

our example dataset will serve as a useful preliminary step towards this endeavor. We hope to

Fig 5. Ambulatory Glucose Profile (AGP) for Subject 1 generated by iglu.

https://doi.org/10.1371/journal.pone.0248560.g005
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Fig 6. Heatmap of all metrics calculated using iglu for 5 subjects with Type II diabetes. Hierarchical clustering is

performed on centered and scaled metric values using distance correlation and complete linkage. The cluster tree for

metrics is cut at 6 groups, which can be interpreted as follows (from top to bottom): (1) in range metrics; (2)

hypoglycemia metrics; (3) hyperglycemia metrics; (4) a mixture of variability and hyperglycemia metrics; (5) CVsd

(standard deviation of CV, coefficient of variation, across days); (6) glucose variability metrics. The heatmap supports

that Subject 2 has the worst hyperglycemia and Subject 5 has the highest glucose variability.

https://doi.org/10.1371/journal.pone.0248560.g006
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Fig 7. Shiny GUI interface for iglu. (A) loading CGM data in .csv format; (B) calculating user-specified quantiles for each subject; (C)

creating customized lasagna plot for the selected subject.

https://doi.org/10.1371/journal.pone.0248560.g007
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address some of these limitations in future iterations by leveraging complimentary existing

open-source CGM software and our own updates to iglu.

From the context of CGM data applications, we acknowledge that an extensive list of met-

rics may have little utility for individual patient care in day to day clinical practice beyond the

commonly used % of glucose values in range, Mean, CV, etc. Despite this, the iglu has

important strengths that merit discussion. First, given that CGM is likely to be incorporated in

clinical studies outside the realm of Type 1 diabetes, having accessibility to methods for sum-

marizing CGM measures that extend the typical panel is of value. Second, CGM measures pro-

vide dynamic characterization of glucose trajectories which can be of immense value when

considering the potential impact of conditions that are associated with acute temporal changes

in pathophysiological mechanisms that can impact glucose homeostasis. For example, sleep

apnea is a common condition that affects 9% of women and 25% of men in the general popula-

tion. It is well known that sleep apnea is associated with nocturnal repetitive increases in sym-

pathetic activity due to cyclical hypoxemia and recurrent arousals from sleep. Thus, to

determine whether these acute changes which are known to increase sympathetic nervous sys-

tem activity can influence glucose homeostasis measures that capture the dynamic nature of

glucose trajectories are needed. Even in clinical scenarios where acute pathophysiological

changes are not present, metrics that help probe the temporal nature of glucose are of value.

For example, obesity is associated with metabolic flexibility. Having detailed CGM measures

that help define the various rate of change (increase and decrease in glucose levels) can provide

insight into how conditions such as obesity and polycystic ovary syndrome, alter the diurnal

nature of glucose profiles. Furthermore, given the detailed nature of CGM data and the

increasing use of acquiring such data, we believe that convenient methods for analyzing CGM

data are desperately needed to facilitate the use of CGM methodology by investigators in

observational studies and randomized clinical trials.

In summary, while there are existing open-source R packages for CGM data analyses [3, 4],

these packages focus more on CGM data reading than exhaustive metric implementation, and

require programming experience. Instead, iglu focuses on comprehensive implementation

of available CGM metrics and ease of use via accompanying GUI application. All data loading,

parameter selection, metric calculations and visualizations are available via point-and-click

graphical user interface. This makes iglu accessible to a wide range of users, which coupled

with the free and open-source nature of iglu will help advance CGM research and CGM data

analyses.
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