
Different WDR36 mutation pattern in Chinese patients with
primary open-angle glaucoma

Bao Jian Fan,1,3 Dan Yi Wang,1,3 Ching-Yu Cheng,2 Wendy Charles Ko,1 Shun Chiu Lam,1 Chi Pui Pang1

(The first two authors contributed equally to this work.)

1Department of Ophthalmology & Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China; 2Department of
Ophthalmology, National Yang Ming University School of Medicine and Taipei Veterans General Hospital, Taipei, Taiwan;
3Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA

Purpose: To determine the distribution of WD repeat domain 36 (WDR36) sequence variants in Chinese patients with
primary open-angle glaucoma (POAG).
Methods: One hundred and thirty-five unrelated POAG patients (82 high tension glaucoma [HTG], 42 normal tension
glaucoma [NTG], and 11 juvenile-onset POAG [JOAG] patients) and 77 unrelated controls were recruited. All 23 coding
exons and splicing junctions of WDR36 were sequenced using BigDye® Terminator v3.1 cycle sequencing kit. Single
nucleotide polymorphism (SNP) and haplotype associations were analyzed using PLINK (version 1.04).
Results: Nineteen sequence alterations were identified, and eight of them were novel including two novel nonsynonymous
SNPs (L240V and I713V). Except the common I264V polymorphism, no other previously reported disease-causing or
disease-susceptibility mutations were found. The novel I713V mutation was observed in three (3.7%) patients with HTG.
One intronic SNP, IVS5+30C>T (rs10038177), showed significantly higher frequency of minor allele T in HTG patients
(16.5%) than in controls (1.3%; Odds ratio [OR]=15.0, p=7.9×10−7, Bonferroni corrected p=1.5×10−5). Haplotype GTA,
which is composed of rs13153937, rs10038177, and rs11241095, was significantly associated with HTG (OR=22.5,
p=0.002, Bonferroni corrected p=0.013). Neither the individual SNPs nor haplotypes of WDR36 were associated with
NTG or JOAG (Bonferroni corrected p>0.05).
Conclusions: Findings in this study suggest WDR36 to be associated with sporadic HTG but not with NTG or JOAG.
Our results also suggest a different mutation pattern of WDR36 in the Chinese population from other ethnic populations.

Glaucoma is a group of diseases resulting in an
irreversible degeneration of the optic nerve. It is one of the
leading causes of blindness worldwide, estimated to affect
more than 60 million people by 2010 [1]. Primary open-angle
glaucoma (POAG) and exfoliation glaucoma (XFG) are the
most common forms of glaucoma in Caucasian populations.
But it is noted that in the Chinese population, XFG is rare
[2] and primary angle-closure glaucoma (PACG) occurs at a
higher frequency than POAG [3]. Genetic factors play an
important role in the development of these disorders [4,5]. A
recent advance in this field is that lysyl oxidase-like 1
(LOXL1) was found as a major gene associated with XFG,
accounting for more than 90% of XFG cases in most
populations [6-9]. However, the genetics of POAG appears to
be more complex as genes conferring significant
susceptibility have not yet been identified.

Fourteen chromosomal loci have been designated
glaucoma 1, open angle, A (GLC1A) to GLC1N for POAG
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[4,10]. From these loci, two genes have been identified as
causative factors for POAG. Mutations in the myocilin gene
(MYOC) at GLC1A primarily cause high-tension glaucoma
(HTG) [11,12], and the optineurin gene (OPTN) at GLC1E
appears to contribute to normal-tension glaucoma (NTG)
[13,14]. Recently, the WD repeat domain 36 gene (WDR36) at
GLC1G was identified as a new gene for POAG [15]. Disease-
causing mutations in WDR36 were found in both HTG
[15-18] and NTG patients [15,18,19]. However, some other
studies did not find an association between WDR36 and
POAG [20,21].

Although WDR36 has been evaluated for association with
POAG in several studies [15-18], the contribution of WDR36
to the occurrence of POAG is still controversial due to
inconsistency in reported associations. Further evaluation of
this gene in more populations is needed. The purpose of this
study is to determine the distribution of WDR36 sequence
variants in a cohort of Chinese patients with POAG.

METHODS
Patients and control subjects: Patients with POAG were
recruited from the Eye Clinic of the Taipei Veterans General
Hospital (Taipei, Taiwan). POAG was defined as meeting all
of the following criteria: exclusion of secondary causes (e.g.,
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trauma, uveitis, steroid-induced glaucoma, or exfoliation
glaucoma), Shaffer grade III or IV open iridocorneal angle on
gonioscopy, and characteristic optic disc damage or typical
visual field loss by Humphrey automated perimeter with the
Glaucoma Hemifield test. Intraocular pressure (IOP) was
determined by applanation tonometry. Control subjects were
recruited from people who attended the clinic for conditions
of senile cataract, floaters, refractive errors, or itchy eyes.
They were excluded from glaucoma using the same criteria of
diagnosis as the POAG patients after going through the same
procedure of ophthalmic examination. The project was
approved by the Ethics Committee for Human Research at the
Chinese University of Hong Kong. Informed consent was
obtained from all study subjects after explaining the nature
and possible consequences of the study in accordance with the
tenets of the Declaration of Helsinki.

A cohort of 135 unrelated patients with POAG and 77
unrelated control subjects without glaucoma were included in
this study. The demographic and clinical features of the study
subjects are summarized in Table 1. The POAG group
comprised 110 males and 25 females. Their age at diagnosis
ranged from 16 to 85 years (mean±SD: 61±15.0 years). The
highest IOP ranged from 13 to 77 mmHg (mean±SD:
24±8.0 mmHg). The vertical cup-disc ratio from 0.7 to 1.0
(mean±SD: 0.8±0.09) and visual field loss were compatible
with glaucoma in two consecutive Humphrey testing. In this
POAG group, 11 patients were juvenile-onset POAG (JOAG)
whose age at diagnosis was less than 35 years (mean±SD:
26.5±6.3 years), the highest IOP ranged from 24 to 77 mmHg
(mean±SD: 32.5±7.8 mmHg), 82 patients had late-onset HTG
with the highest IOP being greater than or equal to 22 mmHg
(mean±SD: 25.7±5.6 mmHg), and 42 patients had late-onset
NTG with the highest IOP being less than 22 mmHg (mean
±SD: 17.9±2.3 mmHg). The control group had 58 males and
19 females whose age at inclusion ranged from 52 to 86 years
(mean±SD: 72±8.5 years), and their highest IOP ranged from
8 to 21 mmHg (mean±SD: 16±3.0 mmHg), their vertical cup-
disc ratio from 0.2 to 0.5 (mean±SD: 0.4±0.07), their visual
fields within normal range, and they had no family history of
glaucoma.

All the subjects were Han Chinese living in Taiwan. They
were recruited from the same eye clinic and had a similar
ethnic background. The cases and controls were matched for
sex with 81.5% and 75.3% being males in POAG patients and
controls, respectively (p=0.29). Because of the age
dependence of POAG, only controls older than 50 years of
age were included.
Mutation screening: Genomic DNA was extracted from
200 µl of whole blood using a commercial kit (Qiamp Blood
Kit; Qiagen, Hilden, Germany). Quantification of extracted
DNA was performed using NanoDrop ND-1000
spectrophotometer (NanoDrop Technologies, Wilmington,
DE). All 23 coding exons and splicing sites of WDR36 were
amplified by polymerase chain reaction (PCR) followed by
DNA sequencing. Previously reported primers [22] were used
to obtain the initial amplicons. Initial PCRs were performed
on a thermal cycler (model 9700; Applied Biosystems [ABI],
Foster City, CA) in a total volume of 25 µl containing 200 ng
of genomic DNA, 0.4 µM of each primer, 200 mM dNTPs,
20 mM Tris-HCl (pH 8.0), 50 mM KCl, 1.5−3.0 mM MgCl2,
and 1 U of Taq DNA polymerase (AmpliTaq Gold; ABI).
Cycling conditions were as follows: first denaturation step of
12 min at 94 °C, 35 cycles of denaturation (94 °C for 40 s),
annealing (primer-specific annealing temperature for 60 s),
elongation (72 °C for 40 s), and a final single elongation step
of 7 min. The PCR products were electrophoresed on 2%
agarose gel and visualized using a video gel documentation
system (Gel-Doc 2000; Bio-Rad Laboratories, Hercules, CA)
to check for the quality. The PCR products were then purified
with ExoI-SAP kit (USB Corp., Cleveland, OH) to remove
unconsumed dNTPs and primers. A second PCR was
performed using the sequencing primers as previously
described [22] on a thermal cycler (model 9700; ABI) to
incorporate the sequencing dyes (BigDye® Terminator v3.1
cycle sequencing kit; ABI) using a protocol of 25 cycles of
denaturation (96 °C for 10 s), annealing (50 °C for 5 s), and
elongation (60 °C for 4 min). Sequence data were then aligned
using Sequence Navigator analysis software (version 1.0.1;
ABI) and compared with the published WDR36 sequence
(NM_139281). MYOC and OPTN were screened for sequence

TABLE 1. DEMOGRAPHIC AND CLINICAL FEATURES OF THE STUDY SUBJECTS.

Group N Sex (M/F)                Age at diagnosis (years) Highest IOP (mmHg)                         Vertical cup-disc ratio
Range Mean±SD Range Mean±SD Range Mean±SD

POAG 135 110/25 16–85 61.0±15.0 13–77 24.0±8.0 0.70–1.00 0.80±0.09
HTG 82 67/15 35–83 63.0±11.3 22–45 25.7±5.6 0.70–1.00 0.81±0.10
NTG 42 33/9 38–85 66.7±10.1 13–21 17.9±2.3 0.70–0.95 0.84±0.07
JOAG 11 10/1 16–34 26.5±6.3 24–77 32.5±7.8 0.70–1.00 0.80±0.09

Controls 77 58/19 52–86 72.0±8.5 8–21 16.0±3.0 0.20–0.50 0.40±0.07

For controls, age at diagnosis refers to age at inclusion.
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alterations by PCR and direct sequencing as previously
described [14,23].
Statistical analysis: Statistical analyses were performed using
PLINK (version 1.04). PLINK is a free statistical analysis
toolset, designed to perform a range of basic and large-scale
analyses for genome-wide association studies in a
computationally efficient manner [24]. Hardy–Weinberg
equilibrium was assessed using an exact test [25]. The
frequencies of the WDR36 variants between patients with
HTG, NTG, or JOAG and controls were compared using
Fisher’s exact test. Linkage disequilibrium (LD) analysis was
performed using Haploview (version 4.1) [26]. Haplotype
frequencies were estimated using the standard E-M algorithm
and tested using χ2 test. Omnibus p values were obtained from
the omnibus tests. Specific p values were obtained from the
haplotype-specific tests. The odds ratio (OR) and 95%
confidence interval (CI) were calculated for each individual
haplotype compared to all the other haplotypes. Multiple
comparisons were corrected using the Bonferroni method.
Despite the Bonferroni correction being considered
conservative, especially for small samples, we used it to
reduce the possibility of false-positive results and to report our
significant association of WDR36 with HTG with more
confidence. Disease-causing mutations were defined (1) to
alter the amino acid sequence of the corresponding protein and
(2) to be completely absent from the control population or
significantly more common in the POAG population [27].

RESULTS
Nineteen single nucleotide polymorphisms (SNPs) were
identified, eight of which were novel (Table 2). All SNPs
followed Hardy–Weinberg equilibrium in the control group
(p>0.05). Three were nonsynonymous SNPs. Two were novel
(L240V and I713V) while I264V had been previously
reported [15]. The only likely disease-causing mutation,
I713V, was found in three patients with HTG (3.7%) and was
absent in patients with NTG or JOAG and controls (p=0.25).
The L240V variant was found in one control subject (p=0.48).
The previously reported common SNP, I264V (rs11241095),
was evenly distributed between HTG, NTG, JOAG, and
control groups (p>0.51).

Three synonymous SNPs, one of which was novel
(T180T), and 13 intronic SNPs were found, including five that
had not been previously reported (Table 2). None of the
intronic changes or synonymous SNPs was expected to affect
splice sites. The minor allele T of IVS5+30C>T
(rs10038177) was found in a significantly higher frequency
in HTG patients than in controls (p=7.9×10−7, Bonferroni
corrected p=1.5×10−5; OR=15.0, 95%CI: 3.50, 64.2). The
allele T carriers (genotypes TT/CT) had an increased HTG
risk (p=2.3×10−5; OR=12.9, 95% CI: 2.91, 57.2) compared to
non-allele T carriers (genotype CC). None of the other SNPs
of WDR36 was found to be associated with HTG, NTG, or
JOAG (p>0.05).

Haplotype GTA, composed of rs13153937, rs10038177,
and rs11241095, was significantly associated with HTG
(p=0.002, Bonferroni corrected p=0.013, OR=22.5; Table 3).
No haplotypes of WDR36 were associated with NTG or JOAG
(Bonferroni corrected p>0.09, data not shown).

DISCUSSION
In the present study, three patients with HTG (3.7%) carried
a novel disease-causing mutation (I713V). They were free of
disease-causing mutations in MYOC and OPTN [28]. The
absence of this mutation in 154 human normal control
chromosomes suggests that it might affect the normal function
of the WDR36 protein. This mutation is located within a
domain of WDR36 named mini-chromosome maintenance
(MCM) protein 5 (amino acids 703–718 and 873–885). MCM
proteins are a family of eukaryotic replication factors required
for the initiation of DNA replication. MCM5 directly interacts
with the Stat1 protein (signal transducer and activator of
transcription) to enhance Stat1-mediated transcription
activation [29]. These findings suggest that WDR36 might be
involved in transcription activation. However, the
replacement of an isoleucine by a valine would only mildly
alter the hydrophobicity in this region. The conformational
structure of the protein is unlikely to be disrupted. It is also
possible that the I713V mutation is a benign polymorphism
that does not affect the function of WDR36. Further functional
studies are required to elucidate the exact role of this novel
mutation.

In the present study, we did not find the previously
reported disease-causing mutations (N355S, A449T, R529Q,
and D658G) and disease-susceptibility mutations (L25P,
A163V, and Y216P) [15]. Except the common I264V
polymorphism, we also did not identify other reported
nonsynonymous SNPs (P31T, D33E, Y97C, D126N, H212P,
M283R, A353S, D354N, I361V, T403A, H411Y, H411L,
C470Y, P487R, I604V, S664L, M671V, and N668H), which
were identified from different populations [15-20]. As a
whole, our results suggest a different mutation pattern for
WDR36 in the Chinese population from other ethnic
populations. The common I264V variant was reported to have
a significantly higher frequency in Japanese patients with
HTG than controls [17]. However, we found similar
frequencies of this variant in our POAG patients and controls,
which are consistent with two other studies of Caucasian
populations [16,18], arguing that I264V may be a benign
polymorphism.

The total mutation prevalence of WDR36 in Chinese
patients with HTG (3.7%) is similar to those in the original
study of a Caucasian population from USA (3.2%) [15] and
one report from Germany (3.7%) [18]. However, it is lower
than that in another study of the USA Caucasian population
(17%) [16], and higher than the prevalence found in one report
of the Japanese population (0.7%) [17]. It is noteworthy that
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neither individual SNPs nor haplotypes in WDR36 were
associated with NTG in our study while WDR36 mutations
had been identified in both HTG [15,16,18] and NTG patients
[15,18,19] in Caucasian populations. Intriguingly, the similar
results of negative association of WDR36 with NTG were also
reported in a Japanese population [17], suggesting that the
variants of WDR36 may affect only HTG in Asian
populations.

In the present study, the association analysis was used for
the first time to explore ancestral alleles in WDR36 that may
pose risk to glaucoma. We found that one intronic SNP of
WDR36 (IVS5+30C>T) was significantly associated with
HTG (p=7.9×10−7). But we did not find significant association
of this variant with the highest recorded IOP and vertical cup-
disc ratio (p>0.2; data not shown). Conflicting association of
SNP IVS5+30C>T with glaucoma has been reported.
Analysis of the published genotype data from a study of a USA
population revealed that this SNP was significantly associated
with HTG and JOAG (p=1.8×10−9) [16]. However, another
study of a German population did not demonstrate significant

association of this SNP with POAG (p=0.27) [18]. Our recent
study of a northern Chinese population also did not identify
significant association of this SNP with HTG and JOAG
(p=0.22) [30]. Unfortunately, we could not directly compare
these data with our results as the HTG patients were not
separately analyzed in those studies [16,18,30]. Notably, we
did not find functional mutations in WDR36 in linkage
disequilibrium with this common intronic SNP. The only
potential disease-causing mutation (I713V) identified in the
present study is a rare mutation, which is clearly not the source
of this significant association. It is possible that the true
disease-causing mutations might be located in the promoter
or introns of WDR36 that were unable to be detected in this
study. Another possibility is that SNP IVS5+30C>T might be
in linkage disequilibrium with disease-causing mutations in a
neighboring gene. This latter proposition has some indirect
supportive evidence. Two studies reported WDR36 not
associated with POAG in several families, which were linked
to GLC1G [15,31]. Also, no association was found between
WDR36 and unrelated patients with POAG in some

TABLE 3. HAPLOTYPE ANALYSIS OF WDR36 IN 82 HTG PATIENTS AND 77 CONTROL SUBJECTS.

Haplotype                                    Haplotype Frequency (%) p OR (95% CI)
  HTG                                    Controls
(n=164)                                   (n=154)

Block 1: rs13153937, rs10038177, rs11241095 . Omnibus p=0.0009
GCA 57.7 67.3 0.07 0.66 (0.42, 1.05)
ACG 12.3 17.5 0.20 0.66 (0.35, 1.23)
ACA 8.1 8.0 0.98 1.02 (0.45, 2.28)
GCG 5.8 5.9 0.97 0.98 (0.38, 2.50)
GTA 6.5 0.1 0.002 22.5 (1.31, 386)
ATA 5.5 1.2 0.03 4.41 (0.94, 20.8)
ATG 4.0 0.0 0.01 13.9 (0.78, 247)

Block 2: rs34962120, rs13161853. Omnibus p=0.01
GC 60.3 64.2 0.47 0.85 (0.54, 1.33)
GA 20.8 17.6 0.47 1.23 (0.70, 2.16)
AA 17.0 9.6 0.05 1.91 (0.98, 3.73)
AC 1.9 8.6 0.008 0.20 (0.06, 0.72)

Block 3: rs17553936, rs17624563, rs17554123, rs13186912, rs2290680. Omnibus p=0.0008
ACCAG 48.3 63.8 0.007 0.53 (0.34, 0.83)
GCCAG 15.9 13.4 0.55 1.19 (0.64, 2.22)
ACCTG 12.5 13.1 0.87 0.96 (0.50, 1.85)
AGCAG 6.7 0.6 0.006 11.0 (1.40, 86.3)
GCCTG 1.7 6.0 0.05 0.30 (0.08, 1.13)
GCTAG 5.5 1.2 0.04 4.41 (0.94, 20.8)
ACCTC 4.6 0.6 0.03 7.33 (0.90, 59.8)
ACTAG 1.7 1.2 0.70 1.42 (0.23, 8.59)
AGCAC 3.0 0.2 0.07 10.7 (0.58, 194)

Only haplotypes with overall frequency above 1% were shown. Haplotype GTA was significantly associated with HTG
(p=0.002, Bonferroni corrected p=0.013; OR=22.5). The other haplotypes were not significant after Bonferroni correction
(Bonferroni corrected p>0.05).

Molecular Vision 2009; 15:646-653 <http://www.molvis.org/molvis/v15/a66> © 2009 Molecular Vision

650

http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=13153937
http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=10038177
http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=11241095
http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=34962120
http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=13161853
http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=17553936
http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=17624563
http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=17554123
http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=13186912
http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=2290680
http://www.molvis.org/molvis/v15/a66


populations [20,21]. Although the sample size was not large
in our study, it did not compromise the significant association
of SNP IVS5+30C>T with HTG. However, other POAG
associated sequence variants could still be missed. A large-
scale study is warranted.

The function of WDR36 was recently determined using
zebrafish models [32]. It is the functional homolog of yeast
U3 small nucleolar RNA-associated protein 21 (Utp21),
which is cell essential and functions in the nucleolar
processing of 18S rRNA [32]. In yeast models, certain Utp21
variants homologous to glaucoma-associated variants in
human WDR36 cause functional defects in a stress-induced-
phosphoprotein 1 (Sti1) mutant background, arguing that
WDR36 contributes to polygenic forms of glaucoma [33].
Loss of Wdr36 function leads to an activation of the p53 stress
response pathway while p53 may act as a transcriptional
activator [32]. Collectively, WDR36 might be involved in
transcription activation either through its MCM5 domain or
through the p53 stress response pathway [29,32]. Although
genetic studies of p53 variants have shown inconsistent
association with POAG [34-37], it has been suggested that co-
inheritance of defects in p53 pathway genes may influence the
impact of WDR36 variants on POAG [32]. WDR36 may affect
the disease severity of patients with POAG that is caused by
mutations in MYOC [16]. We found that OPTN may interact
with MYOC and contribute to the development of POAG
[38]. This finding was further supported by an in vitro study
of human trabecular meshwork cells that OPTN
overexpression induced an upregulation of MYOC [39].
Although WDR36 has been shown to function in 18S rRNA
processing and transcription activation [32], the exact role of
WDR36 in glaucoma remains unclear. It has been suggested
that WDR36 may participate in T-cell activation [40]. T-cell
responses may be involved in optic nerve degeneration in
glaucoma [41]. These findings indicate that WDR36 may
contribute to glaucoma by modifying optic nerve
degeneration. However, further studies are needed to address
how WDR36 may influence POAG.

In summary, our data suggests the association of WDR36
with sporadic HTG but not with NTG or JOAG. Our results
also suggest a different mutation pattern of WDR36 in the
Chinese population from other ethnic populations.
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