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Abstract

A new head pose estimation technique based on Random Forest (RF) and texture features

for facial image analysis using a monocular camera is proposed in this paper, especially

about how to efficiently combine the random forest and the features. In the proposed tech-

nique a randomized tree with useful attributes is trained to improve estimation accuracy and

tolerance of occlusions and illumination. Specifically, a number of features including Multi-

scale Block Local Block Pattern (MB-LBP) are extracted from an image, and random fea-

tures such as the MB-LBP scale parameters, a block coordinate, and a layer of an image

pyramid in the feature pool are used for training the tree. The randomized tree aims to maxi-

mize the information gain at each node while random samples traverse the nodes in the

tree. To this aim, a split function considering the uniform property of the LBP feature is devel-

oped to move sample blocks to the left or the right children nodes. The trees are indepen-

dently trained with random inputs, yet they are grouped to form a random forest so that the

results collected from the trees are used for make the final decision. Precisely, we use a

Maximum-A-Posteriori criterion in the decision. It is demonstrated with experimental results

that the proposed technique provides significantly enhanced classification performance in

the head pose estimation in various conditions of illumination, poses, expressions, and facial

occlusions.

1 Introduction

Head pose estimation is the front-end technique to infer the changes in view points of a

human face in an image as the heading estimation is important in human navigation and loco-

motion [1, 2]. Many face-related computer vision systems provide the best performance to the

frontal views of faces even though the human faces in an image are often non-frontal with vari-

ous poses. Thus, the head pose estimation aims to facilitate the computer vision applications.

In [3, 4], the faces are rotated as a result of the pose estimation to perform face recognition and

face expression analysis, respectively. In [5] the frontal faces are used for retrieving key frames

in video summarization. In [6] head pose information is employed for gaze estimation and

human activity recognition.
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The algorithms can have different granularity though they handle the same vision task. At

the coarse granularity, the algorithms is applied to determine a pose among several discrete

orientations, e.g. typically 5*9 directions considering the degree of the freedom (DoF) of

human heads [7–9]. At the fine granularity, the algorithms estimate the continuous angles

from regression methods in the full 3D position of a head [10–12]. However, in practice, the

ground truth of an accurate angle is difficult to obtain because the subject is not located at the

same 3D space. For instance, Fanelli et al. use supplemental depth images to the estimation of

a 3D position [11]. In [12, 13], Kinect sensors are used for obtaining depth information and

performing the regression in 3D coordinates.

Most of the head pose estimation techniques need a series of steps to interpret a high-level

understanding of orientation from the face image [14]. In other words, a statistical model is

established to transform the pixel-based representation of a head to the feature subspace, fol-

lowed by an optimized classifier. The algorithms needs to be robust to a variety of image-

changing factors, e.g. illumination changes, facial expressions, and the occlusions with hats

and glasses. In the point of the view, a number of related works have been studied in the field

of the head pose estimation. In [7, 15] the high dimensional spaces of face images are mapped

into the lower dimensional manifolds. In [16] the pose variation as a 3-sphere manifold is

modeled in the high-dimensional feature space. Statistical distributions of face appearances,

named Active Appearance Model (AAM) are developed [17, 18]. Several low-level texture

descriptors are used for distinguishing the facial features in the appearance [8, 9, 19–23]. In [8]

Haar-like features trained with AdaBoost are used for detecting distinctive facial features. In

[13, 19, 24] a histogram of oriented gradients (HoG) descriptors are used for the face pose esti-

mation. Local Binary Pattern (LBP)-based descriptors are widely used for the classification

because they are compact and reliable to image changes. In [21, 22, 25], the LBP-based feature

descriptors including Gabor feature and run-length matrix are used for representing facial fea-

tures. In [25] a local directional quaternary pattern (LDQP) is proposed to represent direc-

tional changes in pixels as a variation of an LBP. In addition, deep learning based image

features are used for the pose estimation, trained from a large size of face data [26, 27].

Random Forest (RF) refers to an ensemble of trained decision trees [28], shown to be effec-

tively applied to classification problems in many computer vision applications. RF can natu-

rally manage multiclass problems because leaf nodes in a tree correspond to classes. Each tree

in the forest is independently trained with random samples, and it is combined together to

construct a group of the trees, providing classification or regression. RF is also widely used

for previous head pose estimation research [22, 29–33]. In the works the random forest

improves the classification accuracy and the run-time efficiency as compared to the conven-

tional approaches in the classification, e.g. PCA and SVM. The classification performance

relies on how to maximize the discriminative power at each node in RF, achieved by an ability

of the split function. Kim et al. use information gain to develop the random forest [22] with a

run-length matrix of bit patterns. Huang et al. discriminate various head poses using Gabor

features and the linear discriminant analysis (LDA) at the node test [31]. In [29, 30] the ran-

dom forest regression is employed for the head pose estimation after detecting a human face.

In [32] compressive features obtained from sparse responses of color and gradient components

are used for random projection forest algorithm. In [33] a regression forest is trained from

random face patches, which shows superior performance in the unrestricted databases. In [32,

33], the random forest is shown to be robust to in-the-wild databases by learning image sam-

ples. However, in developing the split functions, the previous works have rarely considered the

characteristics of features used for the facial data abstraction. As compared to the works, the

proposed technique shows how to combine the random Forest with efficient facial analysis fea-

tures for the head pose estimation.
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In this paper, we propose the multiclass head pose estimation algorithm at the coarse-level

prediction, which uses a randomized tree incorporating an multi-block LBP (MB-LBP) to be

reliable with facial occlusions. In previous works [22, 29, 31–33], the randomized trees with

various image features have been introduced, yet there have been less efforts made in effi-

ciently combining the trees and their ingredients to maximize the discriminative performance.

In this work, we develop the randomized tree that includes an effective split function to learn

important facial patterns represented by the LBP descriptors. Specifically, we consider the uni-

form property of MB-LBP in designing the split function. Furthermore several random attri-

butes of image patches are taken into account in the construction of the random tree because

the LBP-based descriptor alone may be too sensitive to local noises or occlusions. To this aim,

we use Gaussian image pyramid and different sizes of block patches when encoding LPB pat-

terns. In the classification, the trees grouped in the random forest are used for the final deci-

sion by using Maximum-A-Posteriori (MAP) criterion. It is demonstrated in the experimental

results that the integration of the developed features and the random forest achieves signifi-

cantly improved classification performance in various conditions of illumination, poses,

expressions, and facial occlusions.

2 Preliminary

2.1 Local binary pattern applied to face analysis

The original LBP operator assigns pixels in a 3 × 3 block into a binary string [34]. The operator

compares the 8 immediately neighboring pixels to the center pixel and encodes the result as an

eight-bin sequence. The LBP is robust to illumination changes because it computes the signs of

pixel differences. However, the patterns may be readily distorted from the noises and small

pixel variations. Therefore, the LBP is extended later in different applications [35, 36]. In one

extension, the LBP operator is applied to the surrounding blocks at different scales, named

multi-scale block LBP (MB-LBP) [36]. The multi-resolution analysis of a block uses the average

values of surrounding sub-blocks when comparing those to the center block. Fig 1 shows the

original LBP and the MB-LBP when the size of the sub-block is 4. In Fig 1 the pixel values

are the averages of the sub-blocks, and “1” is assigned if the corresponding neighborhood is

greater than or equal to the center value. Otherwise, “0” is assigned. The binary sequence cre-

ated by MB-LBP is “11100011” (or 227 as a decimal number) in the example.

The number of the possible LBP patterns can be too many as shown in the example, and

the high dimensional feature space may incur an over-fitting problem in learning. Thus, in

another extension, a sub-group of the LBP patterns, named a uniform LBP, is considered to

resolve the problem. The uniform LBP is defined as a binary string that includes at most two

bitwise transitions from 0 to 1 or vice versa in the circular presentation as shown in Fig 2. The

uniform LBP shows several useful properties. First the nine spatial micro-structures are used

for representative patterns, including a bright spot (0), edges and corners (1*7), and a homo-

geneous region (8) because they are frequently appeared in the textures. In [35, 36], it is

observed that the uniform patterns account for around 90% of all LBP patterns in facial data

while only the 58 patterns are uniform among 256 8-bit patterns. Second the uniform LBP is

invariant in rotation, so the similar patterns can be compactly represented. Thus, considering

the properties, the uniform LBP patterns can be used for a feature reduction of LBP.

The LBP operator has been widely used in facial data analysis [35, 37–40] because impor-

tant facial features (e.g. a nose and eyes) incorporating distinctive micro texture patterns are

well described by such operators. They consider the local descriptions of faces based on LBP

features and combine them into global descriptions to be robust against pose and illumination

variations. The local descriptor and the global descriptor intend to capture the micro-patterns
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of textures and some invariant properties, respectively. In [35] the facial image is divided into

several sub-blocks where the LBP descriptors are extracted independently, and then they are

linked together to the global descriptor of the face. The different sizes of the sub-blocks are

used for the multi-resolution analysis of a facial image.

2.2 Review of random forest

In this section we review the training and testing of a random forest. Random forest (RF)

turns out to be an efficient machine learning technique in many computer vision applications.

It is shown in [28] that a group of randomized trees provides high generalization power while

the decision tree alone may suffer from an overfitting problem. Thus, the random forest is

formed with an ensemble of the trees as shown in Fig 3. Furthermore, to achieve the generali-

zation, the trees are built with considering randomness in training. The training samples are

randomly chosen either for growing the tree, for optimizing the node decision, or for the both.

A tree T in the forest T ¼ fTig consists of several nodes including a root node, internal

nodes, and leaf node, and edges connecting with the nodes, shown in Fig 3. Learning a ran-

domized tree is supervised, i.e., the training samples are annotated with label information. In

the training, the goal is to maximize the classification performance when input samples tra-

verse from a root node to a leaf node corresponding to each label. To this aim, each internal

node needs to make its own optimal binary decision using a split function, formulated e.g. in

Fig 1. The original LBP and MB-LBP with a scale parameter s.

https://doi.org/10.1371/journal.pone.0180792.g001

Fig 2. Nine uniform LBP patterns.

https://doi.org/10.1371/journal.pone.0180792.g002
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the input data v 2 Rd arriving at the i-th node,

h�ðv; �iÞ : Rd � P ! f0; 1g; ð1Þ

where ϕi denotes the split parameters associated with the i-th node in the set of all split param-

eters P, and 0 and 1 are understood as the left and the right children nodes to be placed.

There are several research works developing the binary tests in the pose estimation. Li et al.
use the the pixel intensities at two different pixel positions [29]. Huang et al. apply linear dis-

criminative analysis to the test [31]. However, the information gain (IG) is useful in general

cases [28]. In information theory, IG is defined as the reduction of uncertainty when the train-

ing data arriving at the current node is divided into the children nodes. IG is mathematically

defined as:

IG ¼ HðSiÞ �
X

j2L;R

jSj
ij

jSij
HðSj

iÞ; ð2Þ

where Si refers to the data set at the i-th node being split into the two subsets SL and SR in the

left children and in the right children, respectively. H(S) is the entropy.

In testing, an unseen sample traverses the tree down to a leaf node by using the trained split

functions with the associated parameters. The input sample is accordingly moved either to the

left child node or to the right child node. The estimation is done when the sample is stopped to

a leaf node. Note we construct a group of trees in the random forest. Therefore the final deci-

sion is made by considering the results from all the trees.

3 Proposed technique

There are two subsequent tasks in the head pose estimation, i.e., the face detection in an

image and the following pose estimation. In this paper, we assume facial data would be

already localized for the pose estimation, and focus on the latter problem, as shown in Fig 4.

Facial images obtained from monocular cameras are detected and cropped with face detec-

tion algorithm such as Viola-Jones method. For this, we use a standard facial image set

named CMU Multi-PIE [41], including various face orientations, illumination conditions,

and facial expressions, to resolve the problem. The image sets are annotated with pre-defined

rotation angles that are quantized (e.g. 5*9) based on the degree-of-freedom of human faces

[14].

Fig 3. Randomized trees including a root node, internal nodes, and leaf nodes and edges. The random

forest consists of the trees.

https://doi.org/10.1371/journal.pone.0180792.g003
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3.1 Proposed feature space

In the proposed technique, a facial image is normalized to W ×H size. Specifically W and H
are equal to 108. Then, a gaussian image pyramid that is a sequence of low-pass filtered images

of an original image is applied as a pre-processing step to an image patch. Because the LBP fea-

tures can be too sensitive to local noises or occlusions, a gaussian image pyramid is applied to

the input images before the feature extraction. The original image denoted by G0 is sequen-

tially filtered with a Gaussian kernel w whose filter tab is 11 × 11 and the standard variation is

set to 1. Then, the images are sub-sampled by a factor of two to generate the sequence of

reduced resolution images Gl. The levels of the pyramid are obtained iteratively. Mathemati-

cally, they are given as,

Glði; jÞ ¼
X

m

X

n

wðm; nÞGl� 1ð2iþm; 2jþ nÞ: ð3Þ

In the proposed technique l is set to 0, 1, and 2. As the size of a facial image is normalized to

108, corresponding to G0, the next layered images corresponding to G1 and G2 are equal to 54

and 27, respectively.

Mg,s,k denotes an MB-LBP feature obtained from a randomly chosen block in an image. In

Mg,s,k,s refers to a block size, which can be either 1, 4, 12, or 36. Thus, there are four MB-LBP

feature spaces. g refers to a level of an image pyramid, which can be either 0, 1, and 2. k is the

center pixel position of an MB-LBP block to retrieve the bit-pattern. The blocks can overlap

one another during the feature extraction, so k can be any pixel position in a block if the block

is fully contained in the image. Fig 5 shows the proposed feature set. The features are used for

constructing a feature set p in all possible parameter space P.

The number of all the possible MB-LBP patterns is too large, which may cause an overfit-

ting problem by the high dimensional feature spaces. Therefore we quantize the MB-LBP to a

uniform MB-LBP denoted by Ug,s,k for a feature reduction. Among all the possible uniform

MB-LBP patterns, Ug,s,k is formed as the closest bit-pattern from Mg,s,k with respect to the

Hamming distance. For example, “11100101” is converted to “11100111.” If there are multiple

candidates, the less significant bits are changed. It is observed in the facial image data that the

uniform patterns are more than 90% of the LBP patterns while only the 58 patterns are uni-

form. Thus, we employ the properties for the feature reduction in the training.

3.2 Proposed random forest

Optimizing the split function is important in the developments of the random forest. The

function needs to be tailored to the MB-LBP based features. For this, we propose a split

Fig 4. The processing pipeline of the head pose estimation in the proposed technique.

https://doi.org/10.1371/journal.pone.0180792.g004
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function h(.) for Ug,s,k to be trained in a randomized tree T, defined as,

hg;s;k;tl ;tu
ðUg;s;kÞ≔

1; 2tl < Ug;s;k < 2tu

0; oherwise

(

ð4Þ

where Ug,s,k is the uniform MB-LBP with a level of an image pyramid g, a scale parameter s,
and a position k. τu and τl are two constraint thresholds that are, respectively, used for the

upper bound and the lower bound of decimal representation of the uniform MB-LBP. All the

parameters are exemplified in Fig 5. It is highlighted that the two constraints regarding the

upper bound and the lower bound are used for compactly clustering the similar textures

because there are at most two bit transitions in a uniform LBP. The selected parameter set is

trained to determine the split function h, as shown in Fig 5.

The function is to map an input Ug,s,k to the binary outputs 0 and 1. Based on the binary

test, the training samples at a node in a randomized tree are split into two children nodes. If

the output of the function is true, the samples are sent to the left child node. Otherwise, they

are sent to the right child node. The parameters at the nodes are learnt during the training to

maximize an objective function. We employ the information gain function [28] that is defined

as the difference between the differential entropy of the parent node and the sum of the differ-

ential entropies of the children nodes. The idea behind is that the information gain increases

more when a child node contains less diversified classes, thus more discriminative capability

of the tree. information gain function I is given as,

Iðg; s; k; tl; tuÞ ¼ HðUg;s;k;tl ;tu
Þ �

X

i2L;R

jUi
g;s;k;tl ;tu

j

jUg;s;k;tl ;tu
j
HðUi

g;s;k;tl ;tu
Þ; ð5Þ

where H(U) is an entropy to measure uncertainty. The entropy in the proposed technique is

defined as H(U) = −∑c2C p(c|U) log p(c|U) where C is the set of classes and p is a probability of

samples with a label c at a node specified by U. The distribution of the classes in the left and

the right children is changed by U at a node, and the number of the classes is counted to

Fig 5. MB-LBP based feature set including the size of the block s, the center position k, and the scale

of the Gaussian image pyramid g, and the upper and the lower thresholds, which are used for

establishing a split function in each node of a randomized tree.

https://doi.org/10.1371/journal.pone.0180792.g005
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compute the distribution. The information gain increases more if a child node has less diversi-

fied entries. Thus, the optimal parameter ðg�; s�; k�; t�l ; t
�
uÞ in the split is given as,

ðg�; s�; k�; t�l ; t
�
uÞ ¼ arg max g;s;k;tl ;tu2Pj

Iðg; s; k; tl; tuÞ; ð6Þ

where Pj is the randomly chosen parameter space in all possible set P at the j-th node.

The optimized parameters are stored at internal nodes while constructing a randomized

tree in the training. For example, in Fig 6, the optimal parameters maximizing the information

gain are used in the node 5. The same optimization is repeatedly performed at each subsequent

node. We also use a bagging that extracts random training samples from the image set for each

tree. The bagging allows reliable performance results against large variants of input data while

using less memory sizes in training. The training stops when the termination condition satis-

fies. In the standard RF training [28], the tree stops growing if it reaches to the pre-defined

maximum depth, or if there are too few samples remaining in the current node. Specifically we

set the maximum depth of a tree and the minimum samples in a node, respectively, to 9 and 5.

We will show experimental results with respect to various termination conditions in the exper-

imental results.

Training a randomized tree is to build each optimal weak classifier corresponding to a

node in the tree structure. On top of that, the tree also needs to provide an accurate prediction

model at the leaf nodes. In the supervised learning, a subset of labeled training samples is asso-

ciated with leaf nodes, and therefore the distributions of the labels can be used for the predic-

tion. Precisely, we employ the conditional distributions after observing the associated samples,

i.e., p(c|u) where c is the label of the head pose class in all possible set C, u is the uniform

MB-LBP sample. Subsequently, we use a Maximum-A-Posteriori (MAP) for the predictor,

defined as

c� ¼ arg max
c2C

pðcjuÞ: ð7Þ

For instance, in Fig 6, the node 11 and the node 12 are chosen, respectively, for the left and the

frontal faces as they are major in the leaf nodes.

Fig 6. Construction of a randomized tree.

https://doi.org/10.1371/journal.pone.0180792.g006
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In a testing, a previously unseen sample traverses the tree down to a leaf node by going

through the trained nodes. The split function at a node directs the samples either to the left

child node or to the right child node, and, accordingly, the sample reaches to a leaf node.

The estimation is done in the leaf node. Note that each randomized tree is grouped into a ran-

dom forest. Therefore, in testing, all the prediction results need to be combined into a single

forest prediction to make the final decision. The decision could be made with maintaining the

whole conditional probability distributions. However, we use the major voting of the predic-

tion results in the final decision as we compute the MAP prediction in a tree.

4 Experimental results

4.1 Test condition

In this section, the performance of the proposed technique is quantitatively evaluated. The

experiments are performed using CMU Multi-PIE head pose image database [41], including

3,600 face images with 20 subjects with various face poses, lightening conditions, and facial

expressions, controlled in a laboratory. We also use the AFLW [42], AFW [43], 300W [44], and

Pointing04 [45]. AFLW, AFW, and 300W data bases are “in-the wild” data bases, and Point-

ing04 is another data base acquired from a laboratory condition. It is noted that any pre-process-

ing technique to resolve the lightening variation is not applied to clearly show the performance

of the proposed technique. Readers who are interested in the effects of the pre-processing such

as histogram equalization may refer Tan’s work [46]. We use the Viola-Jones method to detect

the faces, and the image samples are resized to 108 × 108. In prior arts [47, 48] an alignment pro-

cess of a face sample has played important roles in pose estimation. In [47], a partial least squares

regression-based method is used for reducing sensitivity to misalignment, thus providing better

classification results. In our experiments, we use an alignment algorithm for the LBP-based

descriptors to cope with geometric invariance. The facial feature points such as corners of the

eyes and the tip of the nose are aligned in the samples by using trained feature sets, as in [49].

The process is automatically applied to all the facial samples that are used in the experiments.

The experiments are configured to predict the head rotation angles quantized into 3*9

classes, equally-spaced from −90 to 90 degrees. Some of the subjects are occluded with glasses

or hairs, which are used for demonstrating the reliable performance of the proposed technique

against an occlusion. In training, we use 5-fold cross validation to avoid any over-fitting. For

training the randomized tree, the maximum depth of tree is set to up to 9, and the minimal

number of samples processed in a node is 5 to stop the tree growing. We train maximum 15

trees to create a forest. The parameters are empirically set to maximize the performance. In

testing, the performance is evaluated by averaging the results in five times.

We perform the intra-data base experiments and inter-data base experiments. In the intra-

data base experiments, two disjoint sets of facial samples from the same data base are sepa-

rately used for training and testing. Specifically, the CMU MultiPIE data base is used for the

intra-data base experiments. In the inter-data base experiments, the facial samples from the

different data bases are separately used for training and testing. Specifically, the random forest

is trained with the CMU MultiPIE data base, and then the trained model is tested using in-the-

wild data bases [42–44] and Pointing04 acquired in laboratory conditions [45]. The results of

the inter-data base experiments are shown in Sec. 4.2.4. All experiments are performed with an

Intel i7 @ 3.60GHz CPU and 8GB memory.

4.2 Performance evaluation

4.2.1 Performance comparisons to conventional techniques. In this subsection, we pres-

ent the results of the intra-data base experiments using the MultiPIE data base. We show the
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estimation accuracies of the proposed technique and the conventional techniques named

“Conventional LBP” and “Conventional MB-LBP” with respect to the classes of the different

head poses in Fig 7. “Conventional LBP” and “Conventional MB-LBP” refer to the algorithms

using only the original LBP and the MB-LBP, respectively, combined with the same random

forest classifiers. However, in the conventional algorithms, only one constraint parameter,

i.e., τ of the split function is used [21]. In other words, in Eq (1), hϕ(Uϕ) is true if a uniform

MB-LBP Uϕ is less than a single threshold τ, otherwise, it is false. Thus the performance differ-

ence shows mostly the impact of the proposed split function design on the estimation accu-

racy. As shown in Fig 7 the proposed technique provides significantly improved estimation

accuracies over the conventional algorithms in all the numbers of the head poses. The pro-

posed technique provides the performance about 95%, 87.2%, 82%, 74%, respectively, in 3, 5,

7, and 9 pose cases. The average performance is 85%. As compared to the average, “Conven-

tional LBP” and “Conventional MB-LBP” provide the average performance of 53% and 75%,

respectively. Even though the classification performance is monotonically degraded with

the number of the classes, the performance of the proposed technique is more gentle in the

degradation than the conventional techniques because of the extended block sizes in the

feature extraction. For instance, Fig 7 shows 95 * 74% in “Proposed (NL)” while showing

Fig 7. Estimation accuracies of the proposed technique with respect to the number of the classes, as compared to the conventional

algorithms. Proposed (NL) refers to the technique where the uniform MB-LBP is extracted from non-overlapped block patches in the proposed technique

while Proposed (OL) uses overlapped block patches in the generation. The error bars represent 95% binomial confidence intervals.

https://doi.org/10.1371/journal.pone.0180792.g007
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90.2 * 52% in “Conventional MB-LBP”, and 75.8 * 28% in “Conventional LBP”, which is

much unreliable. “Conventional MB-LBP” is comparable with “Proposed (NL)” in 3 and 5

poses. However, the differences in the performance become large in 7 and 9 poses about

7* 22%. We show the binomial confidence interval for 95% confidence in Fig 7. The error

bar represents how much uncertainty the proposed technique has in the estimation. The

ranges of the errors in the proposed techniques are around ±0.9%*±1.6%, while those in the

conventional LBP-based techniques are around ±1.7%*±3.1%.

Furthermore we provide two variations of the proposed techniques, depicted as “Proposed

(NL)” and “Proposed (OL).” The candidates of the block positions to extract the uniform

MBLBP features are only the differences between the algorithms. “Proposed (NL)” extracts the

uniform MB-LBP features from non-overlapped s × s blocks in the image sample. In other

words, the pixel position k in Eq (4) can be placed only on the grid of the image sample. As

compared, in “Proposed (OL)”, the pixel position k can be any position in a block if the uni-

form MB-LBP feature is available. In implementation, we choose a subset of the overlapping s
× s blocks during the training rather than to use all the possible pixel positions. As shown in

Fig 7 the average classification performance of “Proposed (OL)” is better than that of “Pro-

posed (NL)” about 2.5 * 5.0%. Meanwhile the training time increases about 180% in “Pro-

posed (OL)” because there can be more pixel positions, randomly selected in training the

randomized tree. However, the test time is only slightly changed. Once the node parameters

are determined, the classification is very quick, which is an important advantage of the random

forest.

To show the reliable discriminative power to the occlusions, we reorganize the CMU Multi-

PIE database to include only the faces having occlusions such as hairs and glasses, and show

the results in Fig 8. The performance of the proposed technique significantly outperforms

those of the two other conventional algorithms in all the number of the poses as well. The aver-

age performance of the proposed technique (i.e., “Proposed (NL)”) is 82%, which is better than

those of the other two conventional techniques, i.e. 53% and 70%, respectively in “Conven-

tional LBP” and “Conventional MB-LBP”. As shown, the performance of the proposed tech-

nique is more reliable to the occlusions than those of the conventional techniques. It varies

from 93.5% in 3 pose to 67% in 9 pose, i.e., the difference among the poses is about 26.5%.

However, the differences in “Conventional LBP” and “Conventional MB-LBP” are about

47.7% and 39.2%, respectively. “Proposed (OL)” yields the highest classification performance

about 88% on average. We also show the binomial confidence interval for 95% confidence in

Fig 8. The ranges of the errors in the proposed techniques are around ±1.1%*±2.7%. The

ranges are slightly larger than in Fig 7 as the occlusion gives higher variability in the inputs.

Several confusion matrices obtained from in 7 and 9 poses are shown in Figs 9*12 to pro-

vide a more comprehensive analysis of the proposed technique. The matrices show that the

proposed technique yields reliable performance to the estimation because most of the errors

occur in neighboring angles. It is observed from Figs 11 and 12 that the performance is quite

robust in estimating the frontal face and −90 and 90 degrees, corresponding the class 5, 1, and

9, respectively. However the misclassification is relatively frequent in the intermediate angles.

As compared to the 9 poses, Figs 9 and 10 depict in the 7 poses that the errors are evenly dis-

tributed at the most of the classes.

4.2.2 Performance analysis in various conditions on parameters. The proposed tech-

nique incorporates various factors that can affect the overall performance. For the purpose of

experimental analysis on the factors we first change the MB-LBP parameters. The proposed

technique extracts four MB-LBP feature planes (i.e. the block sizes are either 1, 4, 12, or 36) for

possible candidates in training while the compared algorithms do only few number of the fea-

tures. We examine the proportions of the MB-LBP sizes, selected as the best feature at each
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node in a random forest to figure out which sizes affect the performance. We observe from the

empirical results that the proportions of the blocks are 65.5%, 11.1%, 14.8%, 8.6%, respectively

for the size 1, 4, 12, and 36 in training, as shown in Table 1. In other words, the block size

equal to 1 is largely selected among the candidates to maximize the information gain in the

tree, and, thus we include the block size equal to 1 in all the comparisons. Fig 13 shows the

classification performance with respect to the MB-LBP sizes s in the 5 pose case. The perfor-

mance shows 81.3% when 1 × 1 and 36 × 36 block-sized MB-LBP are used. As compared, the

performance is close to the best when 1 × 1 and 12 × 12 block-sized MB-LBP are used. It is

noted that the 4 × 4 block size provides slight changes to the performance. The phenomenon is

because the features from 4 × 4 block size may be similar to 1 × 1 block size in the second level

of the Gaussian pyramid. However all the block sizes somehow contributes to improving the

overall performance as revealed in Table 1. The proposed technique achieves the best perfor-

mance when all the block sizes are used in the random forest.

Second, the performance of the proposed technique can rely on the different parameters of

a random forest, and therefore we present the effects of the changes of the parameters. Pre-

cisely, the parameters that are the maximum depth (MD) of a tree, the minimum samples

(MS) of a node, and the forest size (FS) are changed. The MD and MS are used for the early-

termination condition in training as a random tree finishes its growth when the maximum

Fig 8. Estimation accuracies of the proposed technique with respect to the number of the classes, as compared to the conventional algorithms

when the facial images have occlusions. The error bars represent 95% binomial confidence intervals.

https://doi.org/10.1371/journal.pone.0180792.g008

Efficient head pose estimation with random forest and multi-block local binary pattern

PLOS ONE | https://doi.org/10.1371/journal.pone.0180792 July 17, 2017 12 / 24

https://doi.org/10.1371/journal.pone.0180792.g008
https://doi.org/10.1371/journal.pone.0180792


Fig 9. Confusion matrices of “Proposed (NL)” in 7 class case.

https://doi.org/10.1371/journal.pone.0180792.g009

Fig 10. Confusion matrices of “Proposed (OL)” in 7 class case.

https://doi.org/10.1371/journal.pone.0180792.g010
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Fig 12. Confusion matrices of “Proposed (OL)” in 9 class case.

https://doi.org/10.1371/journal.pone.0180792.g012

Fig 11. Confusion matrices of “Proposed (NL)” in 9 class case.

https://doi.org/10.1371/journal.pone.0180792.g011

Efficient head pose estimation with random forest and multi-block local binary pattern

PLOS ONE | https://doi.org/10.1371/journal.pone.0180792 July 17, 2017 14 / 24

https://doi.org/10.1371/journal.pone.0180792.g012
https://doi.org/10.1371/journal.pone.0180792.g011
https://doi.org/10.1371/journal.pone.0180792


depth or the minimum samples reaches to the pre-defined values. Figs 14*16 show the varia-

tions of the performance with the RF parameters MD, MS, and FS. In Fig 14, the proposed

technique shows 91.2%, 94.1%, 95%, 93.2%, and 92.8% when the maximum depths (MD) are

5, 7, 9, 11, and 13, respectively. In Fig 15 the proposed technique shows 95%, 92.8%, 92.4%,

92.1%, and 92.5% when the minimum samples (MS) are 5, 10, 15, 20, and 25, respectively. The

forest size (FS) determines the number of trees comprising a forest. Each tree performs the

classification in training/testing independently, and each of the result is combined to make the

final decision. Fig 16 shows the variations of the performance with respect to the forest size.

The performance is 91.5%, 91.8%, 93.4%, 95%, and 94.5%, respectively when the sizes are 9,

11, 13, 15, and 17. We emphasize from the results that the variations of the classification per-

formance are relatively small even though the RF parameters are different. Furthermore, the

confidence intervals with respect to the different parameters are similar one another. This

phenomenon highlights the robustness of the performance of the proposed technique over

various conditions and practical advantages because subtle changes in the implementation do

not affect significant changes in the performance.

4.2.3 Performance comparison with various feature descriptors. In this subsection we

show the performance of the proposed technique as compared to previous research works

using various feature descriptors. For this we choose the state-of-the-art methods using differ-

ent image descriptors such as histogram of gradient (HoG) feature [13, 19, 24], Gabor feature

Table 1. Proportions of MB-LBP block sizes, selected as the best feature at each node in a random forest.

MBLBP size(s) s = 1 s = 4 s = 12 s = 36

Proportion (%) 65.5% 11.1% 14.8% 8.6%

https://doi.org/10.1371/journal.pone.0180792.t001

Fig 13. Performance changes with respect to the number of the MB-LBP feature planes. s refers to the

size of the MB-LBP block. The error bars represent 95% binomial confidence intervals.

https://doi.org/10.1371/journal.pone.0180792.g013
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Fig 14. Performance changes with respect to the number of the maximum depth (MD) of the random

tree. The error bars represent 95% binomial confidence intervals.

https://doi.org/10.1371/journal.pone.0180792.g014

Fig 15. Performance changes with respect to the number of the minimum samples (MS) in the tree.

The error bars represent 95% binomial confidence intervals.

https://doi.org/10.1371/journal.pone.0180792.g015
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[21], and bit-pattern run length (BPRL) feature [22]. Support vector machine (SVM) is used

for a classifier in [13, 19, 21] while the random forest (RF) is used for [22, 24] as in the pro-

posed technique. We select the compared algorithms using monocular cameras processing

RGB color images but also some of the algorithms use supplemental depth images, obtained

from Kinect sensor [13, 19]. Some of the algorithms perform the regression of the head

poses [13, 24]. In the comparison, we choose a specific angle in the regression to evaluate the

performance.

Table 2 shows the results of using various image descriptors and classifiers for the head

pose estimation. We observe from the results that the LBP-based descriptors provides superior

Fig 16. Performance changes with respect to the number of the forest size (FS). The error bars

represent 95% binomial confidence intervals.

https://doi.org/10.1371/journal.pone.0180792.g016

Table 2. The classification errors (CE), the mean absolute errors (MAE) in degree of the head pose estimation algorithms using different features

and classifiers in intra-bases experiments, and the standard deviation (STD) of the degrees.

Method Feature/Classifier CE MAE(degree) STD

Ma et al. [21] LGBP/SVM 10.8 5.22 7.61

Kim et al. [22] BPRL/RF 9.5 5.17 6.82

Drouard et al. [24] GLLiM+HoG/RF 8.2 4.83 6.75

Yang et al. [19] HoG/SVM 12.1 5.35 7.50

HoG+Depth/SVM 8.3 4.81 6.49

Saeed et al. [13] HoG/SVM 12.4 5.37 7.31

HoG+Depth/SVM 8.9 4.96 7.05

MB-LBP+SVM MB-LBP/SVM 15.8 5.84 9.07

Proposed (NL) MB-LBP/RF 10.6 5.20 7.13

Proposed (OL) MB-LBP/RF 5.0 4.17 6.59

https://doi.org/10.1371/journal.pone.0180792.t002
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performance as compared to the HoG-based descriptors. For instance, Ma et al. [21] use a

Gabor-filtered LBP followed by SVM, providing better classification performance than the

HoG-based descriptors with SVM [13, 19]. The MB-LBP based descriptors yield more robust

descriptors against occlusions and illumination variants in face analysis. However, the perfor-

mance relies on the classifier as well. Drouard et al. [24] show fairly good performance with

HoG-based descriptors with the random forest. Furthermore the random forest achieves better

performance with MB-LBP than with HoG, when seeing the performance of the proposed

technique and the compared algorithms. The MB-LBP can provide higher generalization capa-

bility in the parameter selections. Accordingly, the proposed technique shows the best classifi-

cation performance, i.e, classification error around 5.0% with 0.8% of 95% confidence interval

and the mean absolute error around 4.17. The depth information enhances fair performance,

observed from [13] and [19]. However, they need RGB+D camera sensors. We also show the

cumulative head pose estimation error distributions (%) of test images with respect to a degree

in Fig 17. As shown in Fig 17 the proposed technique provides robust classification perfor-

mance in errors.

We evaluate the classification accuracies with various feature selections. The classification

performance relies on choices of feature subsets to avoid significant loss. The conventional fea-

ture selection usually goes through two independent procedures: a filtering process based on

independent criteria of supervised learning and an embedding process to choose the best fea-

tures subset [50]. In the proposed technique, the two steps are jointly combined with the ran-

dom forest where each node tries to determines the best subset of the MB-LBP features and

associated parameters in Eq (6) during the training. Figs 18 and 19 show the classification

error rates with the number of features, determined by the different classifiers and feature

selection methods. We observe the performance with respect to the number of the chosen

Fig 17. Cumulative head pose estimation error (%) of test images with respect to a degree.

https://doi.org/10.1371/journal.pone.0180792.g017
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features in the 3-pose and the 7-pose cases. The original number of the features is 6 since

k denotes the x − y coordinate in an image. We leave k out of the feature selection as the

MB-LBP is a local feature, so the number of the feature varies from 6 to 3. In Fig 18 that

“PROP” denotes the use of the proposed technique while restricting the maximal number of

the features. “MBLBP(FMS)+RF” and “MBLBP(FMS)+SVM” denote the compared algo-

rithms, using the independent procedures to choose the features. We apply Fisher-Markov

Selector (FMS) with a linear polynomial order [51] as an explicit feature selector to the

MB-LBP feature, followed by the random forest and SVM. It is observed in Fig 18, the “PROP”

shows only the slight improvements over the two other algorithms. However, when the num-

ber of the class increase to 7 in Fig 19, the differences are more visible. That is because the pro-

posed technique performs the joint optimization during the feature selection. The FMS is a

generic feature selector, but it works well when the number of the features is much greater

than the number of the classes [51].

4.2.4 Performance analysis in inter-data base experiments. In this subsection, we show

the results of inter-data base experiments. The parameters in the random forest are trained

with the MultiPIE data, and then the model is tested with different data bases such as AFLW,

AFW, 300W, and Pointing04 [42–45]. As 300W and AFW have smaller facial samples, we

merge the same number of samples from the two data-bases into one named “AFW&300W”

in the evaluation.

Fig 20 shows the cumulative head pose estimation error (%) distributions using the wild

data bases, denoted by “Pointing04”, “AFW&300W”, and “AFLW”. The proposed technique

Fig 18. Performance changes with respect to the number of the MB-LBP feature in 3-pose case, using

different features selectors and classifiers.

https://doi.org/10.1371/journal.pone.0180792.g018
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provides fairly good performance when using in-the wild data bases such as “AFW&300W”

and “AFLW” but also provides comparable results with the intra-database experiments in

“Pointing04.” Pointing04 data base is acquired in laboratory condition as in MultiPIE. Thus,

the performance is similar to one another. In Fig 20, “Pointing04 (Mixed)”, “AFW&300W

(Mixed)”, and “AFLW (Mixed)” show the results when the training samples are evenly chosen

from MultiPIE data base and the wild data bases and the testing samples are chosen solely

from the corresponding wild data bases. As shown, the performance increases significantly,

especially in “AFW&300W” and “AFLW”. Tables 3 and 4 shows the classification errors (CE),

the mean absolute errors (ME) of the degrees, and the standard deviation (STD) of the com-

pared algorithms in inter-bases experiments and in mixed inter-bases experiments. According

to the results, the proposed technique achieves the best performance among the compared

algorithms. The random forest is used in the proposed technique, Kim et al. [22], and Drouard

et al. [24] while the other three techniques [13, 19, 21] use the support vector machine. It is

observed that the techniques using the random forest provides much better performance in

the inter-data base cases.

5 Conclusion

We proposed an efficient head pose estimation technique using random forest and texture

analysis including gaussian pyramid, multi-scaled block LBP features. In the proposed tech-

nique a randomized tree with the feature parameters was trained to yield the improved

accurate estimation performance. The features were used at each node for maximizing an

Fig 19. Performance changes with respect to the number of the MB-LBP feature in 7-pose case, using

different features selectors and classifiers.

https://doi.org/10.1371/journal.pone.0180792.g019
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Fig 20. Cumulative head pose estimation error (%) of test images with respect to a degree in inter-db

experiments.

https://doi.org/10.1371/journal.pone.0180792.g020

Table 3. The classification errors (CE)%, the mean absolute errors (MAE) in degree of the proposed technique, and the standard deviation (STD) of

the degrees in inter-bases experiments.

Database Pointing04 AFLW AFW&300W

Method CE MAE STD CE MAE STD CE MAE STD

Ma [21] 17.1 10.4 13.6 58.9 76.5 58.2 70.3 79.2 58.5

Kim [22] 15.2 7.1 8.3 40.1 37.2 27.1 50.7 53.9 48.2

Drouard [24] 14.6 6.5 5.8 41.5 38.4 24.0 47.2 52.8 31.1

Yang [19] 21.6 16.9 12.7 56.3 70.5 63.8 68.3 75 63.1

Saeed [13] 18.7 13.0 15.9 18.7 13.0 17.4 60.8 71.6 50.5

Proposed(OL) 13.5 6.1 8.2 36.6 34.8 27.5 46.4 48.6 32.9

https://doi.org/10.1371/journal.pone.0180792.t003

Table 4. The classification errors (CE)%, the mean absolute errors (MAE) in degree of the proposed technique, and the standard deviation (STD) of

the degrees in mixed inter-bases experiments.

Database Pointing04 AFLW AFW&300W

Method CE MAE STD CE MAE STD CE MAE STD

Ma [21] 15.7 7.3 12.4 27.3 36.0 25.6 44.6 52.3 32.8

Kim [22] 13.6 5.8 8.2 19.5 8.9 13.7 36.1 38.0 24.8

Drouard [24] 13.2 5.3 7.4 18.6 8.3 9.6 38.2 40.3 29.5

Yang [19] 16.2 8.6 10.3 29.6 37.4 26.6 51.9 53.1 38.7

Saeed [13] 17.3 10.8 8.6 28.5 36.9 29.5 42.8 50.6 36.7

Proposed(OL) 11.2 2.8 4.7 16.0 6.1 7.8 33.0 35.6 28.6

https://doi.org/10.1371/journal.pone.0180792.t004
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information gain, and as a result, the distribution of a particular class of samples was compact

in a leaf node. An efficient split function was also developed for each sample to efficiently tra-

verse the tree. When making a decision, we use a Maximum-A-Posteriori criterion for deter-

mining the classes of the poses. In the experimental results, the proposed technique showed

significantly improved classification performance in the head pose estimation in the various

conditions of illumination and occlusions. In the future work, we plan to extend the key idea

of the proposed technique to the deep learning framework.
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