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THEBIGGERPICTURE Every predictivemodel needs to be accompanied by an estimate of its predictive per-
formance on unseen data. Typically, some samples are held out to estimate performance and thus, are ‘‘lost
to estimation.’’ This is impractical in low-sample datasets, precluding the development of advancedmachine
learning models. However, it can be avoided: (1) train your final model on all the data, (2) estimate its perfor-
mance by training proxy models using the samemachine learning pipeline on subsets of the data and testing
on the rest, and (3) when trying numerous pipelines correct the estimate for multiple tries. Two protocols that
abide to the above principles are presented: the Nested Cross Validation and the Bootstrap Bias Corrected
Cross Validation, along with practical advice for small sample datasets. Computational experiments show
that the performance of complex (e.g., non-linear and containing multiple steps) machine learning pipelines
can be reliably estimated, even in small sample size scenarios.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY

In a typical predictive modeling task, we are asked to produce a final predictive model to employ operation-
ally for predictions, as well as an estimate of its out-of-sample predictive performance. Typically, analysts
hold out a portion of the available data, called a Test set, to estimate the model predictive performance on
unseen (out-of-sample) records, thus ‘‘losing these samples to estimation.’’ However, this practice is unac-
ceptable when the total sample size is low. To avoid losing data to estimation, we need a shift in our perspec-
tive: we do not estimate the performance of a specific model instance; we estimate the performance of the
pipeline that produces themodel. This pipeline is applied on all available samples to produce the final model;
no samples are lost to estimation. An estimate of its performance is provided by training the same pipeline on
subsets of the samples. When multiple pipelines are tried, additional considerations that correct for the
‘‘winner’s curse’’ need to be in place.
INTRODUCTION

We just produced a predictive machine learning model for

our client or as part of scientific research of high accuracy.

Unfortunately, our job as a data scientist is not done, yet!

Almost invariably we don’t just deliver the model to put

into production; we also need to provide an estimate of its

predictive performance on new, unseen data called out-

of-sample performance. Predictive performance may be

measured by the area under the curve (AUC), accuracy, F1,

mean squared error, or whatever metric is sensible for the

problem at hand. Is performance better than random guess-

ing, is it better than existing models, or is it as perfect as

the Delphi Oracle?
This is an open access article under the CC BY-N
Ideal performance estimation protocol
Ideally, we would like to estimate performance prospectively in

the exact operational environment where the model is to

be used:

Ideal direct estimation protocol: Train a model given the

available data, install it in its operating environment, wait until

you prospectively gather a sizable future test dataset where

the outcome also becomes known, estimate the performance

of themodel on the prospective data. This protocol considers

anything that may go wrong when we deploy the model, from

batch effects to software bugs in retrieving the data to feed

into the model. Of course, it is completely impractical

to perform a prospective evaluation on each model we
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Figure 1. The learning curve of a learning
method and the Train-Test tradeoffs
A larger test set implies a smaller variance of esti-
mation but worse model performance on average.
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consider. We need to know how predictive a model is before

we deploy it and without having to wait to gather more data.

Hence, several estimation protocols appeared that simulate

this ideal estimation protocol, one or multiple times, called

out-of-sample estimation protocols.
Traditional model production and estimation
The Train-Test protocol

The samples on which to measure performance should never be

seen by the model generating algorithm. The standard way to

provide an estimate of themodel’s out-of-sample predictive per-

formance (i.e., on unseen data), hereafter simply referred to as

model performance, is to hold out a portion of the data, typically

called a Test set, for estimation purposes. The rest of the data are

called the Training set, used to train (fit, learn) themodel to return.

The Train-Test protocol directly simulates a single time the ideal

estimation method, pretending the Test set comes from the

‘‘future.’’ Unfortunately, the samples in the Test set are lost to

estimation of performance instead of being used for training

and model improvement. When sample size is plenty, losing a

small percentage to estimation is acceptable. The Train-Test

(a.k.a., hold-out) estimation protocol is simple, has no additional

computational overhead, and is highly recommended. But when

sample size is small, the Train-Test protocol is unacceptable. Is

there any solution out of this conundrum? The answer is yes, but

we’ll have to change our perspective of what is the performance

we estimate based on a key observation described below.

Key observation
The monotonicity of the learning curve of a learner

Let us plot the average performance or loss of the predictive

models learned by a specific learning algorithm (say Decision

Tree algorithm) on a given problem as a function of the available

training sample size, shown in Figure 1. The training size is

shown as a percentage of an initial available total dataset sample

size. The remaining data are used as the Test set. The y axis is

the loss of the model, so lower is better. What shape do we

expect the curve to have? Most likely, on average, the error

will monotonically be decreasing as the sample size increases
Patterns 3, December 9, 2022
(see Remarks for a discussion on this

assumption). Let’s say we are given

1,000 samples in our training data. When

we decide on a training set of 900 samples

and apply the Decision Tree learning algo-

rithm, we will get a specific Decision Tree

model. At this point, it is useful to distin-

guish between the Decision Tree learning

algorithm and a specific Decision Tree

model providing predictions. Let’s call

them the Tree Learner and Tree Model. In

general, the Learner may be an analysis

pipeline consisting of several steps,
including preprocessing, imputation, feature selection, and not

just a single modeling algorithm. The Tree Learner accepts

data (predictor values + outcomes) and spits out a Tree Model.

The Tree Model accepts data (only predictor values) and outputs

predictions. The true performance of the TreeModel will be vary-

ing around the point on the curve on the 90% x axis point. There

is variance due to the exact training set feeding the Tree Learner:

different training sets will spit out different Tree Models with bet-

ter or worse true average performance around themean value on

the curve. In addition, our performance estimate will have addi-

tional variance because our test set is not infinite. In fact, the

smaller the test set, the larger the variance of our performance

estimate, but the better performance our model will exhibit due

to a larger train set and vice versa, as shown in Figure 1.
Which tree model to return to avoid losing samples to
estimation?
Obviously, the better performing one will be—on average, not

always—the one learned from 100% of the available data. But

then, we have no samples left for estimation! Here is the main

idea: why don’t we use a Tree Model learned from a portion of

the data, e.g., 90%, and estimate its performance as a proxy

of the performance to the Tree Model learned from 100% of

the data! The latter will have better performance than the one

we report (again, on average). Our estimate will be conservative

(on average). But that is acceptable for most applications; it is

optimistic estimations that are problematic. Let’s summarize:

Principle 1: Always return the Model learned by the Learner

(machine learning pipeline that includes all steps of analysis)

on 100% of the available data.

Principle 2: Estimate its performance, by Models trained by

the Learner on a portion of the available data (proxies) and

applied on the held-out data.

Applying these principles to the Train-Test protocol leads to

the following procedure: train the Learner on the Train data,

apply it on the Test data to get an estimate, and retrain using

all the data to get the final model. Let us call it Train-Test-Retrain

to distinguish it from the Train-Test procedure above.
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Improving estimation and reducing its variance
When sample size is low (e.g., 50 samples), estimating perfor-

mance using 10% or 20% (e.g., 10 samples) of the data in the

Test set will still have a large variance. Our exact estimate value

depends on how well we do on these specific 10 samples, i.e., it

depends on howwepartitioned the data to train and test sets.We

can reduce this uncertainty by repeating the estimating proced-

ure several times andaveraging out. Specifically, wecanpartition

several times to train and test sets, simulating the ideal protocol

multiple times. Each time we learn a Tree Model using Tree

Learner on 90% of the data, test and estimate performance on

the remaining 10%, and return the average of these perfor-

mances. The averaging reduces the component of the variance

due to the specific split to train and test sets. This is called the

Repeated Hold-Out protocol.1 In the Repeated Hold-Out, the

test sets may have some overlap. Hence, some samples may

be used multiple times for performance estimation (providing

predictions that are not independent given the model) and

some not at all. We can enforce the test sets to bemutually exclu-

sive and cover all available samples. We can partition samples to

K (e.g., 5) equally sized folds and each time train on all but one,

and estimate using the held-out fold. This is the famous K-fold

Cross Validation protocol (CV).2 It guarantees each sample will

be used once and only once in a test set. The maximum value

of K can equal the number of samples leading to the Leave-

One-(sample)-Out CV or LOO-CV. We can further reduce the

variance of estimation of theK-fold Cross Validation by repeating

it with a different partitioning to folds and averaging out. This is

the Repeated K-fold Cross Validation protocol,3 highly recom-

mended for tiny sample sizes. It guarantees each sample will

be used the same number of times for testing predictions. Strat-

ification of folds is a technique that further reduces variance of

estimation.4,5 It partitions data to folds with the extra constraint

that the distribution of the outcome in each fold is close to the dis-

tribution of the outcome in all samples. Overall, we have replaced

the Train-Test-Retrain protocol with a CV-Retrain or Stratified,

Repeated CV-Retrain protocol to reduce the variance. Notice

that, according to Principle 1, the final model is always produced

by training on all data. It is only the estimation process that is

changing. Finally, focusing on the value K of the number of folds,

we warn against blindly applying the maximum K and LOO-CV

that can catastrophically fail in some situations.6 We propose

that at least one sample per class should be in each fold, leading

to a maximum K equal to the size of the minority class.

Practical advice: For small sample sizes (<100 per class) use

a Stratified, Repeated K-fold Cross Validation, of 4 to 5 re-

peats, with retraining on all data to produce the final model

with a maximum K the number of samples in the rarest class.

A shift of perspective in estimating performance

In 5-fold Cross Validation we’ll build five Tree Models from 80%

of the data, estimate their performance on a 20% test, and return

the average. But the actual TreeModel to use in operational envi-

ronment is the Tree Model learned on 100% of the data. We

never directly apply the final Tree Model on a test set to get

the estimate; we have no samples left. So, what performance

are we estimating? We are estimating, the average performance

of the Tree Models produced by the Tree Learner when trained
on 80%of the samples in the given data distribution; let us define

this quantity as the Learner performance, in contrast to the

Model performance defined above. A subtle, but quite important,

shift of perspective just occurred:

Perspective shift: We do not directly estimate the predictive

performance of a specific predictive model instance. We es-

timate the performance of the learning function (machine

learning pipeline) that produces the final predictive model.

This approach is what saves us from losing samples to estima-

tion. It is depicted in Figure 2. In fact, it is our only current alter-

native for tiny sample sizes, e.g., fewer than 20 per class in a

classification problem. Notice I write ‘‘per class’’ because one

may have 1,000,000 samples available, but if one of the classes

is rare (say 1 in 100,000) that still makes estimation challenging.

For time-to-event (survival analysis) problems, what matters is

not the total sample size but the non-censored cases, meaning

the samples for which the event has occurred (e.g., patients

who have died). There is a psychological downfall, however:

we never directly apply and test the specific Tree Model we’ll

be using. Some practitioners feel uneasy about this. Neverthe-

less, this is a sound statistical methodology and there is plenty

of empirical evidence that it works correctly, even in the most

challenging of data analysis scenarios with quite low sample

size and hundreds of thousands of predictors (features).5,7 To

ease one’s mind, it is better to not only return a point estimate

of performance, but also a confidence or credible interval (see

Tsamardinos et al.4 for methods to produce such intervals).

Disclaimer: statistical validation versus external

validation

The methodology presented estimates the performance of the

Learner, and the respective predictive model. Does this mean

that we do not need an external validation set then? Well, the

presentedmethodology is correct assuming the data distribution

in the operational environment of the final model is the same as in

the training data. It is a statistical validation of our analysis. How-

ever, the procedure cannot account for differences in the data

distribution in the operational environment, due to systematic

sampling biases, batch effects, systematic measurement errors,

software bugs, or distributional shifts. For example, we may es-

timate the accuracy of a Tree Model to classify spam e-mail

trained on data with 50% spam and 50% non-spam e-mail dis-

tribution. But a user who receives only 5% spame-mail will expe-

rience a much different accuracy by the model, since accuracy

depends on the class distribution (AUC on the other hand, is

invariant to the class distribution and should remain the same).

In a clinical setting, a model’s performance estimated from

data on Americans may not transfer to Europeans, as the data

distribution of their clinical, demographics, and lifestyle values

may be systematically different. External validation sets are

required to operationally validate the model and ensure results

transfer to other laboratories, settings, measuring equipment,

or operational environments; but they are not required to statis-

tically validate a learning pipeline.

Model production and estimation in the age of hyper-

parameter optimization, tuning, and model selection

What we presented holds true only for a single learning function!

In a typical analysis, we do not apply just a single pipeline or
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Figure 2. An example of the proposed estimation principles
The model to returnMoperational is trained on all available data so there is no loss of samples to estimation. It is produced by a machine learning pipeline (Learner)
consisting of an imputation of missing values algorithm (MICE), a feature selection algorithm (Lasso), and a modeling algorithm (SVM) with default hyper-pa-
rameters. The pipeline is 3-fold cross validated. Each time two-thirds of the data are used for training, and one-third for testing: the feature values Fi are input to
the corresponding model instance Mi, predictions byi are obtained, they are compared with the true outcomes yi, and the performance (loss) li is computed. The
average loss is returned as an estimate of the loss of Moperational. We do not directly estimate the loss of Moperationally by applying it on a hold-out test set; we are
estimating the loss of the pipeline that producedMoperational. The pipeline is cross validated as an atom (see Remarks) thus simulating the ideal estimation protocol
in each iteration; we do not cross-validate just the final modeling step which uses the SVM algorithm.
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Learner but numerous ones, depending on the choice of algo-

rithms as well as their hyper-parameter values. The problem of

optimizing these choices leads to the Hyper-Parameter Optimi-

zation (HPO) or Combined Algorithm Selection and HPO

(CASH)8 problems (we’ll use the terms interchangeably), or sim-

ply Tuning. It is not uncommon for modern HPO libraries9 to try

thousands of pipelines. How should we produce the final model

and its performance estimate when tuning takes place?

The challenge of performance estimation when tuning
First, let’s examine the estimation problem and challenge arising

from trying multiple Learners. Let’s assume we cross-validate

100 pipelines and the winning pipeline had 90% CV-ed accu-

racy. Should we just report that the final model’s accuracy is

expected to be 90% on new data? Unfortunately, no! The 90%

estimate is expected to be optimistic (biased). When we try

several pipelines and choose the one with the highest estimated
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performance, statistical phenomena like the ‘‘winner’s curse’’

a.k.a. the ‘‘multiple comparisons (in induction algorithms) prob-

lem’’ in machine learning appear.10 Our performance estimates

become optimistic because we choose the best among many.

The winner’s curse is conceptually equivalent to the problem

of multiple hypothesis testing. Simple simulation examples are

in Document S1. A simple mathematical proof is in Tsamardinos

et al.4 but it is easy to intuitively see why this phenomenon oc-

curs: we are incorrectly simulating the ideal estimation protocol.

We pretend the test set(s) comes from the ‘‘future,’’ but we use

the test set(s) to pick the winning model! It sounds innocuous

enough, but in low sample sizes, the optimism could be as

much as 20 AUC points.5 Another interpretation of this phenom-

enon is that we are more likely to choose a pipeline that is partic-

ularly ‘‘lucky’’ on the specific test set or sets (i.e., it overfits the

test data). The conclusion is that we need estimation protocols

that correct for the ‘‘winner’s curse.’’



Figure 3. CV with Tuning (CVT) procedure
CVT is a Learner that includes an internal tuning
step: it cross-validates several pipelines and iden-
tifies the winning Learner f*. It then produces a
model using f* on all input data. It is a generalization
of the Train-Test-Retrain procedure. We assume
that function CV also returns the predictions from
the models produced by each fi on each test fold,
which are stored in matrix P. Thus, matrix P
contains the predictions of each pipeline on each
sample, when the latter was not used for training
(out-of-sample predictions). The final model is
produced by training on all data and does not lose
samples to estimation.
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Model production and estimation when tuning
The traditional approach of Train-Tune-Estimate, a.k.a.,

Train-Validate-Test

Since tryingmultiple pipelines on the same held-out set (or sets if

we CV) leads to optimistic estimation, let’s reserve a second, un-

tainted held-out set for applying only the winning pipeline. To

differentiate between the two different held-out sets, one is

called the Validation, and the other the Test set. This leads to

the Train-Validate-Test protocol. The Validation set is used

several times, but it is used only to select the winning model,

not to report the final performance estimate. The Test set is

used only once. Train-Validate-Test correctly simulates the ideal

protocol: we simulate the fact that we put into operational use

the winning model after validation, and then prospectively mea-

sure performance on the Test set. This protocol is the simplest

generalization of the Train-Test protocol when Tuning is taking

place. Again, when sample size is ample, it is the simplest to

implement and highly recommended. The terminology ‘‘valida-

tion’’ set comes from early artificial neural network jargon. The

terms ‘‘validation’’ and ‘‘test’’ are quite overloaded; hence, we

propose the terms ‘‘Tune’’ and ‘‘Estimate’’ sets to clearly indi-

cate their purpose is to tune our choices of hyper-parameters

and algorithms to use (the learning pipeline) and estimate final

performance, respectively. The obvious problem with the tradi-

tional approach is that both the Tune and Estimate sets are

lost to estimation purposes. Can we do better?

Model production when tuning

When tuning, the procedure that takes us from data to model,

i.e., our Learner, includes a tuning step where multiple pipelines

(sub-Learners) are tried and evaluated to find the winning one. In

that sense, it is a meta-learning procedure that internally tries

other Learners. One such methodology is presented in Figure 3.

This is the arguably the simplestmethodology; see Remarks for a

discussion on more advanced techniques. In Figure 3, a number

of pipelines f1,., fn are cross validated, denoted by function CV

(any other estimation protocol can be used like the Train-Tune),

and thewinner is found. Let us call itCross Validation with Tuning

or CVT. Just like Train-Tune, we use held-out sets (the folds of

CV) to select the winning pipeline. The main difference is that ac-

cording to Principle 1, we retrain on all input data using the

winner. Hence, CVT trains K3C+1 models, where C is the num-

ber of pipelines and K the number of folds. Notice that in the

figure, we assume that the predictions made by each pipeline

fi on each sample, when the latter is serving in a held-out fold,

are stored in amatrixP. These are the out-of-sample predictions

of all models by all pipelines on all samples. Any performance
metric can be computed on this matrix to select the winning

pipeline. P will prove itself useful in the estimation protocols

discussed below.

Estimation protocols when tuning: Nested cross

validation

Figure 3 leaves no data for estimation. Returning the CV estimate

of the winner computed during CVT as a proxy is optimistic,

as mentioned. So, how are we supposed to estimate the perfor-

mance of the final model? Several ideas appeared in the litera-

ture (see Tsamardinos et al.4,5 and Ding et al.11 for a review).

Tibshirani and Tibshirani12 try to estimate and remove the error

bias due to the winner’s curse. Ding et al.11 learn models from

increasing-size subsets of samples and extrapolate the perfor-

mance (error rate) on 100% of the available data, while Bernau

et al.1 weights the error rate of learners on all test sets. However,

the first technique for estimation that appeared is the Nested

Cross Validation (NCV)13 (Figure 4) and has shown excellent re-

sults in massive evaluation in small sample datasets.4,5,14 The

first hints and pointers to nested cross validation appeared as

early as 1997, see Salzberg,15 and it was probably independently

invented several times.16,17 Conceptually, it is very simple: we

just CV our CVT Learner in Figure 3 (Principle 2). The only differ-

ence is that the latter now contains an internal tunning step,

again using CV, hence the name nested CV. NCV is similar to

the ‘‘Train-Tune-Estimate’’ where each fold of data serves

once as the ‘‘Estimate’’ set (outer CV loop) and serves multiple

times (one for each Estimate fold) as a Tune set. But there is a dif-

ference: after the winning configuration is selected in each outer

iteration, there is retraining step taking place (Figure 3). A

detailed pseudocode of the procedure is in Tsamardinos

et al.,4 and a fictional execution trace is in Supplementary 2.

While estimations of NCV are quite accurate and unbiased

even for tiny sample sizes,5 it is undeniably a computationally

intensive procedure. Specifically, running CVT to produce a

model and then NCV to estimate its performance trains a total

of K2 3 C + K + 1 models, where K is the number of folds of

data partitioning, and C the number of pipelines to choose from.

Estimation protocols when tuning: Bootstrap bias

corrected CV

A more computationally efficient procedure has appeared

recently called Bootstrap Bias Corrected CV4 or BBC-CV. It

was inspired by the Tibshirani and Tibshirani algorithm.12 Its

main idea is to estimate the performance of the ‘‘Select-Best’’

step of CVT, since this is the step that creates the estimation

bias. In other words, estimate how predictive is on average the

pipeline selected as the winning one, among all the ones tried.
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Figure 4. The Nested Cross-Validation
procedure
Nested cross validation (NCV) returns an estimate of
the predictive performance of modelM produced by
the (meta)Learner in Figure 3. It just cross-validates
a procedure that internally cross-validates other
learners, namely the CVT procedure in Figure 3. It is
an accurate protocol that does not lose samples to
estimation as well as including tuning of algorithms
and hyper-parameters (model selection); however,
it is computationally intensive.
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BBC-CV is shown in Figure 5. In each iteration, the inputmatrixP

produces a bootstrap version of itself using random selection of

rows with replacement. The ‘‘Select-Best’’ step is applied to this

matrix to find the winning configuration (f* in the figure). The per-

formance of the winning configuration is estimated on the out-of-

bag samples, i.e., the ones not selected by bootstrapping and

not seen by the ‘‘Select-Best’’ step. The process is repeated

1,000 times and the average performance estimate is returned.

There are no new models trained, hence the total number of

models trained are the ones trained by CVT to create matrix P.

Usually, the computational overhead of bootstrapping matrix P

is negligible compared with the model training. BBC has been

extended for versions of CVT where the Repeated CV is used

producing multiple matrices Pi in each repetition of the CV

with different fold partitionings (see Tsamardinos et al.4). A major

problem of the BBC is that it does not work with dynamic search

strategies for the optimal pipeline, such as the Sequential

Bayesian Optimization.

Practical advice: When tuning is taking place, one should al-

ways be aware of the ‘‘winner’s curse’’ estimation problem.

When a static search strategy is used on small sample data,

i.e., the set of pipelines to try is fixed a priori, BBC-CV is the cur-

rent method of choice to estimate the prediction performance of

the model produced on all data by the winning pipeline.

These ideas presented above have been incorporated into the

JADBio AutoML platform. A recent comparative evaluation of the

system on more than 360 low-sample, high-dimensional omics

datasets, spanning hundreds of different diseases and disease

subtypes has been recently published.7 The results show that

the BBC estimation is accurate, saving us from losing samples

to estimation.

Conclusion
In several analysis scenarios, we cannot afford to lose samples

to estimation and hold out a separate test set. This is the case

for example, when the total sample size, the sample size of at

least one class (highly imbalanced data), the number of non-

censored samples in time-to-event (survival analysis), or the

number of most fresh and reliable data, in a data-streaming,

data-distribution changing setting, is small. In such scenarios,

we need to shift our perspective of estimation: the final model

is always produced by training on all available data; instead of

directly estimating its predictive performance, we estimate the

performance of the learner (machine learning pipeline) that pro-
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duced it. This is possible by applying the learner on subsets of

the data and getting estimates on the held-out test sets to use

as proxies. These principles can be generalized when numerous

pipelines are applied, and hyper-parameter optimization is tak-

ing place. They provide a statistical validation of our analysis

pipeline; an external validation is still required to ensure the

models transfer to more general operational settings. Estimating

the performance of a model without ever directly applying it on a

held-out test set is feasible statistically and computationally; it is

up to us to also accept it psychologically.
REMARKS

Word of caution: Validating pipelines as an atom. All estimation

protocols that partition data to train and test sets, try to simulate

the ideal estimation protocol. To correctly simulate this situation,

one needs to make all decisions to produce the model from the

available (training) data and only. If one performs standardiza-

tion, feature selection, imputation, or whatever other data pre-

processing and then partitions data to train and test, they are

not correctly simulating the ideal protocol: information from the

supposedly future test sets leak into the training. Hence, all steps

of the analysis need to be cross validated as an atom, as one

function.

Remark:What is a Learner? By the term ‘‘Learner,’’ wemean

the function that takes us from the input dataset to a specific pre-

dictive model. Hence, the Learner incorporates not only the final

modeling step, but all steps of the analysis. The equivalent sta-

tistical terminology for Learner is ‘‘statistical model’’ (e.g., linear

model). The term ‘‘model’’ emphasizes the last final step of the

analysis and may lead to confusion: a pipeline that applies first

PCA, then performs feature selection with Lasso, then applies

an SVM algorithm does not sound like a ‘‘model’’ of the data

generating process anymore. We propose to drop the term

‘‘model’’ from the machine learning literature when referring to

the modeling process (the learning pipeline).

Word of caution: The assumption of increasing perfor-

mancewith increasing sample size. The fundamental assump-

tion of this new perspective is that loss decreases (equivalently,

performance increases), on average, with increased sample

size for our Learner. This is true for the most part, but caution

needs to be exercised. For example, if you are training an artificial

neural network with a fixed number of epochs as a hyper-param-

eter, they may suffice to converge on 80% of sample size as

training, but when you apply it to 100% of sample size, more



Figure 5. The Bootstrap Bias Corrected Cross-Validation (BBC-CV) procedure
BBC-CV returns an estimate of the predictive performance of modelM produced by the (meta)Learner CVT in Figure 3. The estimate is an out-of-bag bootstrap
estimation of the Select-Best step performance in Figure 3: in each iteration, the input matrixP produces a bootstrap version of itself using random selection of
rows with replacement. The ‘‘Select-Best’’ step is applied to this matrix to find the winning configuration (f*). The performance of the winning configuration is
estimated on the out-of-bag samples, i.e., the ones not selected by bootstrapping and not seen by the ‘‘Select-Best’’ step. The process is repeated 1,000 times
and the average performance estimate is returned. BBC-CV estimates the performance of the model produced by CVT on all data without training any further
models.
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epochs may be required for convergence. The error of the

network when trained with more samples could conceivably be

higher. Such problems often stem from hyper-parameters (in

this example, the number of epochs) whose interpretation de-

pends on the sample size. Adjusting these hyper-parameter

values for sample size typically solves this problem: one could

use as hyper-parameters the ‘‘epochs per sample’’ for a neural

network instead of number of epochs, or the ‘‘costCper sample’’

in SVMs instead of just cost C.

Remark: Model production when tuning. The procedure in

Figure 3 is the simplest methodology for selecting among

numerous pipelines. The set of pipelines to try is pre-specified

(static strategy) and they are all exhaustively executed. This opti-

mization strategy effectively corresponds to what is called ‘‘grid-

search’’ in the Hyper-Parameter Optimization literature.8 More

sophisticated search procedures like Sequential Bayesian Opti-

mization (ibid) dynamically decide the next pipeline to execute

based on the performance of the previous pipelines tried.

Another type of algorithms and heuristics decides to early stop

computations on configurations that are deemed non-prom-

ising.4 Another class of algorithms does not select a single

best pipeline to produce the final model but construct an

ensemble of model produced by possibly different pipelines.18

Research on effectively searching for the optimal pipeline is a

hot research area in the Automated Machine Learning com-

munity.

Remark: Can data augmentation save the day? The ideas

presented above are applicable when at least one class numbers

few samples. Can’t we just generate new, synthetic data to our

heart’s desire and complement our sample size? For certain

data types, such as image, speech, and biological signals, there
are techniques that create images similar to the input ones from

the existing samples. For example, including rotations of our im-

ages in the data will make our classifier rotational invariant. How-

ever, such techniques are data specific.While they canmake our

image classifier robust to translations, rotations, lighting condi-

tions, etc. they cannot make our classifier extrapolate to unseen

situations. For example, including rotated images in our data

cannot improve a classifier trained on European Cats, to

correctly classifying Elf Cats. General data type techniques,

such as SMOTE19 and ADASYN20 generate new samples by tak-

ing linear combinations of existing ones. They are not without

problems.21 When one is using data augmentation techniques,

it is important to remember that the synthetic data are not iden-

tically and independently distributed (i.i.d.), i.e., they are still

correlated given the true data distribution. Blindly cross-vali-

dating our classifiers on non i.i.d. data leads to severe overesti-

mation problems. It violates the Ideal Estimation Protocol: the

test set should not contain synthetic data stemming from training

set samples. When the data are very imbalanced, the classifier

may be biased toward the majority class. The techniques pre-

sented in this paper are still valid and will accurately estimate

the predictive performance. However, in order to fix the classifi-

cation bias, techniques that specifically deal with imbalancing

could also be tried in a synergistic fashion, including undersam-

pling of the prevalent classes, oversampling (e.g., SMOTE), giv-

ing different weights to the loss of each class, and others.
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