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Abstract: We have shown previously that neurons in the mouse spinal cord express Gb3. 

We show in this article that distribution of anti-Gb3-Ab reactivity occurs in many different 

types of neurons of different areas of the central nervous system (CNS). The 

immunoreactive neurons are in olfactory bulbs, cerebral cortex, hippocampus, striatum, 

amygdala, thalamus, hypothalamus, cerebellum, and medulla oblongata. In several 

different circumventricular organs where vessels do not have the blood-brain-barrier 

(BBB) structure, anti-Gb3-Ab is not positive for vessel structures, while neurons at these 

regions are positive. Also, within the ventricular area, ependymal cells in the third ventricle 

express Gb3, as revealed by anti-Gb3-Ab staining and intensity analysis. 

Keywords: globotriaosylceramide (Gb3); neuron; circumventricular organs (CVO); 

ependymal cells 

 

1. Introduction 

In Shiga-toxin producing Escherichia coli (STEC) infections, a broad spectrum of central nervous 

system (CNS) symptoms occurs (abbreviations used in this article are listed in Table 1). Those 

symptoms include cortical blindness, poor fine-motor coordination, seizures and coma [1–13]. 

Globotriaosylceramide (Gb3) is a known receptor of Shiga toxin (Stx), which is central to the 

intoxication and disease process [14]. It has been shown that a Gb3 knockout mouse is resistant to  

Stx [15]. To understand target components within the CNS, determining which cell types express Gb3 

is essential. Previously, we reported that in the mouse CNS, Shiga toxin-2 acts on spinal cord neurons 
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which express Gb3, and leads to hindlimb paralysis [16]. Other mouse CNS cell types expressing Gb3 

have not been described in detail. 

Table 1. Abbreviations used in this manuscript. 

Abbreviation Abbreviated Term 
AP Area postrema (e)

ARH Arcuate nucleus of hypothalamus (c) 

BBB Blood-brain-barrier 
BLA Basolateral nucleus of the amygdala (c) 
CNS Central nervous system 
CP Caudate-putamen (a) 

CSF Cerebro-spinal fluid 
CVO Circumventricular organs 
DMX Dorsal motor nucleus of the vagus (e) 

ec External capsule (c)

MD Mediodorsal nucleus of the thalamus (d) 

ME Median eminence (c) 
MH Medial habenula (d)

NTS Nucleus of the solitary tract (e) 

OVLT Organum vasculosum of the lamina terminalis (b) 
PVT Paraventricular nucleus of the thalamus (d) 

SCO Subcommissural organ 
SFO Subfornical organ (d)

V3 Third ventricle 
V4 Fourth ventricle 
VL Lateral ventricle 
XII Hypoglossal nucleus (e)

(a) See Figure 2d for the positional information; (b)See Figure 4b for the positional information; 

(c) See Figure 4d for the positional information, (d) See Figure 4f for the positional information. 

The trafficking route of Stx into the CNS is as important as determining its target. In human STEC 

patients’ brain magnetic resonance imaging (MRI), regions as the basal ganglia and also thalamus, 

cerebellum and brain stem, are found positive for increased permeability of fluid [17–20]. In a rabbit 

model, MRI showed enhanced permeability in the area surrounding V3 after Stx injections [21]. 

However, precise Stx trafficking routes and the mechanisms involved are still in question. 

Circumventricluar organs (CVO) are known to be devoid of the blood-brain-barrier (BBB), thus 

exchange of substances between the plasma and the CNS parenchyma is relatively easy [22]. The CVO 

is situated around the V3 (OVLT, SFO, ME, posterior pituitary, pineal gland and SCO) as well as the 

V4 (AP). Also, the choroid plexus located at both V3 and V4, is sometimes considered as the CVO. If 

the vessels at the CVO are expressing Gb3, it may increase the chance of being the primary target in 

the CNS. In this article, Gb3 expression in the CVO is addressed. Ependymal cells form a lining of the 

ventricle, which separates cerebro-spinal fluid (CSF) and parenchyma. As the choroid plexus makes 

CSF from serum and secretes it into the ventricles, there is a possibility of Stx2 in serum being 

transferred to the ventricle. If ependymal cells express Gb3, this also could be an entry point of Stx into 

the CNS parenchyma.  
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2. Materials and Methods  

2.1. Animals  

Specific pathogen-free C57BL/6 mice, male, 20–22 g body weight (b.w.) were purchased from 

Charles River (Wilmington, MA, USA). Mice were given food and water ad libitum. All procedures 

were approved by the University of Maryland School of Medicine Animal Care and Use Committee.  

A total of 5 mice were used in this study. 

2.2. Tissue Harvesting 

Mice were euthanized by CO2 inhalation. Two mice were perfused with 20 mL saline, followed by 

20 mL 4% paraformaldehyde/phosphate buffered saline (4% PFA/PBS). Brains were marked for the 

Bregma position (the crossing point of the coronal suture and the sagittal suture on the skull) with a 

knife incision. Brains and spinal cords were harvested, and further fixed in 4% PFA/PBS overnight at 

room temperature. Brains and spinal cords from 3 mice were fixed in the same manner without 

perfusion. Brains were trimmed to 2 mm thickness from the Bregma to both rostral and caudal ends. 

Spinal cords were trimmed into cervical, thoracic and lumbar segments. After incubating in 30% 

sucrose/PBS at 4 °C overnight, trimmed segments were sectioned to 50 m thickness using a sliding 

microtome (SM2000R, Leica Microsystems, Bannockburn, IL, USA). The positions of brain sections 

from the Bregma was determined with reference to a C57BL/6 brain atlas [23]. Sections were collected 

and held in PBS at 4 °C until use. 

2.3. Immunofluorescence Staining of Free-Floating Sections  

Staining was done according to Obata et al. [16] and Kolling et al. [24]. Antibodies used in this study 

were anti-Gb3 monoclonal antibody (MAb) (Beckman Coulter, Brea, CA, USA), anti-NeuN MAb (a 

neuronal marker, Millipore, Billerica, MA, USA) and Cy3 conjugated anti-GFAP MAb (an astrocytic 

marker, Sigma-Aldrich, St. Louis, MO, USA), at dilutions of 1:100, 1:1000, and 1:1000, respectively. 

For isotype matched controls, rat IgM (Millipore) and mouse IgG1 (Millipore) were used at dilutions of 

1:100 and 1:100, respectively. 4’,6-Diamidino-2-phenylindole (DAPI) was used to visualize nuclei. A 

Zeiss LSM510 microscope (Carl Zeiss Inc., Thornwood, NY, USA) was utilized in this study. 

2.4. Intensity Analysis of Anti-Gb3 Immunofluorescence  

For line profile intensity analysis, a LSM510 software line profile function was used. Within one 

image, a fixed length line was used to collect intensity data. Three intensity samples of neuronal and 

ependymal cytoplasm were collected per image. Appearance of high intensity of 2000 or higher was 

expressed as percentage of total data collected from the line profile. The VL, V3 and central canal 

regions were analyzed. Six images from each area were taken randomly from 3 mice, which were 

selected from a total of 5 mice (either perfuse-fixed or none perfuse-fixed). Averages of high intensity 

(%) between neurons and ependymal cells were compared. For area intensity analysis, Image-Pro Plus 

software (MediaCybernetics, Inc., Silver Spring, MD, USA) was used. The image acquired by 

LSM510 was saved as Tagged Image File Format (TIFF) in RGB, and only green channel  
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(Gb3-AlexaFluor488) was retained in the image using Adobe Photoshop 7.0 (Adobe Systems Inc., San 

Jose, CA, USA). The TIFF image was converted to Gray scale, and a fixed area (m2) of region of 

interest (ROI) was made using Image-Pro Plus. The intensity range higher than background pixels was 

chosen, and 3 ROI areas within neuronal or ependymal cytoplasm per image were taken as intensity 

samples. The equivalent regions and number of samples comparable to those used in the Line profile 

intensity analysis were analyzed by the area intensity analysis method. Averages of ROI areas between 

neurons and ependymal cells were compared.  

2.5. Statistics 

Data from line profile or area intensity analysis were analyzed by student t-test (paired two-tail 

test), and p-values less than 0.01 were determined as significant. 

3. Results and Discussion 

Anti-Gb3-Ab reactive neurons were seen throughout the mouse CNS. In the olfactory bulb, where 

Mitral cells accept input from nasal epithelium cells to sense smell, and interneurons such as 

periglomerular cells and granule cells reside, all neurons were Gb3 positive (Figure 1). In the cerebrum, 

neurons in the cortex, including motor cortex were also Gb3 positive (Figure 2a). Astrocytes in the 

corpus callosum which is close to the cerebral cortex were Gb3 negative (Figure 2b,c). Hippocampus 

neurons, CA1, 2, 3 and dentate gyrus, were Gb3 positive (Figure 2e). Also, the neurons in the striatum 

(Figure 2b), amygdala (Figure 4i), thalamus (Figure 4e) and hypothalamus were Gb3 positive. The 

hypothalamic nuclei (ARH) neurons are shown to be Gb3 positive in Figure 4c. In the cerebellum, 

Perkinje cells as well as granule cells were also Gb3 positive (Figure 3). Neurons throughout the 

mouse CNS appeared to express Gb3, hence, depending on the CNS entry site of Stx, all these neurons 

could become targets of the toxin.  

Figure 1. Anti-Gb3-Ab staining of Olfactory bulb. (a) Olfactory bulb sections stained with 

anti-Gb3-Ab (Green), and anti-GFAP-Ab (Red) and DAPI (Blue). Glomerular layer (glom), 

external plexiform (ex pl), Mitral cell layer (M) and granular layer (gr) are visible as 

neurons are stained anti-Gb3. Bar indicates 100 m. (b) High magnification of glomerular 

layer. Arrowheads point to anti-Gb3-Ab reactive periglomerular neurons. Bar indicates  

10 m. (c) High magnification of Mitral cell layer. Arrows show anti-Gb3-Ab positive 

Mitral cells. Bar indicates 10 m. 
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Figure 2. Anti-Gb3-Ab staining of cerebrum. (a) Motor cortex region showing anti-Gb3 

stain (Green) in 2-6 layers of neurons, which are also positive for neuron specific  

anti-NeuN-Ab (Red). Position of the image corresponding to the Bregma 0.90 mm is 

shown in (d) as a square. (b) Corpus callosum region of the same section is shown. 

Astrocyte rich corpus callosum (*) is anti-Gb3 and anti-NeuN negative. Lower left area to 

corpus callosum is striatum (CP). Note that neurons of this area are also positive for  

anti-Gb3 Ab. Bar indicates 100 m. (c) Corpus callosum region is stained with  

anti-Gb3-Ab (Green) and anti-GFAP-Ab (an astrocytic marker, Red). Contrast of GFAP 

(Red) positive layer versus cortex neurons (Green) is clear. Bar indicates 100 m.  

(d) Coronal architectural positions at Bregma 0.90 mm is shown with indication of images 

(a), (b) and (c) in squares. (e) Hippocampus region is shown with anti-Gb3-Ab (Green) 

stain. Neuronal layers of CA1, 2, 3 and dentate gyras are anti-Gb3 positive. Area in (e) is 

shown as a rectangle in (f). Bar indicates 100 m. (f) Coronal section architecture at Bregma  

−2.40 mm is shown. (d) and (f) are modified from [23]. 
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Figure 3. Anti-Gb3-Ab staining of cerebellum. (a) Cerebellum sections were stained with 

anti-Gb3 Ab (Green), anti-GFAP-Ab (Red) and DAPI (Blue). Perkinje layer is shown 

reactive to anti-Gb3-Ab. Bar indicates 100 m. (b) Higher magnification of (a). Arrows 

indicate anti-Gb3-Ab positive Perkinje cells, while arrowheads indicate anti-Gb3-Ab 

positive neurons in the granule layer. Bar indicates 10 m.  

 

CVO areas in the mouse CNS were also tested for anti-Gb3-Ab reactivity. Within the tested CVO 

areas, none appeared to have a Gb3 expressing vessel structure. In contrast, neurons of these areas 

were positive for Gb3. In the OVLT, neurons which have characteristic large nuclei, were shown to be 

Gb3 positive (Figure 4a). In Figure 4c, the lining of V3 consisting of ependymal cells appears positive 

for Gb3. In Figure 4e, neurons in the SFO, as well as MH are Gb3 positive, while the choroid plexus is 

Gb3 negative. In Figure 4g, neurons in the medulla oblongata are Gb3 positive including the AP area. 

Within this image, a central canal positioned in the center, appears very dim.  

Ependymal cells were tested as a Gb3 expressing cell type and intensity analysis was performed 

comparing high intensity pixels in neuron and ependyma in the ventricle area as V3, VL and central 

canal. A square shaped region of interest (ROI) was used to detect the pixel area which is higher than 

background intensity. The average area (m2) of neurons vs. ependymal cells in V3, VL and central 

canal was; 1.857 ± 0.039 vs. 1.773 ± 0.197 (p = 0.275), 1.567 ± 0.085 vs. 0.226 ± 0.262 (p = 0.0097), 

1.7739 ± 0.085 vs. 0.137 ± 0.275 (p = 0.0014), respectively. P values less than 0.01 were considered to 

be statistically significant, and shown as (*) in Figure 5a. The line profile intensity analysis revealed a 

similar result that averages of high intensity percent of neurons vs. ependyma in V3, VL and central 

canal were; 79.23 ± 23.29 vs. 71.41 ± 32.03 (p = 0.289), 66.31 ± 26.46 vs. 1.156 ± 2.997  

(p = 4.029E-10), 77.73 ± 30.39 vs. 4.346 ± 4.954 (p = 1.042E-08). The results are graphed in Figure 5b. 

In both analyses, the intensity level of Gb3 positive neurons and ependymal cells in the V3 region was 

similar, thus ependymal cells in this area were Gb3 positive. In contrast, VL and central canal 

ependymal cells were Gb3 negative.  

As the CVO is naturally leaky, serum Stx2 might travel through this route where vessels do not 

express Gb3. As ependymal cells at V3 express Gb3, this could serve as an entry point of Stx, if Stx 

enters into CSF in the mouse CNS. Trafficking of Stx in the CNS needs to be further investigated. 
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Figure 4. Anti-Gb3-Ab staining of CVO areas (a) Anti-Gb3-Ab stain (Green) of OVLT 

region, which is depicted in (b) as Red. Arrowheads indicate the OVLT area;  

(b) Architectural structure of mouse Bregma 0.50 mm; (c) Anti-Gb3-Ab stain (Green) of a 

region containing ME, which is depicted in (d) as Red. Arrowheads indicate the ME area. 

Neurons in ARH, which are adjacent to ME are anti-Gb3-Ab reactive. The V3 is shown as 

a triangular area. A part of ependymal layer (square region) is shown in inset with higher 

magnification. (*) indicates a broken tissue space; (d) Architectural structure of mouse 

Bregma −1.30 mm; (e) Anti-Gb3-Ab stain (Green) of a region containing SFO, which is 

depicted in (f) as Red. Arrowheads indicate the SFO area, while arrows show anti-Gb3-Ab 

negative choroid plexus. Neurons of MH are also anti-Gb3-Ab reactive. Lower area of this 

field includes thalamic nuclei as PVT and MD, in which neurons are positive for  

anti-Gb3-Ab. (f) Architectural structure of mouse Bregma -0.90 mm; (g) Anti-Gb3-Ab stain 

(Green) of a region containing AP, which is depicted in (h) as Red. Arrowheads indicate 

AP area. Neurons of several different nuclei in the medulla oblongata such as NTS, DMX 

and XII are also anti-Gb3-Ab positive; (h) Architectural structure of mouse Bregma  

−8.10 mm; (i) Neurons in the amygdala are also anti-Gb3-Ab positive. BLA is indicated in 

the picture. Dotted line outlines external capsule (ec). See architectural structure in (d). All 

Bars indicate 100 m, except an inset in (c) which indicates 10 m. Blue color in (a) and (c) 

indicates nuclei staining using DAPI. (b), (d), (f) and (h) are modified from [23]. See 

abbreviations in Table 1. 
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Figure 4. Cont. 

 

Figure 5. Intesnsity of anti-Gb3-Ab staining in neurons vs. ependyma. (a) High intensity 

area comparison of neurons and ependymal cells from V3, VL or central canal. Values 

from each region (neuron vs. ependyma) are compared, and the statistically significant 

difference is shown as (*). (b) High intensity percentage from Line profile analysis 

comparing neurons and ependymal cells from V3, VL or central canal. Values from each 

region (neuron vs. ependyma) are compared, and statistically significant differences are 

shown as (*). * indicates p < 0.01 in 2-tailed, paired t-test. 

 

(a)                                                                    (b) 
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4. Conclusions  

Mouse CNS neurons from various areas exhibited anti-Gb3-Ab reactivity. Ependymal cells at V3 

were also found to be positive for anti-Gb3-Ab reactivity. However, vessels at the CVO or other areas 

of the mouse CNS did not exhibit anti-Gb3 reactivity. 

Acknowledgements 

This work was supported by funding from United States Public Health Service grant AI024431  

to T.O. 

References 

1. Bale, J.F.; Brasher, C.; Siegler, R.L. CNS manifestations of the hemolytic-uremic syndrome. 

Relationship to metabolic alterations and prognosis. Am. J. Dis. Child 1980, 134, 869–872. 

2. Brasher, C.; Siegler, R.L. The hemolytic-uremic syndrome. West J. Med. 1981, 134, 193–197. 

3. Cimolai, N.; Morrison, B.J.; Carter, J.E. Risk factors for the central nervous system 

manifestations of gastroenteritis-associated hemolytic-uremic syndrome. Pediatrics 1992, 90, 

616–621. 

4. Gianantonio, C.A.; Vitacco, M.; Mendilaharzu, F.; Gallo, G.E.; Sojo, E.T. The hemolytic-uremic 

syndrome. Nephron 1973, 11, 174–192. 

5. Hamano, S.; Nakanishi, Y.; Nara, T.; Seki, T.; Ohtani, T.; Oishi, T.; Joh, K.; Oikawa, T.; 

Muramatsu, Y.; Ogawa, Y.; Akashi, S. Neurological manifestations of hemorrhagic colitis in the 

outbreak of Escherichia coli O157:H7 infection in Japan. Acta Paediatr. 1993, 82, 454–458. 

6. Karmali, M.A.; Petric, M.; Lim, C.; Fleming, P.C.; Arbus, G.S.; Lior, H. The association between 

idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli.  

J. Infect. Dis. 1985, 151, 775–782. 

7. Rooney, J.C.; Anderson, R.M.; Hopkins, I.J. Clinical and pathologic aspects of central nervous 

system involvement in the haemolytic uraemic syndrome. Proc. Aust. Assoc. Neurol. 1971, 8,  

67–75. 

8. Sheth, K.J.; Sarff, L.D. Hemolytic uremic syndrome associated with Corynebacterium diphtheria 

infection. Int. J. Pediatr. Nephrol. 1986, 7, 17–20. 

9. Tapper, D.; Tarr, P.; Avner, E.; Brandt, J.; Waldhausen, J. Lessons learned in the management of 

hemolytic uremic syndrome in children. J. Pediatr. Surg. 1995, 30, 158–163. 

10. Siegler, R.L. Spectrum of extrarenal involvement in postdiarrheal hemolytic-uremic syndrome.  

J. Pediatr. 1994, 125, 511–518. 

11. Taylor, C.M.; White, R.H.; Winterborn, M.H.; Rowe, B. Haemolytic-uraemic syndrome: Clinical 

experience of an outbreak in the West Midlands. Br. Med. J. (Clin. Res. Ed.) 1986, 292,  

1513–1516. 

12. Upadhyaya, K.; Barwick, K.; Fishaut, M.; Kashgarian, M.; Siegel, N.J. The importance of 

nonrenal involvement in hemolytic-uremic syndrome. Pediatrics 1980, 65, 115–120. 



Toxins 2010, 2               

 

 

2006

13. Verweyen, H.M.; Karch, H.; Allerberger, F.; Zimmerhackl, L.B. Enterohemorrhagic Escherichia 

coli (EHEC) in pediatric hemolytic-uremic syndrome: A prospective study in Germany and 

Austria. Infection 1999, 27, 341–347. 

14. Waddell, T.; Cohen, A.; Lingwood, C.A. Induction of verotoxin sensitivity in receptor-deficient 

cell lines using the receptor glycolipid globotriosylceramide. Proc. Natl. Acad. Sci. USA 1990, 87, 

7898–7901. 

15. Okuda, T. Targeted disruption of Gb3/CD77 synthase gene resulted in the complete deletion of 

globo-series glycosphingolipids and loss of sensitivity to verotoxins. J. Biol. Chem. 2006, 281, 

10230–10235. 

16. Obata, F.; Tohyama, K.; Bonev, A.D.; Kolling, G.L.; Keepers, T.R.; Gross, L.K.; Nelson, M.T.; 

Sato, S.; Obrig, T.G. Shiga toxin 2 affects the central nervous system through receptor 

globotriaosylceramide localized to neurons. J. Infect. Dis. 2008, 198, 1398–1406. 

17. DiMario, F.J., Jr.; Bronte-Stewart, H.; Sherbotie, J.; Turner, M.E. Lacunar infarction of the basal 

ganglia as a complication of hemolytic-uremic syndrome. MRI and clinical correlations. Clin. 

Pediatr. (Phila) 1987, 26, 586–590. 

18. Jeong, Y.K.; Kim, I.O.; Kim, W.S.; Hwang, Y.S.; Choi, Y.; Yeon, K.M. Hemolytic uremic 

syndrome: MR findings of CNS complications. Pediatr. Radiol. 1994, 24, 585–586. 

19. Signorini, E.; Lucchi, S.; Mastrangelo, M.; Rapuzzi, S.; Edefonti, A.; Fossali, E. Central nervous 

system involvement in a child with hemolytic uremic syndrome. Pediatr. Nephrol. 2000, 14,  

990–992. 

20. Steinborn, M.; Leiz, S.; Rudisser, K.; Griebel, M.; Harder, T.; Hahn, H. CT and MRI in 

haemolytic uraemic syndrome with central nervous system involvement: Distribution of lesions 

and prognostic value of imaging findings. Pediatr. Radiol. 2004, 34, 805–810. 

21. Fujii, J.; Kinoshita, Y.; Kita, T.; Higure, A.; Takeda, T.; Tanaka, N.; Yoshida, S. Magnetic 

resonance imaging and histopathological study of brain lesions in rabbits given intravenous 

verotoxin 2. Infect. Immun. 1996, 64, 5053–5060. 

22. Duvernoy, H.M.; Risold, P.-Y. The circumventricular organs: An atlas of comparative anatomy 

and vascularization. Brain Res. Rev. 2007, 56, 119–147. 

23. Abbott, N.J. Evidence for bulk flow of brain interstitial fluid: Significance for physiology and 

pathology. Neurochem. Int. 2004, 45, 545–552. 

24. Kolling, G.L.; Obata, F.; Gross, L.K.; Obrig, T.G. Immunohistologic techniques for detecting the 

glycolipid Gb(3) in the mouse kidney and nervous system. Histochem. Cell Biol. 2008, 130,  

157–164. 

© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


