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Abstract

Background: While the conserved positions of a multiple sequence alignment (MSA) are clearly of interest, non-conserved
positions can also be important because, for example, destabilizing effects at one position can be compensated by
stabilizing effects at another position. Different methods have been developed to recognize the evolutionary relationship
between amino acid sites, and to disentangle functional/structural dependencies from historical/phylogenetic ones.

Methodology/Principal Findings: We have used two complementary approaches to test the efficacy of these methods. In
the first approach, we have used a new program, MSAvolve, for the in silico evolution of MSAs, which records a detailed
history of all covarying positions, and builds a global coevolution matrix as the accumulated sum of individual matrices for
the positions forced to co-vary, the recombinant coevolution, and the stochastic coevolution. We have simulated over 1600
MSAs for 8 protein families, which reflect sequences of different sizes and proteins with widely different functions. The
calculated coevolution matrices were compared with the coevolution matrices obtained for the same evolved MSAs with
different coevolution detection methods. In a second approach we have evaluated the capacity of the different methods to
predict close contacts in the representative X-ray structures of an additional 150 protein families using only experimental
MSAs.

Conclusions/Significance: Methods based on the identification of global correlations between pairs were found to be
generally superior to methods based only on local correlations in their capacity to identify coevolving residues using either
simulated or experimental MSAs. However, the significant variability in the performance of different methods with different
proteins suggests that the simulation of MSAs that replicate the statistical properties of the experimental MSA can be a
valuable tool to identify the coevolution detection method that is most effective in each case.
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Introduction

During the past decade many efforts have been devoted to

uncover the evolutionary dynamic of organisms through the

examination of multiple sequence alignments (MSAs). The MSA

of the members of a protein family provides a 2-dimensional view

of a protein history, in which the 3rd and 4th dimensions, structure

and time, are flattened. In a MSA some positions are highly

conserved, while others vary. The conserved positions are clearly

important, but the non-conserved positions are also important

because the net stabilization of the folded state of proteins relative

to the unfolded state is usually so small, that all positions may at

some point contribute significantly to protein stability. For

example, the destabilizing effects of a given amino acid at one

position can be compensated by the stabilizing effect of a certain

amino acid at another position. The existence of physical and

functional interactions between sites in protein sequences leads to

non-independence of their evolution: in other words, two (or more)

positions in a protein sequence could be coevolving, and for any

mutation to become fixed at such sites, compensatory mutations

are needed at the related sites.

However, a high background of different interacting factors

often hides the coevolutionary relationships between amino acid

sites. A simple model to explain the correlation Cij between two

sites i and j in a sequence alignment was proposed by Atchley et al.

[1,2]:

Cij~CphylogenyzCstructurezCfunctionzCinteractionzCstochastic

In this model Cphylogeny is the correlation originating from

phylogenetic relationships between homologous sequences that

belong to the same branch of an evolutionary tree. For example, a

mutation in an ancestral protein, which is clearly a single

PLOS ONE | www.plosone.org 1 October 2012 | Volume 7 | Issue 10 | e47108



evolutionary event, appears in the MSA as an independent event

that occurred in each of the proteins that descended from that

ancestor. Cstructure and Cfunction represent the correlation originating

from structural and functional constraints. Ultimately, the

preservation of structure is also related to the preservation of

function because small changes in atom distances in the active site

(produced by overall changes of structure) can have effects on the

binding and activation energies as dramatic as those produced by

very localized mutations in the active sites [3]. As a consequence,

these sources of correlation, which are the most important signal

that coevolution analyses try to extract from the MSA, are

typically not independent from one another. Furthermore, as

mutations are fixed elsewhere in the sequence throughout the

evolutionary process, the functional and structural constraints on

the correlation between sites may even change. Cinteraction describes

both the interaction between the aforementioned sources of

correlation, and the correlation originating from atomic interac-

tions in homo-oligomeric proteins. Finally, Cstochastic represents the

correlation originating from casual co-variation and/or from

uneven or incomplete sequence sampling. Low-quality and poorly

populated MSAs are likely to produce a high degree of false

coevolution signals as a result of the significant effect of

stochasticity [4].

A wide variety of algorithms have been developed to detect

coevolving positions from a MSA (reviewed in [5–7]). Some of

these methods use x2-tests [8,9], some are perturbative [10–12],

others employ amino acid substitution matrices [13], and many

work within the frame of information theory [14–24].

In practice, most approaches to correlated mutation analysis do

not discriminate between structural and functional correlations,

and the sensitivity of most methods to detect these two forms of

coevolution (the important signal) is ultimately dependent on the

quality of the MSA, and is compromised in various degrees by the

ability of these methods to filter out the stochastic and

phylogenetic noise. In all cases, it appears that the inclusion of

three-dimensional information may significantly enhance the

methods’ power to detect a clean coevolution signal [25,26].

Another problem shared by most methods that use co-evolution

analysis to predict interactions among residues is that many

structurally distant pairs appear to be strongly correlated. One

source of this correlation is the phylogenetic relationship between

sequences in a multiple alignment. Another source is the

propagation of statistical dependencies along chains of co-evolving

contacts [11,27], which tends to confound direct with indirect

interactions. Disentanglement of these two types of interactions

was attempted with the MIp [18], Zres [20] and Zpx [26]

corrections of MI statistics, with the application of Bayesian

network modeling in the logR method [22], with Direct Coupling

Analysis (DCA) [24,28], a maximum entropy method, and most

recently with the use of sparse inverse covariance estimation in the

PSICOV method [23]. PSICOV and DCA capacity to separate

direct from indirect interactions was exploited to predict correctly

the three-dimensional structures of both soluble and membrane

proteins [29–31].

In the absence of an analytical model for covariation, many

studies have relied on the simulations of MSAs as a tool to test a

method capacity to filter out the background coevolution signal

[4,9,15–17,32]. Simulated MSAs can reproduce some of the

evolutionary parameters of the real MSA (e.g., the level of

conservation and the amino acid distribution at each site, the

distribution of pair-wise similarities between individual sequences)

and thus, given a certain amino acid substitution model, can easily

yield the true coevolution signal. Earlier simulations of MSAs

developed for the purpose of studying coevolution have not

included recombination processes (e.g., horizontal transfers),

which by their own nature can produce large coevolving blocks

inside a protein. In this study we have developed a new program,

MSAvolve (implemented as a Matlab Toolbox and distributed

under BSD licensing), for the in silico evolution of MSAs, which

allows for both substitutions at individual sites, and recombination

in and between branches of an evolutionary tree. The program

records a detailed history of all covarying positions, and

automatically builds a global coevolution matrix as the accumu-

lated sum of individual matrices for the structure/function

coevolution (the positions that we force to co-vary), the recombi-

nant coevolution, and the stochastic (random) coevolution. The

degree of phylogenetic coevolution can be derived independently

from the previous three matrices, which however, by themselves

describe completely the coevolution history of the sequences in the

MSA.

In this study we simulated the MSAs for 8 protein families,

which reflect sequences of different sizes and proteins with widely

different functions. The calculated coevolution matrices (the true

coevolution in the evolved MSAs) were compared with the

coevolution matrices obtained for the same evolved MSAs with a

variety of methods to detect covariation, including three new ones

(used here for the first time) based on a binary representation of

the alignment. In a second approach we have evaluated the

capacity of the different methods to predict close contacts in the

representative X-ray structures of the 8 aforementioned families,

represented by MSAs with less than 500 sequences, and an

additional 150 protein families, represented by MSAs with over

1000 sequences.

Results

Development of the differential binary methods
The differential binary methods were developed empirically

using the feature of MSAvolve that allows a direct comparison

between the true coevolution signal buried in a simulated MSA

and the coevolution signal identified a posteriori by a coevolution

detection method. Rationale for these methods initially stems from

the consideration that the Mutual Information (MI) between two

positions (i and j) in a MSA contains two kinds of information: (a)

the first kind is just the information that something changes: for

example when the amino acid (aa) at position i changes from

sequence 1 (s1) to sequence 2 (s2), also the aa at position j changes

from s1 to s2. (b) the second kind is the information about what aa

changes at i from s1 to s2, compared to what aa changes at j from

s1 to s2. Many non-MI methods use external information, such as

substitution models and the properties of amino acids, that puts

extra weight on the second kind of information. In contrast, we

sought to find methods that put more emphasis on the simple

occurrence of substitutions, disregarding the type of substitution

involved: in principle, it should be possible to factorize the MI

matrix in such a way that only information of type (a) is included.

A numeric translation of the MSA that retains only the

information on the occurrences of changes between sequences, but

loses the information of what type of changes occur between them,

was obtained by assigning a value of zero to every position of the

first row of the MSA, and then in each consecutive row a 0 at the

positions in which the symbol was the same as in the previous row

and a 1 when the symbol changed from the previous row

(Figure 1A). In this binary translation of the MSA, every 0 in a

row represents a ‘no change’ with respect to the row immediately

above, and every 1 represents a ‘change’: for this reason, we refer

to this particular numeric formulation of the MSA as a ‘differential

binary translation’.

Coevolution Signal in Multiple Sequence Alignments
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Figure 1. The differential binary (db) method. A. Resorting of the MSA and differential binary translations. The upper half of the panel shows
the same 10 sequences in three different orders. The lower half of the panel shows the corresponding differential binary translations, with the values
of the sums highlighted in red. The order of sequences on the left produces the highest sum ( = 100) after differential binary translation. The order in
the middle produces an intermediate value ( = 74) of the sum, while the order on the right produces the smallest possible sum ( = 49) of any resorting
of the sequences. B. Entropy changes in the binary translations of a simulated MSA of KDO8P synthase. The first point in the plot is the mean entropy
,H(i+j). = ,H(i)+H(j). of the unsorted binary MSA. The remaining points are the values of the same quantity in each of the 300 possible binary
MSAs obtained by first resorting the original MSA, using in each case a different reference sequence (which is assigned a value of 0 in all the
positions). C. Same as B but reporting on the mean joint entropy ,H(i,j). of all possible pairs. D. Mean mutual information
,MI(i;j). = ,H(i)+H(j)2H(i,j). for all possible pairs.
doi:10.1371/journal.pone.0047108.g001
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As might be predicted, changing the order of the sequences in

the original alignment results in different binary alignments

(Figure 1A). Initial testing with simulated MSAs generated with

MSAvolve indicated that a MI matrix calculated from the

differential binary translation of the MSA had the best perfor-

mance in the assignment of coevolving residues when the ordering

of the sequences was calculated from the binary MSA with the

smallest sum of 1’s, that is when the number of changes from

sequence to sequence was minimized. It is important to notice that

the minimum obtained in the sum of the binary matrix depends on

the choice of the 1st sequence in the MSA. The algorithm

essentially orders the sequences phylogenetically, such that similar

sequences are grouped together. An example of this optimal

binary translation is shown in Figure 1A. In the upper half of the

panel the same 10 sequences are shown in three different orders.

The lowest half of the panel shows the corresponding differential

binary translations. The order on the left produces the largest

binary sum ( = 100). The order in the middle produces an

intermediate value ( = 74) of the sum, while the order on the right

produces the smallest possible value of the sum ( = 49) for any

resorting of the sequences.

As shown in the following sections of the manuscript, the binary

methods are among the most effective methods at detecting

coevolving positions from just sequence data. To understand the

origin of this performance, we have explored the effect of different

ordering of the MSA by measuring the entropy, joint entropy, and

MI of all possible pairs of positions in the corresponding binary

alignments. For example, these are shown in panels B through D

of Figure 1 for a simulated MSA of KDO8PS containing 300

sequences of 280 aa’s each. The first point in panel B represents

the mean value of the sum of the entropies, H = H(i)+H(j), for all

possible columns i and j, in the unsorted MSA. The remaining

points in the plot show the mean value of the same sum for the 300

possible binary MSAs obtained by resorting the original MSA

using in each case a different sequence as the top sequence (which

is assigned a value of 0 everywhere), with the rest of the ordering

still minimizing 1’s. Panel C is similar to panel B except that in this

case the mean values of the joint entropy H(i,j) are shown, which

increase after resorting. Since the mutual information between

columns i,j of the MSA is defined as MI(i;j) = H(i)+H(j)2H(i,j),

resorting of the MSA leads to a reduction in the mean value of MI

(Figure 1D). We found that after the MSA is translated into

differential binary format, the initial resorting of sequences aimed

at minimizing the number of changes (1’s) always leads to a

decrease in the mean MI and entropy and to an increase in the

mean joint entropy of the columns of the binary MSA.

After the differential binary representation of the original MSA

is obtained, a MI matrix is calculated from the binary alignment,

and is further processed to obtain a ZPX2 matrix, defined here as

the square of the ZPX matrix described by Gloor et al. [21]. The

final ZPX2 matrix is thus named ‘differential binary ZPX2’ or

‘dbZPX2’. Our testing with simulated MSAs has shown that on

average the best results in term of prediction of the coevolving

positions and speed of the algorithm, are obtained when the 1st

and 2nd sequence of the resorted MSA are the two most similar

sequences.

In a refined version of the algorithm, also a covariance matrix

(COV) is calculated from the ‘differential’ binary MSA: the MI

matrix, and the covariance matrix are scaled by linear regression

and merged. Finally, the ZPX2 matrix is calculated from the

merged MI/COV matrix.

There are special advantages in calculating the MI matrix from

a binary MSA of 0’s and 1’s. For example, calculation of a

dbZPX2 matrix from a MSA of 300 sequences of 280 aa’s takes

less than 2s.

As previously noted, the basic formulation of the binary method

discards the information about the type of aa that changes between

two sequences at a given position in the MSA. We have used two

avenues to reintroduce this information in the method. One

avenue relies on introducing a ‘global’ binary representation of the

MSA [12], in which each sequence of length n (possibly containing

gaps) is treated as a vector of 0’s and 1’s of size 216n: in this

representation each column of the original MSA is expanded in 21

columns of the binary MSA. For example, if the original MSA

consists of 10 rows and 10 columns, the equivalent global binary

MSA consists of 10 rows and 210 columns. In this case, first, a MI

matrix is calculated from the simple ‘differential’ binary represen-

tation of the resorted MSA producing a matrix of dimensions

(10610). Then, the same resorted MSA is converted to a ‘global

differential’ binary matrix. A covariance matrix of dimensions

(2106210) is calculated from the ‘global differential’ binary

matrix: in this matrix the covariance between columns i and j of

the original MSA is contained in the submatrix of indices

[i621:i621+20] and [j621:j621+20]. The Frobenius norm of

this submatrix is then used as the value at the ij index of a

‘collapsed’ covariance matrix of dimensions (10610), which

reflects directly the original MSA of dimensions (10610). In the

next step, the MI matrix from the ‘differential’ binary MSA, and

the covariance matrix from the ‘global differential’ binary MSA

are scaled by linear regression and merged as already described for

the dbZPX2method. Finally, the ZPX2 matrix is calculated from

the merged MI/COV matrix. Because of its derivation from a

‘global binary’ representation of the MSA, the resulting coevolu-

tion matrix is named differential global binary ZPX2 (dgbZPX2).

A second avenue to reintroduce information on the type of aa

changes between consecutive sequences in the MSA is based on a

combination between the ‘normal’ MSA and the ‘binary’ MSA. In

practice all the positions of the resorted ‘normal’ MSA that

correspond to a 0 in the resorted ‘binary’ MSA are assigned a

value of 0. In this way a ‘no change’ at a position of the MSA

between two consecutive sequences is still represented by a 0,

while a ‘change’ is represented by the standard range of 21

symbols, including gaps (Figure 2). In this approach, the

information of repeated changes to the same pair of amino acids

in the same positions can be detected by MI. Finally a ZPX2

coevolution matrix is calculated from the MI matrix: because of its

derivation from a combination of a ‘normal’ and a ‘binary’ MSA,

this type of coevolution matrix is named ‘nbZPX2’.

A flowchart of the db, dgb, and nbZPX2 algorithms is provided

as Text S1. Matlab functions (NMSA_to_dbZPX2, NMSA_-

to_dgbZPX2, NMSA_to_nbZPX2) with detailed comments for

each step in the three algorithms are provided as part of the

MSAvolve Toolbox (Toolbox S1).

Covariation in simulated MSAs
Typically, some a posteriori criteria are employed to ascertain

whether the coevolving positions identified from the analysis of a

MSA are correct. Among these, the most common one is whether

the coevolving positions are close in space in the three-dimensional

structure of the protein under study. However, some methods of

coevolution detection [10–12] often lead to the identification of

residues that are distant from each other in the protein structure,

with the implication that these residues are involved in a long

distance functional connection between sites. Since different

strategies of coevolution detection lead to different hypotheses

on the role of coevolving residues in protein structure and

Coevolution Signal in Multiple Sequence Alignments
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function, there is really no way of knowing which strategy is

correct.

In a first set of studies, we have tested several coevolution

detection methods for their capacity to detect residues that were

forced to coevolve in the simulated MSAs of 8 protein families

(KDO8P synthase, (KDO8PS [33]), the F1 chaperones Atp11p

and Atp12p [34], the catalytic subunit ArsA of the arsenic

transporter [35], the arsenate reductase ArsC [36], p-hydroxy-

benzoate hydroxylase (PHBH [37]), phthalate dioxygenase reduc-

tase (PDR [38]), and (S)-mandelate dehydrogenase (sMDH [39])),

with which we are particularly familiar because of our previous

work on the X-ray structures of representative members of these

families. For each family, 100 different MSAs were simulated with

MSAvolve (see Methods). Details of the simulations (e.g., number

of sequences, number of covarions, recombination sites) are given

in Table 1.

Since MSAvolve builds coevolution matrices of each simulated

MSA by counting the mutations that segregate at specific times

during the evolution of a protein, this function can be equated to

that of an external observer who witnesses the historical process of

evolution. With respect to this point there are two observers in

MSAvolve: one is a ‘low power’ observer, who counts all the co-

segregating mutations regardless of whether they originate from

chance, recombination, or functional/structural demands (the

latter are the mutations under constraint of coevolution). There is

also a ‘high power’ observer, who counts selectively the true co-

segregating mutations of functional/structural significance.

An example of the information gathered by the observers (as

reported in the construction of coevolution matrices) is shown in

Figure 3 for one simulated MSAs of KDO8P synthase. The panel

labeled ‘totCOV’ represents the total count of all the coevolution

events. The residue pairs that are under constraint of coevolution

are indicated by red circles. The panel labeled ‘mutCOV’

represents the count of the coevolution events due to random

point mutations at positions that are not set to coevolve. The panel

labeled ‘recCOV’ represents the count of coevolution events due

to recombination; since recombination affects simultaneously large

blocks of sequence, its effects on the coevolution count are much

larger that those of point mutations.

The matrix labeled ‘covCOV’ is the count of the true covarions.

In this matrix there are counts also at pairs of positions that were

not set to covary. This is due to the fact that when by chance two

or more covarion pairs mutate and segregate during an arbitrary

amount of time, also the cross-count between pairs are added. For

example if pairs 12–34 and 70–93 both mutate, then the count

increases by 1 not only for those two pairs but also for the pairs

12–70, 12–93, 34–70, and 34–93. Since are not always the same

pairs that mutate at the same time, the background from cross-

pairs counts is not as high as the count from the true covarying

pairs.

While the individual matrices are built independently during the

simulated evolution of the MSA from a single ancestor, in the end

they are all consistent with each other: for example, a matrix

identical to the totCOV matrix is obtained independently as the

sum of the mutCOV, covCOV, and recCOV matrices.

Detection of covariation in simulated MSAs
Calculated coevolution matrices like that shown in Figure 3

describe in full the true coevolutionary history of a simulated

MSA, and can be compared with those derived for the same MSA

Figure 2. The normal/binary (nb) method. The upper half of the panel shows the same 10 sequences in three different orders. The lower half of
the panel shows the corresponding normal/binary translations. The number of non-zero elements and the mean MI of the normal/binary alignments
are highlighted in red and green, respectively. The ,MI. reaches its lowest values only when the number of non-zero elements is fully minimized.
doi:10.1371/journal.pone.0047108.g002
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by some of the leading methods to detect coevolution. In this study

we have tested several established algorithms based on mutual

information (MI), including Z-scored cross-product positional MI

(ZPX, and its square, the form used here, which we refer to as

ZPX2) [21], logR [22], Direct Coupling Analysis (DCA) [24,29],

and the three binary methods (db, dgb, and nbZPX2) described

above.

We have also tested several non-MI algorithms including

Observed Minus Expected Squared Covariance (OMES) [8,9],

McLachlan Based Substitution Correlation (McBASC) [13,40],

Explicit Likelihood of Subset Co-variation (ELSC) [10], Statistical

Coupling Analysis (SCA) [11,12,41]. Sparse Inverse Covariance

(PSICOV) [23] could not be tested because all the simulated

MSAs were smaller than 500 sequences, and the original PSICOV

program (downloaded from the authors’ website) uses the

GLASSO sparse inverse function [42], which has problems of

convergence with less than 500 sequences. We modified the

original code in order to override the default minimum

requirement of 500 sequences, but in that case PSICOV failed

to converge to a solution with most of our MSAs.

A measure of how well different methods identify covarying

pairs in a set of 100 simulated MSAs of a protein family can be

obtained by using the counts of the true coevolution events for

each pair provided by the covCOV matrices as the values for the

corresponding pairs identified by the different methods. In this

analysis the ij pairs of the covCOV matrix and the ‘method’ matrix

are first sorted in descending order based on their value. Then, the

values of the ij pairs of the covCOV matrix are assigned to the

corresponding ij pairs of the ‘method’ matrix. For example, if pair

20:40 was counted 500 times in the covCOV matrix the

corresponding pair 20:40 of the ‘method’ matrix is assigned a

value of 500 regardless of its original value. In this way a plot of

the cumulative sum of the values of the sorted ‘method’ matrix

visualizes how much the coevolution recognition provided by the

method approaches the ‘ideal’ coevolution recognition provided

by the cumulative sum of the values of the sorted covCOV matrix.

Results of this analysis were first averaged over all 100 simulated

MSAs of each protein family (see Figures S1, S2, S3, S4, S5,
S6, S7, S8). Then, the results obtained with all 8 protein families

were further merged (Figure 4A). Based on this synthesis,

nbZPX2 was on average the most effective method to identify

covarying positions in these protein families, although both DCA

and ZPX2 were within the margins of error of nbZPX2.

One might wonder if the results obtained with different

coevolution detection methods are somehow biased by the

particular program (in this case MSAvolve) used to simulate the

MSAs. For this reason, we also simulated 100 MSAs for each of

the 8 families using an earlier program, SIMPROT, developed by

one of us [32], which is based on a simulation strategy completely

different from that of MSAvolve. In these simulations, there is no

recombination between fragments and no cross-covariations

between pairs, and thus the background of stochastic covariation

is much lower than in the simulations carried out with MSAvolve.

As expected, the coevolution detection performance of all the

methods (summarized in Figure 4B) was closer to the internal

ideal record generated by the program (orange line). With the

exception of logR, which scored more poorly with weak covarions

(tail of the cumulative covarions count in Figure 4B), the newest

methods (ZPX2, db/dgb/nbZPX2, and DCA) all scored very

similarly to each other. Among the remaining methods, ELSC

approached the performance of simple MI, and McBASC

exceeded it, still showing lower performance than logR in the

detection of weakly covarying pairs. OMES and SCA were againT
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much less effective than even simple MI in the entire range of

covariation strength tested.

Prediction of close contacts in X-ray crystal structures
A second approach we have used to evaluate the performance of

different coevolution detection methods is based on the assump-

tion that a large proportion of all coevolving residues in a protein

are residues in close proximity of each other. ZPX, logR, DCA,

and PSICOV [21–24,28,29] were developed with the specific goal

of separating direct from indirect coupling between residues, and

thus are expected to be more selective in the detection of

coevolving positions that are close in space, but distant in

sequence, in the structure of representative members of a protein

family. In order to verify this claim, the experimental MSAs of the

8 protein families that served as reference in the MSA simulations,

and a larger set of MSAs of 150 protein families (downloaded from

http://bioinf.cs.ucl.ac.uk/downloads/PSICOV/suppdata) were

examined with the same coevolution detection methods used in

the analysis of the simulated MSAs. We kept the two sets separate,

because in the first case (8 protein families) all the experimental

MSAs contained less than 500 sequences, while in the second case

(150 protein families) all the experimental MSAs contained more

than 1000 sequences. The performance of PSICOV (which has a

lower limit of 500 sequences) could be tested only with the larger

set.

To quantify the detection of close contacts, we measured what

percentage of all residue pairs separated by less than 8 Å in the X-

ray structure was represented in the top coevolving pairs identified

by each method (Figures S1, S2, S3, S4, S5, S6, S7, S8,
panels D–E; see also the Rightmost panels for examples of

contact maps predicted by some of the methods). A number of

pairs equal to the number of residues in each sequence was

considered. This result was further filtered in order to include

either all the pairs or only pairs whose component residues are

separated by at least 5, 10, and 20 positions in sequence space.

The merged result of this analysis for the small set of 8

experimental MSAs and the larger set of 150 MSAs are shown

in Figures 5 and 6, respectively.

The averaged results obtained for both sets of families show that

the newest methods (ZPX2, db/dgb/nb_ZPX2, logR, DCA,

Figure 3. Coevolution matrices derived from a simulated MSA. totCOV: total count of all coevolution events. Although this matrix is built
independently during the simulated evolution of the MSA from a single ancestor, it can also be obtained as the sum of the mutCOV, covCOV, and
recCOV matrices (see below). Residue pairs under coevolution constraint (true covarions) are indicated by red circles. mutCOV: count of coevolution
events due to random point mutations at positions that are not set to coevolve. recCOV: count of coevolution events due to recombination. This
count includes residues pairs that are true covarions. covCOV: count of true covarions. There are counts also at pairs of positions that were not set to
be covarying because when two or more covarion pairs mutate and segregate also the cross-counts between pairs are added.
doi:10.1371/journal.pone.0047108.g003
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PSICOV), are all within each other’s margins of error, and are

generally superior to the older methods (MI, OMES, McBASC,

ELSC, SCA) (Figures 5, 6). The number of sequences in the

MSA is clearly an important factor in determining the accuracy of

Figure 4. Averaged results for 8 protein families with simulated MSAs under 500 sequences. Cumulative count of covariation events
corresponding to the top scoring pairs in the coevolution matrices generated by different methods. A. MSAs simulated with MSAvolve: a dotted
vertical line marks the total number of true covarying pairs controlled by the program (as shown in Table 1). B. MSAs simulated with SIMPROT: in
these simulations a total number of 50 covarying pairs was used regardless of the sequence length. Since each curve of the two panels is not the
average of independent replicas of the same experiment, traditional standard deviation (std) has no meaning in this case. The error bars for selected
points i represent a weighted std (wsi) calculated as follows:

wsi~
SiT{sið Þ

SiT
si

.
doi:10.1371/journal.pone.0047108.g004
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the predictions. For example, no more than 8% of all the pairs

separated by less than 8 Å are found in the set of 8 families with

MSAs smaller than 500 sequences (Figure 5), while at least 20%

are found in the set of 150 families with MSAs larger than 1000

sequences (Figure 6).

Discussion

The current study was initiated to provide an updated testing of

the most commonly used methods to detect coevolution from only

sequence data, using both simulated and experimental MSAs. In

the case of simulated MSAs, we used two different programs,

MSAvolve and SIMPROT, to generate more than 1600 different

MSAs for 8 families of proteins of different sizes, folds and

functions. The ‘true’ coevolution matrices recorded by the

programs were compared with the coevolution matrices obtained

for the same evolved MSAs with a variety of MI and non-MI

methods. The same methods were also tested with the experi-

mental MSAs of the same 8 families and of additional 150 families,

for their ability to identify coevolving pairs that matched pairs of

residues within 8 Å of each other in the representative X-ray

structures.

The averaged results obtained for both sets of families show that

the most advanced methods (ZPX2, db/dgb/nbZPX2, logR,

DCA, PSICOV), which take into account the global correlations

between pairs, are generally superior to methods based only on

local correlations (MI, OMES, McBASC, ELSC, SCA) in their

capacity to identify coevolving residues using either simulated

(Figure 4) or experimental MSAs (Figures 5, 6). However, there

are significant differences in execution time between the best

methods, which become particularly pronounced with longer

sequences. For example, logR performed very well with experi-

mental MSAs, but it was also the slowest of all the methods tested

(Figure 7).

Most coevolution detection methods will work best with MSAs

of at least 1000 sequences in order to obtain the level of accuracy

required for structure prediction (as shown by a direct comparison

of Figure 6 with Figure 5). However, earlier work by Martin

[16] has shown that useful coevolution signals can be extracted

from as few as 130 sequences. In the case of our set of 8 protein

families (with MSAs ranging in size between 178 and 348

sequences), the best coevolution detection methods performed

reasonably well despite the small number of sequences, and

contact maps predicted from coevolving pairs revealed the salient

features of the contact maps derived from the representative X-ray

structure of each family (Figure S1, S2, S3, S4, S5, S6, S7, S8,
Rightmost panels). We also found a good correlation between

the performance of each method in simulated (Figure S1. S2.
S3. S4. S5. S6. S7. S8, panels A–C) and experimental (Figure
S1, S2, S3, S4, S5, S6, S7, S8, panels D–E) MSAs, suggesting

that testing different coevolution methods with simulated MSAs of

the protein of interest, can help identify which method is the most

appropriate for the specific sequence length and the size and

Figure 5. Averaged results for 8 protein families with experimental MSAs under 500 sequences. Each panel shows the percentage in the
top coevolving pairs identified by each method, among the residue pairs separated by less than 8 Å in the X-ray structure of each protein. The
abscissa scale is normalized in such a way that 100 corresponds to a number of pairs equal to the number of residues in the sequence. In the top left
panel all protein pairs are considered, including those represented by consecutive residues in the sequence. In the top right panel only pairs whose
residues are separated by at least 5 intervening positions in sequence space are considered. In the bottom left and bottom right panels only pairs
whose residues are separated by at least 10 and 20 intervening positions in sequence space are considered.
doi:10.1371/journal.pone.0047108.g005
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Figure 6. Averaged results for 150 protein families with experimental MSAs larger than 1000 sequences. The meaning of each panel is
the same as in Figure 5.
doi:10.1371/journal.pone.0047108.g006

Figure 7. Execution (CPU) time of different coevolution detection methods for the experimental MSA of PHBH (183 seq.6394 aa.).
doi:10.1371/journal.pone.0047108.g007
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statistical features of the MSA. Simulated MSAs may in fact

represent a more sensitive tool for testing coevolution detection

methods because the level of background noise that obscures the

true covariation signal can be increased as needed in order to

discriminate between strong and weak methods (see for example

the difference in methods performance between Figure 4A and
4B).

We also point out that the goal of structure prediction is not the

only justification for studying coevolution in proteins. Clearly,

there are many situations (e.g. residues that affect stability in

opposite directions) in which the true covarions are not in close

contact. There are also situations in which consecutive residues in

the sequence are part of the active site, and coevolve. Thus,

deciding which coevolution detection methods to use solely on the

base of their capacity to predict from experimental MSAs the

existence of close contacts between distant residues in sequence

space introduces a bias toward structure prediction that may lead

to the use of sub-optimal methods for other types of biochemical

studies.

Whether one considers simulated or experimental MSA there is

significant variability in the performance of different methods with

individual MSAs (as evidenced by the large error bars in

Figures 4, 5, 6; see also Figures S1, S2, S3, S4, S5, S6,
S7, S8). This variability suggests that there is not a single best

method for all proteins, and that short trial runs with simulated

MSAs that reproduce faithfully the statistical properties of the

experimental MSA can be very useful in deciding which method is

likely to provide the best identification of covarions with a specific

protein. Our new program, MSAvolve, offers a wide range of

customization of the simulations, and thus it is ideally suited for

this task.

This study introduces three new algorithms, dbZPX2,

dgbZPX2, and nbZPX2, which comprise a new class of MI

methods termed ‘differential binary’. These methods aim to

capture only substitution events and translate the MSA into a

matrix of 0’s (no change from the amino acid at the same position

in the previous sequence) and 1’s (where a substitution occurred).

Furthermore, the order of the original sequences in the MSA is

changed in order to minimize the number of changes (the number

of 1’s) between juxtaposed sequences, and, as a consequence, in

the entire MSA. This operation generally results in MSAs that are

ordered phylogenetically, and leads to a decrease in the mean

mutual information of the columns of the corresponding binary

MSA. Thus, in contrast to methods like DCA [24,28], which are

grounded in the principle of entropy maximization, the binary

methods work by minimizing mutual information. The overall decrease

in the average MI of the alignment allows for an easier

identification of concerted amino acid changes in sequences

throughout the alignment by reducing the entropy associated

noise. This is reminiscent of the method of Gloor et al. [17], who

divided MI by the joint entropy to reduce the effect of entropy on

MI. Strategies of MI minimization are commonly used also in

other fields of science. For example, in signal processing some of

the algorithms for ‘independent component analysis’ (ICA) rely on

finding a representation of the signal sources by either maximizing

the entropy of the signal probability distribution or by minimizing

the output mutual information [43,44].

Altogether the binary methods provide a fast numerical solution

to the problem of identifying covarying residues from sequence

data alone. For example dbZPX2 and dgbZPX2 are about 50-25

times faster than DCA (Figure 7). Since these methods are only

slightly less sensitive than the other best performers (Figures 4, 5,
6), they offer a good compromise between speed and performance,

and thus may be particularly useful for the analysis of very large

MSAs of very large proteins.

Methods

Simulation of MSAs with MSAvolve
MSAvolve v.1.0a was implemented as a Matlab Toolbox under

BSD licensing: it is provided as a zip file (Toolbox S1) as part of

the Supporting Information. Details of the simulations carried out

in this study are provided as Text S2. Details of the additional

features and of the internal workings of MSAvolve are provided as

Text S3 and Figures S9, S10, S11.

Experimental MSAs
MSAs for the set of 8 protein families (MSA S1, S2, S3, S4,

S5, S6, S7, S8) were calculated independently with T-Coffee

[45], Muscle [46], and Mafft [47] and then merged together with

T-Coffee. A list of the MSAs and PDBs contained in the set of 150

protein families used in this study is provided in Text S4. This set

was originally described in [23], and can be downloaded from

http://bioinf.cs.ucl.ac.uk/downloads/PSICOV/suppdata.

Coevolution detection methods
The MI algorithms, including db, dgb, and nbZPX2, were

implemented inside MSAvolve and are thus available as part of the

Toolbox. logR analysis was carried out with the original code

kindly provided to us by Lukas Burger and Erik van Nimwegen.

DCA analysis was carried out with the original Matlab code kindly

provided to us by Andrea Pagnani. OMES, McBASC, and ELSC

analyses were carried out using the Java code made available by

Anthony Fodor (http://www.afodor.net/). This code also provides

an implementation of the SCA algorithm (called here ‘fodorSCA’).

SCA analysis in its most recent implementation with noise filtering

[12] (called here ‘ramaSCA’) was carried out using the Matlab

Toolbox SCA v4.5 kindly made available to us by Rama

Ranganathan. Source code for PSICOV was downloaded from

http://bioinf.cs.ucl.ac.uk/downloads/PSICOV/suppdata, and

compiled according to the authors’ recommendations.

Synthesis of results from all the protein families
Merging of the results obtained with different protein families

was achieved by calculating for each trace a ‘shape preserving

model’ based on a piecewise cubic Hermite interpolation (PCHIP,

[48]) between points. Then, the X scale representing the number

of pairs identified by each method was normalized such that the

entire range would be represented for all traces by an equal

number of points. Finally, for each normalized value of the X axis

the corresponding Y values were determined from the fitted

models of each curve. This process can be equated to stretching or

compressing the different plots in such a way that they all have the

same size. The meaning of every point of each plot remains

unchanged in this procedure: for example, the dotted vertical line

in the averaged plot of Figure 4A represents the last of the ‘true’

coevolving pairs, despite the fact that in each individual simulation

that vertical line corresponds to a different number on the X axis.

The final result is that all the simulations are placed on the same

scale and can now be averaged.

Supporting Information

Figure S1 Performance of MI and non-MI methods with a set of

100 simulated MSAs with covarions in positions of mid-level

relative entropy, and with the experimental MSA of KDO8PS. A.
Distributions among 100 MSAs of the percentage of true
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covarions in the top 28 zscores of each matrix of different MI

methods. Only the fits to the actual distributions are shown. The

dashed grey and orange lines represent respectively the counts of

covariation events made by the hidden observers inside MSA-

volve. The ‘low power’ observer (grey line) sees only the totCOV

matrix; the ‘high power’ observer sees the covCOV matrix. B.
Same as panel A, but for non-MI methods. C. Cumulative count

of covariation events corresponding to the top scoring pairs in the

coevolution matrices generated by different methods. A dotted

vertical line marks the 28th highest scoring pair. The inset shows

the relative entropy of the experimental MSA with the position of

the covarions superimposed. D. Coevolution analysis of the

experimental MSA of the KDO8PS family. Percentage in the top

coevolving pairs identified by each method of all residue pairs

separated by less than 8 Å in the X-ray structure of Neisseria

meningitidis KDO8PS (PDB 2QKF). The abscissa scale is

normalized in such a way that 100 corresponds to a number of

pairs equal to the number of residues in the sequence. E. Same as

D, but including in the analysis only pairs whose residues are

separated by at least 20 intervening positions in sequence space.

Rightmost panels. Four examples of contact map predictions

using ZPX2, nbZPX2, DCA, and logR with the experimental

MSA. Gray regions represent the native map of the representative

X-ray structure with a cutoff of 8 Å on the distance between the

centroids of different residues. Predictions by the four methods are

shown as spots colored as the traces in panels A-E, with the size of

each spot proportional to the coevolution score.

(TIF)

Figure S2 Performance of MI and non-MI methods with a set of

100 simulated MSAs, and with the experimental MSA of ArsA. All

panels as in Figure S1. The top 87 zscores of each matrix of

different methods were considered in A and B, and correspond to

the vertical dotted line in C. Reference X-ray structure: Escherichia

coli ArsA (PDB 1IHU).

(TIF)

Figure S3 Performance of MI and non-MI methods with a set of

100 simulated MSAs, and with the experimental MSA of ArsC. All

panels as in Figure S1. The top 21 zscores of each matrix of

different methods were considered in A and B, and correspond to

the vertical dotted line in C. Reference X-ray structure: Escherichia

coli ArsC (PDB 1JZW).

(TIF)

Figure S4 Performance of MI and non-MI methods with a set of

100 simulated MSAs, and with the experimental MSA of PHBH.

All panels as in Figure S1. The top 59 zscores of each matrix of

different methods were considered in A and B, and correspond to

the vertical dotted line in C. Reference X-ray structure:

Pseudomonas aeruginosa PHBH (PDB 1DOB).

(TIF)

Figure S5 Performance of MI and non-MI methods with a set of

100 simulated MSAs, and with the experimental MSA of PDR. All

panels as in Figure S1. The top 48 zscores of each matrix of

different methods were considered in A and B, and correspond to

the vertical dotted line in C. Reference X-ray structure:

Pseudomonas (burkholderia) cepacia PDR (PDB 2PIA).

(TIF)

Figure S6 Performance of MI and non-MI methods with a set of

100 simulated MSAs, and with the experimental MSA of MDH.

All panels as in Figure S1. The top 53 zscores of each matrix of

different methods were considered in A and B, and correspond to

the vertical dotted line in C. Reference X-ray structure:

Pseudomonas putida MDH-GOX chimera (PDB 1HUV).

(TIF)

Figure S7 Performance of MI and non-MI methods with a set of

100 simulated MSAs, and with the experimental MSA of Atp11p.

All panels as in Figure S1. The top 31 zscores of each matrix of

different methods were considered in A and B, and correspond to

the vertical dotted line in C. Reference X-ray structure: Candida

glabrata Atp11p (UniProt Q6FJS2, PDB 2P4F).

(TIF)

Figure S8 Performance of MI and non-MI methods with a set of

100 simulated MSAs, and with the experimental MSA of Atp12p.

All panels as in Figure S1. The top 24 zscores of each matrix of

different methods were considered in A and B, correspond to the

vertical dotted line in C. Reference X-ray structure: Paracoccus

denitrificans ATP12p (UniProt A1B060, PDB 2R31).

(TIF)

Figure S9 Covariance, branch and entropy distributions in the

experimental and in simulated MSAs generated with MSAvolve.

A. Distributions of the overall similarity score (OSS, see Text S3)

values among 100 simulated MSAs of the Atp12p family (blue

histogram), correlation between the relative entropy profiles of the

experimental and simulated MSAs (yellow histogram), mean

correlation between the HMM emissions calculated from the

experimental and from the simulated MSAs (orange histogram),

correlation between the ancestor and the consensus sequence

derived from the final MSA (grey histogram). B. Cluster size in the

experimental MSA (blue histogram), branch size requested to

MSAvolve for this round of simulation (green histogram), branch

size found a posteriori by cluster analysis of a simulated MSA

selected at random from the set of 100. C. Covariance analysis of

the experimental MSA (REF, upper row) and of the simulated

MSA (#10, lower row). Upon eigen decomposition, the columns

in the eigenvector matrix represent the principal components

(PCs) of the covariance matrix, and the coefficents in each vector

represent the contributions of the various sequences to the

direction of that principal component in the n-sequence space. A

scatter plot of the first three PCs reveals 5 clusters of sequences in

the experimental as well as the simulated MSA. The last inset of

the upper row shows the relative entropy at each position of the

experimental MSA, and a group of positions (green circles) that

are set to coevolve in the simulated MSAs with a group of

corresponding positions (red circles). In the last inset of the lower

row, the blue trace represents the relative entropy of the

experimental MSA, while the red trace shows the relative entropy

of the simulated MSA.

(TIF)

Figure S10 Statistical features of simulated MSAs generated

with MSAvolve. Rows represent different MSA’s including the

experimental MSA of the KDO8PS family (top row labeled REF),

and 4 simulated ones (labeled with their number in the set),

randomly selected from a set of 100. Each simulated MSA was

derived from a different ancestor randomly assigned from the

emission probabilities at each position of the HMM model of the

experimental MSA. In each row, the first two panels from left to

right represent a histogram and a heat map of the covariance

matrix of each MSA in binary format. The third panel is a spectral

analysis of the covariance matrix. A scatter plot of the first two PCs

reveals two clusters of sequences in the experimental as well as the

simulated MSAs of the KDO8PS family. The fourth panel shows a

UPGMA phylogenetic distance tree of the MSAs derived with the

Jukes-Cantor method [49], and drawn with the Equal-Daylight

algorithm [50]. The fifth panel of the first row shows the relative

entropy at each position of the experimental MSA, and a group of
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positions (green circles) that are set to coevolve in the simulated

MSAs with a group of corresponding positions (red circles). The

fifth panel in the lower rows shows the relative entropy of the

simulated MSAs (red trace) superimposed to that of the

experimental MSA.

(TIF)

Figure S11 MSAvolve flowchart. LEVEL 1: the simulation

starts with 3 identical copies of the ancestor (only the first 9

residues of the ancestor are shown). Each copy is subjected to

cycles of mutations (dashed orange arrows) and recombination

(green crosses). The height of the crosses reflects which sequences

undergo recombination. LEVEL 2: the tree is expanded by

adding two copies of each of the 3 sequences of level 1 to the MSA

matrix, which now contains 9 rows and 3 different sequences

derived from a single ancestral protein. LEVEL 3: 4 copies of each

of the 9 sequences of level 2 are added to the MSA matrix, which

now contains 45 rows and 9 different sequences (3 for each of the

original 3 branches of the tree) derived from a single ancestral

protein. Only the 3rd branch of the tree is shown for level 3. Thin

blue arrows highlight steps that can be repeated as desired in both

level 2 and 3.

(TIF)

MSA S1 MSA of KDO8PS.

(DOCX)

MSA S2 MSA of ArsA.

(DOCX)

MSA S3 MSA of ArsC.

(DOCX)

MSA S4 MSA of PHBH.

(DOCX)
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MSA S6 MSA of MDH.

(DOCX)

MSA S7 MSA of ATP11.
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MSA S8 MSA of ATP12.
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Text S1 Flowchart/pseudocode of the db, dgb, and nbZPX2

algorithms.
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Text S2 Descriptions and simulation conditions for the 8 protein

families (KDO8PS, ArsA, ArsC, PHBH, PDR, MDH, ATP11,

ATP12) with experimental MSAs under 500 sequences.
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Text S3 In silico evolution of a protein family and simulation of
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