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Abstract

The whole-genome sequence of Bombella intestini LMG 28161T, an endosymbiotic acetic

acid bacterium (AAB) occurring in bumble bees, was determined to investigate the molecu-

lar mechanisms underlying its metabolic capabilities. The draft genome sequence of B.

intestini LMG 28161T was 2.02 Mb. Metabolic carbohydrate pathways were in agreement

with the metabolite analyses of fermentation experiments and revealed its oxidative capac-

ity towards sucrose, D-glucose, D-fructose and D-mannitol, but not ethanol and glycerol.

The results of the fermentation experiments also demonstrated that the lack of effective

aeration in small-scale carbohydrate consumption experiments may be responsible for the

lack of reproducibility of such results in taxonomic studies of AAB. Finally, compared to the

genome sequences of its nearest phylogenetic neighbor and of three other insect associ-

ated AAB strains, the B. intestini LMG 28161T genome lost 69 orthologs and included 89

unique genes. Although many of the latter were hypothetical they also included several

type IV secretion system proteins, amino acid transporter/permeases and membrane pro-

teins which might play a role in the interaction with the bumble bee host.

Background

Acetic acid bacteria (AAB) are best known for their production of acetic acid from ethanol dur-
ing vinegar and cocoa bean fermentation [1–3]. Some AAB are also of interest to the industry
because of their capacity to produce cellulose or other chemicals, such as L-sorbose involved in
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the synthesis of vitamin C [4]. Furthermore, AAB occur as plant growth-promoting bacteria
[5], insect endosymbionts [6], and as spoilers of many kinds of beverages such as wine and
beer [7]. AAB are classified in the family Acetobacteraceae within the Alphaproteobacteria.
Recent studies of the symbiotic relationship between AAB and several insect hosts have
revealed that this symbiosis relies on sugar-based diets such as nectar, fruit sugar, or phloem
sap [6, 8]. During a study of the bumble bee and honey bee gut microbiota, an Acetobacteraceae
operational taxonomic unit, referred to as Alpha-2.2, was repeatedly detected in the digestive
tract of honey bees (Apis spp.) and bumble bees (Bombus spp.) [9–13]. These bacteria were cat-
egorized as one of the core bacteria in Bombus bimaculatus [9] and its presence in wild bumble
bees (Bombus) was positively associated with Crithidia infection [9]. The Alpha-2.2 strain
LMG 28161T was recently isolated from the crop of a red-tailed bumble bee, Bombus lapidar-
ius; it showed 97–99% pairwise 16S rRNA gene sequence identity to Alpha-2.2 sequences and
was formally classified into a novel genus as Bombella intestini [14]. Another Alpha-2.2 isolate,
A29, was recently described as “Parasaccharibacter apium” and showed 98.9% 16S rRNA
sequence similarity with B. intestini LMG 28161T; it was proven to be helpful in improving
honey bee resistance toNosema infections [13]. B. intestini LMG 28161T shows distinctive phe-
notypic features from other AAB, such as Gluconobacter and Acetobacter [14]. In the present
study, the genomic characteristics of B. intestini LMG 28161T were examined through a whole-
genome sequencing approach and its capability to oxidize the main components of nectar and
honey, i.e. sucrose, glucose and fructose [6] and D-mannitol, a six-carbon sugar alcohol that is
widely distributed in plants, were explored [15] through cultivation experiments under both
aerobic and micro-aerobic conditions. Genomes of three insect associated AAB strains, i. e.
Asaia platycodi SF2.1, Commensalibacter intestini A911, Saccharibacter sp. AM169 and of its
nearest phylogenetic neighbor, Saccharibacter floricolaDSM 15669T (an organism isolated
from the pollen of Japanese flowers) were used in an ortholog analysis to explore the genetic
symbiotic traits in B. intestini.

Results and Discussion

General genome features

The genome sequencing of B. intestini strain LMG 28161T, an endosymbiotic acetic acid bacte-
rium occurring in bumble bees, yielded more than 6 million reads of 2 x 100 bp with a genome
coverage of 299.0 x. All reads were assembled into 12 contigs of 1,402 to 670,914 nucleotides.
Automated gene prediction and annotation of the assembled genome sequences resulted after
manual curation in a draft genome of 2.02 Mb with an average G + C content of 54.9%. The lat-
ter value was identical to the DNA G+C content determined through an enzymatic degradation
method [16] and separation of the nucleoside mixture through high-performance liquid chro-
matography [14]. The general genome features are summarized in Table 1. The genome size of

Table 1. General genome features of Bombella intestini LMG 28161T.

Organism Bombella intestini LMG 28161T

Genome size (bp) 2,023,177

Number of contigs 12

G+C% 54.9

CDS 1,574

tRNAs 50

rRNAs 3

Accession number PRJNA235371

doi:10.1371/journal.pone.0165611.t001
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B. intestini is most similar to that of Saccharibacter sp. AM169 (1.9 Mb) which was isolated
from the honey beeApis mellifera [17]; however, it is smaller than that of most other AAB that
have been determined (2.7–3.9 Mb) [2, 18–20]. The reduced genome size may be indicative for
gene loss, which can cause reduced functional capabilities, a typical feature of niche-specific
microorganisms, such as bacterial endosymbionts and may suggest that B. intestini has adapted
to the bumble bee digestive tract [13, 21–22].

No plasmids were found during the assembly. The final annotation resulted in 1574 coding
sequences (CDSs) and 54 RNA sequences, including three rRNA genes (5S, 16S and 23S), 50
tRNA genes, and one non-coding RNA. Three clustered regularly interspaced short palin-
dromic repeats (CRISPRs) were found on contig 1, contig 2, and contig 5. CRISPR-associated
CDSs were found on contig 1 (AL01_08840, AL01_08855) and contig 5 (AL01_03255,
AL01_03260, AL01_03265). The three CRISPR arrays are 233 bp, 1736 bp and 1736 bp in
length, with 3, 28 and 28 spacers, respectively. The draft genome was submitted to NCBI under
the BioProject PRJNA235371.

Metabolic pathways of carbohydrates

Based on the annotated draft genome, central metabolic pathways including the Embden-Mey-
erhof-Parnas (EMP) pathway, the pentose-phosphate pathway (PPP), the pyruvate pathway,
and the tricarboxylic acid (TCA) cycle were reconstructed (Fig 1).

All genes encoding the enzymes of the EMP pathway were identified, except for the phos-
phofructokinase-codinggene, suggesting incomplete glycolysis. The absence of this gene in
AAB has been reported before for Gluconobacter oxydans 621H, Acetobacter pasteurianus IFO
3283, and Gluconacetobacter diazotrophicus Pal5T [2, 18–20].

All genes encoding the enzymes of the PPP were identified, enabling degradation of hexoses
such as glucose and fructose via this pathway. Uptake of hexoses appeared possible through a
sugar transporter (AL01_05795 and AL01_06590) or a D-galactose transporter encoded by
galP (AL01_03445, AL01_03450 and AL01_02185), which both belong to the major facilitator
superfamily (MFS) [19, 23]. Phenotypic tests, using a method described previously [24],
revealed that B. intestini LMG 28161T was capable to produce acid from several carbohydrates,
including sucrose, D-glucose, D-fructose, D-galactose, D-mannitol, and D-mannose [14]. A
polyol oxidoreductase (AL01_07080) enabling the conversion of D-mannitol into D-fructose
was also found, as well as genes encoding enzymes that catalyze D-mannose utilization (Fig 1).
This supported the previous observation that B. intestini LMG LMG 28161T is able to produce
acid from D-mannitol and D-mannose [14].

D-gluconate could be oxidized into 2-keto-D-gluconate by a membrane-bound gluconate
2-dehydrogenase (AL01_07015) (Fig 2A). A gene encoding gluconate-5-dehydrogenase was
not found. This was in accordance with the previous observation that this microorganism can
produce 2-keto-D-gluconate but not 5-keto-D-gluconate [14]. A general alcohol dehydroge-
nase-coding gene (AL01_01980) was found, but no gene encoding an enzyme for the oxidation
of acetaldehyde into acetate. This supported the phenotypic inability of this strain to produce
acetate from ethanol [14]. Furthermore, a gene encoding glycerol kinase was not detected, sug-
gesting that glycerol could not be transferred into the cell and further utilized. This explained
why this microorganism can not grow on or produce acid from glycerol [14].
B. intestini LMG 28161T appeared to possess an incomplete TCA cycle. Genes coding for

enzymes converting succinyl-CoA into succinate, succinate into fumarate, and malate into oxa-
loacetate were not identified. However, L-asparagine permease (AL01_09015) and L-aspartate
oxidase (AL01_04960) were identified. The former could enable the microorganism to take up
L-asparagine from the environment, which could then be hydrolyzed to L-aspartate. L-
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aspartate oxidase is a flavoprotein that acts on the CH-NH2 group of donors with oxygen as
electron acceptor [4]. Oxygen can be replaced by fumarate as electron acceptor, yielding succi-
nate [23]. The ability of the enzyme to use both oxygen and fumarate in cofactor re-oxidation
enables it to function under both aerobic and anaerobic conditions [23]. L-aspartate could be
converted by aspartate aminotransferase (AL01_03035) into oxaloacetate to join the TCA
cycle. As for fumarate, it could also be derived from L-aspartate via two different two-step reac-
tions with adenylosuccinate or L-argininosuccinate as intermediates, catalyzed by adenylosuc-
cinate synthetase (AL01_06765), adenylosuccinate lyase (AL01_00960), argininosuccinate
synthase (AL01_09265) and argininosuccinate lyase (AL01_02240). Although the three above-
mentioned substrates of the TCA cycle could be generated by other reactions, the amount of
energy generated through the TCA cycle may be rather limited, as in a complete TCA cycle the
three enzymatic reactions catalyzed by these three missing enzymes are accompanied by the
generation of GTP, FADH2 or NADH [4].

Membrane-bound dehydrogenases and respiratory chain

Compared to other genome-sequenced AAB strains, B. intestini LMG 28161T did not possess
many membrane-bound dehydrogenases, as only three were found (Fig 2A), namely a cofactor
pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase (AL01_09305) allowing
the conversion of glucose into gluconate, a flavine adenine dinucleotide (FAD)-dependent glu-
conate 2-dehydrogenase (AL01_07015) allowing the conversion of gluconate into 2-keto-glu-
conate, and a FAD-dependent D-lactate oxidase (AL01_06935) allowing the conversion of D-
lactate into pyruvate. A pqqBCDE operon (AL01_07315, AL01_07320, AL01_07325 and
AL01_07330) encoding proteins for the biosynthesis of the cofactor PQQ was found. In the
genomes of G. oxydans 621H and A. pasteurianus 386B, a pqqABCDE operon responsible for
PPQ biosynthesis is present [2]. It has been shown previously that a pqqAmutant of G. oxydans
621H is unable to grow on D-mannitol, D-glucose, or glycerol as the sole energy source [25].
Bombella intestini LMG 28161T could grow on D-glucose and D-mannitol as the sole energy
source (see below), which indicates that pqqA was not vital for this strain.

Genes encoding ubiquinol-cytochrome c reductase (bc1 complex) (AL01_05885,
AL01_08145, AL01_08150) and cytochrome c (AL01_05875) were found in the genome, but
not cytochrome c oxidase-encoding genes. Genes encoding a type II NADH dehydrogenase
(AL01_05990) and a NAD(P)H:ubiquinone oxidoreductase (AL01_07780) were present in the

Fig 1. Central metabolic pathways of Bombella intestini LMG 28161T. Dashed arrows represent missing steps in the pathways due to the

absence of corresponding genes. Genes encoding enzymes that catalyze the reaction between pyruvate and methylglyoxal in pyruvate

metabolism and those that catalyze the conversion of succinyl-CoA to succinate, succinate to fumarate and malate to oxaloacetate in the TCA

cycle were not found in the draft genome. 1, glucokinase (AL01_01675); 2, glucose-6-phosphate isomerase (AL01_06115); 3, aldose

epimerase (AL01_04275); 4, fructose 1, 6-bisphosphatase (AL01_08695); 5, fructose-bisphosphate aldolase (AL01_06890); 6, glyceraldehyde-

3-phosphate dehydrogenase (AL01_03750); 7, phosphoglycerate kinase (AL01_03755); 8, phosphoglycerate mutase (AL01_07435,

AL01_07655); 9, enolase (AL01_00860); 10, pyruvate kinase (AL01_00625); 11, malate dehydrogenase (AL01_05845); 12, pyruvate

dehydrogenase (AL01_00915, AL01_00920, AL01_03860); 13, pyruvate dehydrogenase E2 (AL01_00925); 14, dihydrolipoamide

dehydrogenase (AL01_00930); 15, lactate dehydrogenase (AL01_06935); 16, hydroxyacylglutathione hydrolase (AL01_04950); 17,

lactoylgluthathione lyase (AL01_00090); 18, pyruvate decarboxylase (AL01_08375); 19, alcohol dehydrogenase (AL01_01980, AL01_07015);

20, citrate synthase (AL01_06255); 21, aconitate hydratase 1 (AL01_06260); 22, NADP+-dependent isocitrate dehydrogenase (AL01_06250);

23, 2-oxoglutarate dehydrogenase E1 (AL01_08340); 24, dihydrolipoyllysine succinyltransferase (AL01_07740); 25, dihydrolipoamide

dehydrogenase (AL01_00930); 26, fumarate hydratase (AL01_05840); 27, PQQ-dependent glucose dehydrogenase (AL01_09305); 28,

gluconolactonase (AL01_06230); 29, lactate dehydrogenase (AL01_06935); 30, phosphogluconate dehydrogenase (AL01_06120); 31,

transketolase (AL01_06110); 32, transaldolase (AL01_06115); 33, gluconate 2-dehydrogenase (AL01_07015); 34, 6-phosphogluconate

dehydrogenase (AL01_06120); 35, ribose-5-phosphate isomerase (AL01_06135); 36, glucose-6-phosphate dehydrogenase (AL01_02790); 37,

6-phosphogluconolactonase (AL01_06130); 38, ribulose-phosphate 3-epimerase (AL01_09060); 39, polyol:NADP oxidoreductase

(AL01_07080); 40, phosphomannomutase (AL_0102400); 41, mannose-1-phosphate guanyltransferase (AL01_07360); 42, carbohydrate

kinase (AL01_03675); 43, mannose06-phosphate isomerase (AL01_00140); 44, 2-dehydro-3-deoxyphosphogluconate aldolase (AL01_04330).

doi:10.1371/journal.pone.0165611.g001
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genome. Both these enzymes catalyze electron transfer from NADH to ubiquinone [4]. A flavo-
protein-ubiquinone oxidoreductase (AL01_08300) could catalyze electron transfer from flavo-
protein to ubiquinone. The reduced product, ubiquinol, could diffuse within the membrane
and be re-oxidized by cytochrome bo3 ubiquinole oxidase (AL01_00470, AL01_00475,
AL01_00480 and AL01_00485) (Fig 2B). A previous study has suggested that AAB acquired
ubiquinol oxidase from β/γ-Proteobacteria via horizontal gene transfer and created afterwards
a truncated respiratory chain in which electron transfer to oxygen occurs via ubiquinol oxidase

Fig 2. A) Membrane bound dehydrogenase and B) respiratory chain of Bombella intestini LMG 28161T. a, membrane-bound

glucose dehydrogenase (AL01_09305); b, gluconate 2-dehydrogenase (AL01_07015); c, membrane-bound lactate dehydrogenase

(AL01_06935); d, electron transfer flavoprotein-ubiquinone oxidoreductase (AL01_08300); e, type II NADH dehydrogenase

(AL01_05990); f, cytochrome bo3 ubiquinol oxidase (AL01_00470, AL01_00475, AL01_00480 and AL01_00485); g, ubiquinol-

cytochrome c reductase (bc1 complex) (AL01_05885, AL01_08145, AL01_08150); h, Cyt C, cytochrome c (AL01_05875).

doi:10.1371/journal.pone.0165611.g002
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directly, accepting electrons from ubiquinol [26]. The truncated respiratory chain would gener-
ate less energy, but allow rapid oxidations, which would be beneficial for AAB [26]. Cyto-
chrome bo3 oxidase has been detected in other AAB genomes and shows a high affinity for
oxygen, possibly allowing their survival in environments with low oxygen availability, such as
the insect gut [17].

Amino acid metabolism and nitrogen metabolism

Pathways for all proteinogenic amino acids except alanine were present. L-alanine could not be
converted from L-aspartate due to the absence of aspartate 4-decarboxylase and might be
taken from the environment via an amino acid transporter or permease. Glutamate can be con-
verted to ornithine and enter the urea cycle, where ornithine as well as aspartate are eventually
converted to fumarate and enter the citrate cycle. Nitrogen fixation pathways were absent;
ammonia can be incorporated into glycine by glycine synthase or to cyclic amidines by NAD
synthase.

Bumble bee endosymbionts-related features

An ortholog analysis of B. intestini LMG 28161T, A. platycodi SF2.1, C. intestini A911, Sacchari-
bacter sp. AM169 and S. floricolaDSM 15669T carried out in OrthoMCL resulted in 1397 ortho-
log groups, including 894 core orthologs. In total 69 orthologs were shared among the four
reference genomes but not present in B. intestini LMG 28161T, including cytochrome d ubiquinol
oxidase subunit I, II, 39 functional genes and 28 hypothetical genes (S1 Table). Compared to the
above mentioned reference strains, B. intestini LMG 28161T possessed 86 unique genes, of which
63 were hypothetical protein coding sequences and 23 were functional genes (S2 Table). Among
the 23 functional genes, genes encoding for five type IV secretion system proteins, three amino
acid transporter/permeasesand three membrane proteins were unique to B. intestini. ABC trans-
porters and type IV secretion systems have been reported to be involved in the cross talk between
endosymbionts and their insect hosts [17, 21, 27–28]. Multiple CDSs associated to ABC trans-
porters were identified (Table 2). A signal recognition particle (SRP) complex (AL01_03075 and
AL01_06750), which recognizes and targets specific proteins on the plasma membrane, was also
present. The restriction modification system to degrade foreign DNA, which has been found in
the genomes of two additional Bombus endosymbionts,Gilliamella apicola and Snodgrasella alvi
[21], was not detected in the genome of B. intestini LMG 28161T; yet, CRISPR elements were
present and may be used in the defense against bacteriophages.

Metabolite analysis

During a monoculture fermentation experiment at 10-L scale, B. intestini LMG 28161T oxi-
dized D-glucose from the beginning of the fermentation, with a rapid drop after 12 h until D-
glucose was completely depleted after 36 h (Fig 3). The biomass formation during fermentation
was limited [from 4.5 to 5.9 log (CFU/mL)], which was probably due to the nutrient-limited
composition of the medium used. The pH value of the medium decreased from 7.0 to 3.5 dur-
ing fermentation, which was in accordance with the acid production from D-glucose [14].

Bumble bees feed on nectar, which comprises sucrose, fructose, glucose, and in some plants
also D-mannitol [29] as the main components; glucose and mannitol are also often used as
main carbon source in AAB growth media [1, 14]. Therefore, these carbohydrates may serve as
carbon source for B. intestini during its endosymbiotic lifestyle. As the digestive tract of bees is
a micro-aerobic environment, growth on sucrose, D-glucose, D-fructose, and D-mannitol was
checked under both aerobic and micro-aerobic conditions in 50-mL glass bottle experiments.
Bombella intestini LMG 28161T was capable to utilize these four carbohydrates; under both
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aerobic and micro-aerobic conditions, D-glucose was consumed the most, followed by sucrose,
however, sucrose and D-glucose were more consumed under aerobic than under micro-aerobic
conditions, whereas D-fructose was utilized more under micro-aerobic conditions; for manni-
tol, no difference was seen (Table 3). In addition, 2-keto-D-gluconic acid was produced under
both incubation conditions when sucrose and D-glucose were used as the sole carbon source.
Gluconic acid and acetic acid were not found. The cultivation experiments therefore confirmed
that B. intestini LMG 28161T was able to produce 2-keto-D-gluconic acid through oxidation of
glucose (and sucrose) under both aerobic and micro-aerobic conditions.

During the 10-L fermentation experiment (aerobic conditions), D-glucose was depleted
completely after 36 h of incubation, whereas during the 50-mL glass bottle experiments (aero-
bic conditions) none of the four carbohydrates investigated was depleted. In the latter case,
growth mainly occurred at the surface. The difference in aeration might explain the difference
in carbohydrate depletion during the two test systems. The lack of effective aeration in small-
scale carbohydrate consumption experiments may explain the lack of reproducibility of such
results often reported in taxonomic studies of AAB [14, 30, 31].

Conclusion

B. intestini LMG 28161T, an endosymbiotic acetic acid bacterium occurring in bumble bees,
carries a small genome of 2.02 Mb. The reconstructed metabolic pathways were congruent

Table 2. CDSs related to ABC transporters found in the draft genome of B. intestini LMG 28161T.

Gene product Locus tag

ABC transporter AL01_07240, AL01_02455

ABC transporter permease AL01_07235, AL01_07895, AL01_01955, AL01_02560,

AL01_04765, AL01_08515

ABC transporter substrate-binding protein AL01_03865

ABC transporter ATP-binding protein AL01_06795, AL01_00180, AL01_00230, AL01_01625,

AL01_01630, AL01_01950

Multidrug ABC transporter AL01_08210, AL01_08950

Multidrug ABC transporter substrate-

binding protein

AL01_02460

Multidrug ABC transporter ATPase AL01_05575

Peptide ABC transporter permease AL01_07685

Amino acid ABC transporter permease AL01_05630

Branched-chain amino acid ABC

transporter permease

AL01_05150

Iron-siderophore ABC transporter

permease

AL01_00405

Iron ABC transporter substrate-binding

protein

AL01_00400, AL01_01945

Iron ABC transporter ATP-binding protein AL01_00410

Polyamine ABC transporter ATP-binding

protein

AL01_07890

Glutamine ABC transporter ATP-binding

protein

AL01_05625

Nitrate ABC transporter ATP-binding

protein

AL01_01705

Organic solvent ABC transporter substrate-

binding protein

AL01_02300

Phosphate ABC transporter substrate-

binding protein

AL01_07215

doi:10.1371/journal.pone.0165611.t002
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with the results of the fermentation experiments and with phenotypic features determined pre-
viously [14]. Compared to four other AAB genomes analyzed, the genome of B. intestini lost 69
orthologs that were shared among the other 4 strains. Simultaneously it included 89 unique
genes, many of which were hypothetical. The unique genes in B. intestini included genes encod-
ing for several type IV secretion system proteins, amino acid transporter/permeases and

Fig 3. Growth of and D-glucose consumption by Bombella intestini LMG 28161T during fermentation in basal medium with 1% (w/v) D-glucose.

Glucose was consumed rapidly after 12h and was completely used after 36h. Growth of cells stabilized after some 27h.

doi:10.1371/journal.pone.0165611.g003

Table 3. Means and SD, comparison of means of carbohydrate consumption (T-test) by Bombella intestini LMG 28161T under aerobic and micro-

aerobic conditions. Means are tested for difference by Least Significant Difference (LSD) test. Means indicated by the same letter in a column do not differ

(P = 0.05) according to LSD test.

Carbohydrates Percentage amount of carbohydrates consumed under different

cultivation conditions (%)

T-test

Aerobic Micro-aerobic

Sucrose 34.95±1.811 a 29.41±2.036 a 0.0125*

Glucose 52.45±0.360 b 46.32±1.190 b 0.0039**

Fructose 15.02±5.147 c 25.94±1.696 c 0.0275*

D-mannitol 18.30±3.928 c 20.40±1.681 d 0.2313

* Significant at α = 0.05.

**Significant at α = 0.01.

doi:10.1371/journal.pone.0165611.t003
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membrane proteins, which might play a role in the interaction with the bumble bee host. B.
intestini LMG 28161T was capable to oxidize sucrose, D-glucose, D-fructose, and D-mannitol,
which are all present in nectar or honey, while it was incapable of oxidizing ethanol or glycerol,
which are not available in the bumble bee gut. In addition, B. intestini showed a different pref-
erence in carbohydrates consumption under aerobic and micro-aerobic conditions, where
sucrose and D-glucose were more preferred under aerobic condition, while D-fructose was uti-
lized more under micro-aerobic conditions.

Materials and Methods

Strain cultivation, DNA extraction, genome sequencing, assembly, and

annotation

Bombella intestini strain LMG 28161T was cultivated in LMG medium 404 [5%, w/v, D-glu-
cose; 1%, w/v, yeast extract (Oxoid) and 1.5%, w/v, agar] for DNA extraction at large scale,
using the method of Wilson as modified previously [32]. The integrity of the DNA was evalu-
ated on a 1.0% (w/v) agarose gel and the purity was checked by spectrophotometric measure-
ments at 234, 260 and 280 nm. The DNA concentration was estimated with a Quantus™
fluorometer using a QuantiFluor1ONE ds DNA system kit (Promega Corporation, Madison,
WI, USA). Library preparation and genome sequencing were performed by BaseClear BV (Lei-
den, The Netherlands). Paired-end sequence reads were generated using the Illumina
HiSeq2500 system (Illumina Inc., San Diego, CA, USA). The initial de novo assembly of the
raw reads into contigs was performed using the CLCgenomic workbench v6.5.1 (CLC Inc, Aar-
hus, Denmark).

Automated gene prediction and annotation of the assembled genome sequences were per-
formed with GenDB v2.2 [33], the Rapid Annotations using Subsystems Technology (RAST)
server [34], and the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (PGAAP;
http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html). The PGAAP gene predictions
and annotations were used as basis for the final annotation. They were manually curated for
the coding sequences (CDSs) of interest using BLASTp (http://blast.ncbi.nlm.nih.gov/blast)
and UniProt (http://www.uniprot.org), taking also into account the information from RAST
and GenDB. Metabolic pathways were manually reconstructed using the information from the
final annotation. The KEGG database [35] aided in the reconstruction of the pathways.
CRISPRs were searched for using CRISPR Finder [36] and considered if they were classified as
‘confirmed’.

Ortholog analysis

Four genomes of AAB were selected for the ortholog analysis, including three insect associated
AAB strains, Asaia platycodi SF2.1, Commensalibacter intestini A911, Saccharibacter sp.
AM169 and the nearest phylogenetic neighbor of B. intestini, Saccharibacter floricolaDSM
15669T (an organism isolated from the pollen of Japanese flowers) (Table 4). The analysis was
carried out using OrthoMCL [37].

Carbohydrate consumption experiments

To determine the growth rate and glucose consumption rate of strain LMG 28161T, one 10-L
monoculture fermentation experiment was carried out in basal medium [yeast extract 0.5%,
w/v, [24]] supplemented with 1% (w/v) D-glucose. The fermentation was performed in a 15-L
BiostatC fermentor (Sartorius AG, Melsungen, Germany) at 28°C, free pH, and 300 rpm for
36 h. Aerobic conditions during the fermentation were ensured by continuously sparging the
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medium with 5 liters min-1 of air. The inoculum for the fermentation experiment was prepared
as follows. Strain LMG 28161T was cultivated in 100 mL of LMG medium 404 [5%, w/v, D-glu-
cose and 1%, w/v, yeast extract (Oxoid)] and subsequently propagated twice in 400 mL of basal
medium supplemented with 1% (w/v) D-glucose. During the inoculum buildup, the transferred
volume was always 5% (v/v). Incubation was done at 28°C for 48 h on a rotary shaker. The
inoculum was added to the fermentation vessel aseptically. During the fermentation experi-
ment, the pH was monitored automatically. Samples were withdrawn at regular time intervals
for offline analysis.

To verify metabolic pathways, the oxidation of the carbohydrates sucrose, D-glucose, D-
fructose, and D-mannitol was verified under aerobic and micro-aerobic conditions (80% N2,
4% O2, 8% H2, and 8% CO2). The experiments were conducted in triplicate, using the same
method as described previously for acid production from different carbon sources [24], in
50-mL glass bottles filled with 20 mL of basal medium supplemented with 1% (w/v) of the car-
bon source, but without bromocresol purple added to the medium. The bottles were incubated
at 28°C for 7 days on a rotary shaker (aerobic conditions), and in a jar for the micro-aerobic
conditions experiments. A medium sample was collected before inoculation and after 7 days of
incubation with the culture. The samples were centrifuged and the supernatants were stored at
-20C until further analyses were carried out.

Analysis of bacterial growth, carbohydrate consumption and metabolite

production

Growth of LMG 28161T during fermentation [expressed in log (CFU/mL)] was quantified
through plating of 10-fold serial dilutions of the samples in physiological solution [0.85% (w/v)
NaCl] onto LMG medium M404. Determination of glucose consumption rate was calculated
based on the time of glucose depletion, by measuring glucose concentration every three hours
as described previously [38]. Determination of carbohydrate, acetic acid, D-gluconic acid, and
2-keto-D-gluconic acid concentrations in the samples taken from the 50-mL bottles, was done
using a Focus gas chromatograph (Interscience, Breda, The Netherlands) as described previ-
ously [38]. Statistical analysis of carbohydrates consumption was carried out using SPSS ver-
sion 15.0 (SPSS, Inc., Chicago, IL, USA).

Supporting Information

S1 Table. Group of core orthologs only found among Asaia platycodi SF2.1, Commensali-
bacter intestini A911, Saccharibacter sp. AM169 and Saccharibacter floricolaDSM 15669T

but not in Bombella intestini LMG 28161T. Abbrevation “com, sfl, sac” and “asp” before “|”
represent Commensakibacter intestini A911, Saccharibacter floricolaDSM 15669T, Sacchari-
bacter sp. AM169 and Asaia platycodi SF2.1, respectively. The number after “|” refers to
sequence locus in each of the genome.
(XLSX)

Table 4. List of bacterial genomes used for the ortholog studies.

Organism Accession number Origin

Bombella intestini LMG 28161T PRJNA235371 Crop of a bumble bee

Asaia platycodi SF2.1 CBLX010000001:27 Anopheles stephensi

Commensalibacter intestini A911 PRJNA75109 Drosophila melanogaster

Saccharibacter sp. AM169 CBLY010000001:9 Apis mellifera

Saccharibacter floricola DSM 15669T PRJNA181373 Pollen of Japanese flower

doi:10.1371/journal.pone.0165611.t004
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S2 Table. Unique genes found in Bombella intestini LMG 28161T.
(XLSX)
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