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Abstract

The primary aim of the present study was to analyze mechanical responses during inertial

knee- and hip-dominant hamstring strengthening exercises (flywheel leg-curl and hip-exten-

sion in conic-pulley), and the secondary aim was to measure and compare regional muscle

use using functional magnetic resonance imaging. Mean power, peak power, mean velocity,

peak velocity and time in the concentric (CON) and eccentric (ECC) phases were measured.

The transverse relaxation time (T2) shift from pre- to post-exercise were calculated for the

biceps femoris long (BFl) and short (BFs) heads, semitendinosus (ST) and semimembrano-

sus (SM) muscles at proximal, middle and distal areas of the muscle length. Peak and mean

power in flywheel leg-curl were higher during the CON than the ECC phase (p<0.01). ECC

peak power was higher than CON phase (p<0.01) in conic-pulley hip-extension exercise,

while mean power was higher during the CON than ECC phase (p<0.01). Flywheel leg-curl

showed a higher T2 values in ST and BFs and BFl (p<0.05), while the conic-pulley hip-

extension had a higher T2 values in the proximal region of the ST and BFl (p<0.05). In con-

clusion, ECC overload was only observed in peak power during the conic-pulley hip-exten-

sion exercise. Flywheel leg-curl involved a greater overall use of the 4 muscle bellies, more

specifically in the ST and BFs, with a selective augmented activity (compared with the

conic-pulley) in the 3 regions of the BFs, while conic-pulley hip-extension exercise selec-

tively targeted the proximal and medial regions of the BFl. Physiotherapists and strength

and conditioning coaches should consider this when optimizing the training and recovery

process for hamstring muscles, especially after injury.
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Introduction

Hamstring injuries are the most common soccer-related muscle injury [1,2] representing

more than 37% of all soccer-related injuries and requiring long rehabilitation periods [1,2].

The hamstring muscles comprise the biceps femoris muscle [long head (BFl) and short head

(BFs)], semitendinosus muscle (ST) and semimembranosus muscle (SM) located in the poste-

rior of the thigh. The BF is the most commonly strained muscle in soccer players [2,3],

accounting for 53–85% of the total injuries in the hamstring complex [2,4,5], whereas the ST

and SM muscles are less often injured [2,6,7]. The hamstring muscles also act as an anterior

cruciate ligament (ACL) synergist, decreasing the anterior translation of the tibia and reducing

internal tibial rotation [8]. Previous studies showed that the ST muscle could play a key role as

the most important neuromuscular ACL agonist, suggesting that an increasing in ST muscle

activity via neuromuscular training intervention can be a key part of ACL preventive strategy

[9]. All this information helps to understand the importance of this muscle group for perfor-

mance and from the point of view of both prevention of and recovery from injuries. Accord-

ingly, most preventive strategies aimed at decreasing hamstring and non-contact ACL injuries

include some sort of neuromuscular training of the hamstring muscles as an essential aspect

[10–13].

The hamstring muscles are involved in knee flexion and/or hip extension, and as previ-

ously reported in previous studies, BFl is selectively recruited during hip extension exercises

[7,14], whereas ST and BFs are activated in knee-flexion exercises [14–16]. Weakness in

eccentric knee flexor strength has been proposed as one of the main risk factors for ham-

string injury [17,18], although a recent study showed that Nordic hamstring strength was

not associated with increased or decreased risk of sustaining a hamstring muscle injury [19].

Using an isokinetic test, lower hamstring eccentric strength adjusted for body weight was

identified as a (weak) risk factor associated with hamstring injury in professional soccer

players [20]. In addition to this, strength training has been proposed as a preventive measure

in order to reduce hamstring muscle injuries and thus medical costs in soccer [10–12].

Mechanical eccentric overload is suggested to achieve muscle hypertrophy, strengthening of

the musculotendinous tissue and protection of the muscle-tendon complex against further

injury [21–24]. Currently, there are devices that use inertia to provide a source of linear

resistance independent of gravity, using a tether wrapped around a horizontal cylinder-

shaped shaft (i.e., flywheel leg curl) [25] or a vertical cone-shaped shaft (i.e., Versa-pulley)

[26] producing a resistance during the entire range of motion [23]. The inertial torque is a

function of the mass of the disc, the disc’s radius of gyration and the disc’s angular accelera-

tion [27], which together allow these devices to offer eccentric overload [25]. The kinetic

energy increases based on rotational speed and once the concentric phase was finalized, the

cord rewinds and the trainee must resist the pull of the inertial device executing a braking

causing this an eccentric muscle action [23]. The magnitude of this overload is largely

dependent on previous experience with this technology as was shown by Tous-Fajardo et al.

[25], and the experience with these devices is crucial to optimize training. Previous studies

using flywheel technology have shown benefits such us improved performance [24,28,29],

chronic adaptations on muscular strength, power and gains in lean mass [28–30], higher

force and power production combined with low energy expenditure [28] or reduced ham-

string injuries in professional soccer players [11,22,28]. It should be noted that with the use

of this flywheel technology a familiarization process is required and there is a lack of stan-

dard procedures for exercise loading prescription and limited evidence with elite athletes

[28]. In addition, limited information exists describing the basic kinematics of these devices

as used during hip extension and knee flexion exercises. Tour-Fajardo et al. [25] reported
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kinematic data measuring the velocity with a lineal encoder and force with a strain gauge

during all-out knee flexions in a flywheel leg-curl, showing that this flywheel device offered

eccentric overload to experienced athletes in peak force or velocity, but not in mean force

and mean velocity. In the same line, Núñez et al. [31] did not obtain any force or velocity

eccentric overload during the squat exercise using two different inertial devices (conic-pul-

ley and Yo-Yo flywheel). When compared with free weights, Núñez et al. [32] reported, in

experienced rugby players, a substantially greater eccentric overload and augmented meta-

bolic demands with these devices [32]. Thus, despite that it is likely that inertial devices can

generate augmented eccentric overloads compared with free weights and other traditional

devices [32], it is not clear what magnitude of eccentric overload can be generated in relation

to the concentric phase with these devices [25,31].

Functional magnetic resonance imaging (fMRI) is used to display the physiological changes

that occur in muscles activated during exercise, providing detailed anatomical analysis of asso-

ciated soft issues, which is lacking in electromyography experiments [15,16,33,34]. Previous

studies have reported that changes in response to resistance training occur non-uniformly

along the length of the muscle [35,36]. These changes have been attributed to region-specific

muscle activation, as assessed via the transverse relaxation time (T2) (a quantitative measure-

ment of muscle activity), using fMRI before and immediately following the exercise [14,37].

To date, only few studies have investigated individual muscle use, by means of fMRI, of differ-

ent hamstring resistance exercises in professional soccer players [14,37]. Those previous stud-

ies showed that different hamstring muscles and specific-regions within each muscle are likely

to be selectively activated during different resistance exercises [14,37], although none of them

have described the basic kinematics of these devices during the CON and ECC phases. To our

knowledge, there is no information describing both the mechanical responses and region-spe-

cific muscle recruitment after concentric–eccentric training with flywheel devices during

knee- and hip-dominant (i.e. strengthening exercises). Therefore, the primary aim of the pres-

ent study was to analyze mechanical responses during inertial knee- and hip-dominant ham-

string strengthening exercises (Conic-Pulley and Yo-Yo flywheel), and the secondary aim was

to measure and compare regional muscle use using fMRI.

Methods

Participants

The study examined 19 male elite professional soccer players (age 20.4 ± 3.9 years; height

180.0 ± 3.0; weight 72.3 ± 7.5 kg). Players belonged to the reserve squad of a Spanish La Liga

club that competed in the UEFA Champions League, and participated in ~ 8 hours of soccer

training plus 1 or 2 competitive games per week. All the team usually supplemented the soc-

cer training with a basic strength-training program combining free weights, Russian Belt

and Nordic hamstring exercise, but without experience with inertial devices. Players were

randomly assigned to one of the two groups/exercises: 10 players performed flywheel leg-

curl (LC) exercises and 9 players used hip-extension Versa Pulley (VP) exercises. The inclu-

sion criterion was to be available to play an official game with the squad, and the testing pro-

cedure was conducted during preseason. There was an exclusion because one player couldn

´t complete the exercise protocol. Thus, of the 19 initially examined players, 18 players

remained for statistical analysis (LC, n = 10; VP, n = 8). The purpose and experimental pro-

tocol was explained to the players and written informed consent was obtained from the play-

ers (or tutor for players under 18). The Anti-Doping Lab Institutional Review Board (Qatar)

conformed to the recommendations of the Declaration of Helsinki, approved the present

study.
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Experimental design

To investigate the mechanical variables and regional-specific differences of fMRI muscle mea-

surements in two hamstring exercises, the present study used a repeated-measures research

design before and after completing an acute strength training session with an LC or VP.

Procedures

On the experiment day the players underwent fMRI of both thighs at rest, 30 min before begin-

ning the training session. Before the strength training protocol, players performed a 15-min

standardized warm up that included jogging, lower limb joint mobility exercises, dynamic and

active stretching exercises, running technique drills, bodyweight squat and frontal lunge exer-

cises, and one submaximal set of 8 repetitions of LC or VP. After completing the strength

training protocol the players underwent fMRI of both thighs (within 3 min), and each player’s

session RPE was collected using the Borg scale-10 (30 min after the session finished) [38].

Exercise protocol

The training session consisted of 4 sets of 8 repetitions of one of the two exercises (i.e. LC or VP)

and non a priori power calculation was done. The smallest possible resistance was employed

(0.07208 kg/m2 moment inertia for LC and 0.21964 kg/m2 moment inertia for VP). Most of the

players only experienced two familiarization submaximal sets of 6–8 repetitions with this tech-

nology 2–3 days before the experiment day. There was a 2-min rest between each set, during

which the subjects rested in a standing position. All the repetitions performed by each player

were recorder for further analysis. Mean power, peak power, mean velocity, peak velocity and

time during concentric and eccentric phase was sampled at 100 Hz using a rotatory encoder

(SmartCoach™, SmartCoach Europe AB, Stockholm, Sweden) and associated software (Smart-

Coach1 v.5.2.0.5). The concentric: eccentric ratio was calculated for mean power (PM CON: ECC
ratio), peak power (Pp CON: ECC ratio) and time (Time CON:ECC ratio). Internal training load

was quantified by analyzing the RPE of each training session. The RPE value was multiplied by

the number of repetitions [39,40] to estimate the RPE-derived internal training load (sRPE-TL).

Flywheel leg-curl. A non-gravity device that provided a source of linear resistance

(0.07208 kg/m2 moment of inertia) from a tether wrapped around a horizontal cylinder-

shaped shaft was used (LC: Leg curl YoYo Technology AB, Stockholm, Sweden) (Fig 1). Play-

ers were in a supine head-down position and performed unilateral knee flexion with the domi-

nant leg (the hip was fixed at a 140˚ angle and the contra-lateral leg rested firmly on the floor),

applying force at maximal velocity during the acceleration phase of the movement (CON:

Concentric), and attempting to stop the movement at the end of the deceleration phase (ECC:

Eccentric) without reaching full extension [11,25].

Hip-extension versa-pulley. A non-gravity device that provided a source of linear resis-

tance (0.21964 kg/m2 moment of inertia) from a tether wrapped around a vertical cone-shaped

shaft was used (VP: (VersaPulley portable; VersaClimber, Halesowen, UK) (Fig 2). Players

were in a supine head-up position, with the strap placed around the ankle, and performed a

hip extension with the dominant leg (with a slight knee extension, while the non-dominant leg

was blocked by a coach to avoid movement) applying force at maximal velocity during CON,

and attempting to stop the movement at the end of ECC.

Imagine technique

All fMRI measurements were obtained using a 3 T whole-body imager with surface phased-

array coils (Siemens, Erlagen, Germany). For the fMRI scans, the subjects were in a supine
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position with their knees extended. Once the subject was positioned inside the MRI chamber,

the thighs of both legs were kept parallel to the fMRI table, and a custom-made foot-restraint

device was used to standardize and fix limb position and avoid any compression of the thigh

muscles. Subjects were supine on the MR gurney with the thighs covered with one 32- and 2

flexible 4-channel coils, respectively in the proximal and distal segments. Twelve cross-sec-

tional images of the thighs of both legs were obtained, starting at the very distal margin of the

ischial tuberosity, and using the following scan sequences: (a) axial fat-suppressed proton den-

sity, TR 3000 ms, TE 30–33, eco train 4, slice thickness 3.5 mm, gap 28 mm, FOV 400 × 290

mm, matrix 320 × 180 and ipat 2; (b) axial T2 mapping, TR 1000 ms, TE (18, 36, 54, 72, 90,

108), eco train 6, FOV 400 × 400 mm, matrix 256 × 256, slice thickness 3.5 mm and gap 28

mm. A parametric image was generated from a T2 mapping sequence using the Leonardo

workstation (Siemens). Scout images and anatomical landmarks were obtained to ensure iden-

tical and time-efficient positioning in pre- and post- scans.

T2 values of BFl, BFs, SM, and ST muscles from the dominant leg were calculated using

eFilm Lite v.3.1 software (Merge Healthcare, Chicago, IL). Using the fat-suppressed images to

detect any confounding artifacts (e.g., vessels, fat), a circular region of interest (ROI, mm) was

selected for individual muscles (BFl, BFs, SM, and ST) in each of the T2 mapping images

where muscles were visible. Following the pre-exercise scan analysis, the same sized circular

ROIs were placed in the T2 images of the post-exercise scan, to ensure identical positioning as

in the pre-exercise analysis. Site-specific muscle use was calculated after each exercise by

obtaining the baseline and post-exercise average values of the first 30% axial scans, where each

Fig 1. Flywheel leg-curl.

https://doi.org/10.1371/journal.pone.0239977.g001
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Fig 2. Hip extension in versa pulley.

https://doi.org/10.1371/journal.pone.0239977.g002
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muscle was visible starting from the hip/knee joint (proximal and distal portions, respectively),

and the middle scans (from 30% to 70%; mid portion) [16]. Two researchers, blinded to the

origin of all images, independently analyzed all images. The intraclass correlation coefficients

and coefficients of variation for the inter-rater agreement of the T2 values for the different

muscle were: BFl (0.95, 2.5%), BFs (0.98, 1.8%, 0.77), ST (0.97, 1.9%) and SM (0.89, 3.8%).

The following variables were analysed:

1. T2 changes within and between muscle bellies, representing the amount of metabolic mus-

cle activity between the scans (T2 change = T2post-T2pre / T2 pre) [41].

2. The proportional shares of the different hamstring muscle (BFl, BFs, SM and ST) regions

(proximal, medial and distal) within the entire hamstring T2 value change, for which the

T2 change in each muscle belly region was normalized to the summated changes of all mus-

cle belly regions [proportional activity = T2 change (BFl region or BFs region or SM region

or ST region)/T2 change (T2 changes of each region of BFl+BFs+SM+ST)] [41].

Statistical analysis

Data are presented as mean ± standard deviation (SD) and coefficient of variation (CV) [(SD/

mean x 100)]. Descriptive statistics were calculated on each variable and Shapiro-Wilk test

were used to verify normality (SPSS 2018, Inc., Chicago, IL). A one-way analysis of variance

(ANOVA) was used to determine differences between groups and Bonferroni’s post-hoc tests

were used to identify any localized effects. Differences within group were determined using

Student’s dependent t-test. Statistical significance was set at p<0.05 (95%CI). The standardized

difference or effect size (ES, 95% confidence interval [95%CI]) in the selected variables was cal-

culated. Threshold values for assessing magnitudes of the ES (changes as a fraction or multiple

of baseline standard deviation) were>0.20, 0.20, 0.60, 1.2 and 2.0 for trivial, small, moderate,

large and very large respectively [42]. To assess the intra-set reliability of the measures, both

the intra-class coefficient correlation (ICC) and the coefficient of variation (CV) were used.

Pearson’s correlation coefficients were calculated to establish the respective relationships

between mechanical variables measured and changes in T2 values of BFl, BFs, SM, and ST

muscles.

Results

Mechanical variables

Intra-set reliability for hip-extension versa-pulley showed good values for mean power (ICC:

0.99 (0.95; 1.00); CV: 2.6% (1.7; 5.4)), peak power (ICC: 0.95 (0.76; 0.99); CV: 3.8% (2.5; 7.9)),

PM CON: ECC ratio (ICC: 0.96 (0.81; 0.99); CV: 3.1% (2.0; 6.4)) and CON: ECC ratio (ICC:

0.95 (0.77; 0.99); CV: 4.2% (2.8; 8.7)). Intra-set reliability for flywheel leg-curl showed good

values for mean power (ICC: 1.00 (1.00; 1.00); CV: 2.8% (1.9; 5.9)), peak power (ICC: 0.99

(0.97; 1.00); CV: 4.5% (3.0; 9.4)), PM CON: ECC ratio (ICC: 0.92 (0.65; 0.98); CV: 5.8% (3.8;

12.2)) and CON: ECC ratio (ICC: 0.81 (0.32; 0.96); CV: 16.4% (10.6; 36.2)).

Mechanical variables during the 4 sets with LC exercise are shown in Table 1. ECC time

during the first set was lower than during any other set (p<0.05, ES from 0.33 to 0.55). Com-

parisons between CON and ECC phases are shown in Fig 3. ECC time was higher than CON

time (p<0.01), while peak and mean power were higher during the CON than the ECC phase

(p<0.01).

Mechanical variables during the 4 sets with VP exercise are shown in Table 2. CON and

ECC mean power during the first set was lower than in any other set (p<0.05, ES from 0.36 to

0.56). CON peak power during the first set was lower than in any other set (p<0.05, ES from
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0.42 to 0.78), and ECC peak power during the fourth set was higher than any other set

(p<0.05, ES from 0.41 to 0.67). CON and ECC time during the first set was higher than during

any other set (p<0.05, ES from 0.36 to 0.61). Comparisons between the CON and ECC phases

are shown in Fig 3. ECC time and ECC peak power were higher than CON phase (p<0.01),

while mean power was higher during the CON than ECC phase (p<0.01).

Comparisons between LC and VP exercises during CON and ECC phases are shown in Fig

4. Time during the CON and ECC phases of LC was higher than for VP (p<0.01). Peak veloc-

ity, peak power and mean power during the CON and ECC phases of VP were higher than

those in LC (p<0.01).

sRPE-TL was significantly higher after LC exercise (217.6 ± 14.3 AU) than after VP

(144.0 ± 18.5 AU) (p<0.01).

MRI

Changes in T2 values after LC exercise are presented in Fig 5. T2 values were significantly

increased in the proximal, medial and distal portion of the BFl (Fig 5A), BFs (Fig 5B) and ST

(Fig 5C) (p<0.05), while T2 values were significantly increased only in the medial portion of

the SM (Fig 5D) (p<0.05). Changes in the proximal portion of BFs were significantly higher

than the changes in the medial and distal portions (Fig 5B) (p<0.01), and changes in the

medial portion of SM were significantly higher than the changes in the distal portion (Fig 5D)

(p<0.01).

Changes in T2 values after VP exercise are presented in Fig 6. T2 values were significantly

increased only in the proximal and medial portions of the BFl and ST (Fig 6A and 6C, respec-

tively) (p<0.05). There were no changes in BFs and SM. Changes in the medial portion of ST

were significantly higher than the other changes (Fig 6C) (p<0.01).

The individual contributions of each region of the 4 different muscle bellies to the exercise-

related T2 changes are presented in Table 3. The proximal and medial portions of the BFl

Table 1. Mechanical variables during the 4 sets with flywheel leg-curl. Values are mean ± SD.

Variables Sets

1 2 3 4

CON mean Power (w) 64.0 ± 22.5 59.4 ± 22.0 59.6 ± 20.2 63.5 ± 22.2

ECC mean Power (w) 45.6 ± 16.9 41.0 ± 16.7 39.6 ± 14.6 41.6 ± 16.5

PM CON: ECC ratio 1: 0.71 ± 0.10� 1: 0.68 ± 0.09d 1: 0.65 ± 0.11 1: 0.65 ± 0.10

CON peak Power (w) 104.2 ± 32.9 99.8 ± 36.6 100.6 ± 34.5 107.1 ± 36.6

ECC peak Power (w) 99.4 ± 41.7c 92.0 ± 41.1 83.5 ± 32.3 90.6 ± 38.4

PP CON: ECC ratio 1: 0.94 ± 0.21c,d 1: 0.91 ± 0.20c,d 1: 0.83 ± 0.19 1: 0.83 ± 0.20

CON time (rev/s) 1.20 ± 0.13d 1.20 ± 0.14 1.17 ± 0.12 1.14 ± 0.13

ECC time (rev/s) 1.70 ± 0.24� 1.79 ± 0.32 1.86 ± 0.45 1.82 ± 0.33

Time CON: ECC ratio 1: 1.42 ± 0.14� 1: 1.50 ± 0.27c,d 1: 1.59 ± 0.38 1: 1.61 ± 0.38

CON mean Velocity (m/s) 5.15 ± 0.79 4.96 ± 0.89 4.92 ± 0.81 5.08 ± 0.87

ECC mean Velocity (m/s) 5.20 ± 0.92 5.02 ± 0.93 4.88 ± 0.86 5.11 ± 0.90

CON peak Velocity (m/s) 7.28 ± 1.07 6.98 ± 1.16 6.94 ± 1.13 7.08 ± 1.16

ECC peak Velocity (m/s) 7.28 ± 1.07 6.97 ± 1.16 6.94 ± 1.13 7.08 ± 1.15

CON: Concentric Phase; ECC: Eccentric Phase; PM; Mean power; PP; Peak power; Rev/s: Revolutions per second
c = significantly different vs 3rd set (p<0.05).
d = significantly different vs 4rd set (p<0.05).

� = significantly different vs others (p<0.05).

https://doi.org/10.1371/journal.pone.0239977.t001

PLOS ONE Muscle use and mechanical response during inertial flywheel exercises

PLOS ONE | https://doi.org/10.1371/journal.pone.0239977 October 2, 2020 8 / 18

https://doi.org/10.1371/journal.pone.0239977.t001
https://doi.org/10.1371/journal.pone.0239977


Fig 3. Comparisons between concentric (CON) and eccentric (ECC) phases during flywheel leg-curl and versa-pulley hip-extension

exercises.

https://doi.org/10.1371/journal.pone.0239977.g003

PLOS ONE Muscle use and mechanical response during inertial flywheel exercises

PLOS ONE | https://doi.org/10.1371/journal.pone.0239977 October 2, 2020 9 / 18

https://doi.org/10.1371/journal.pone.0239977.g003
https://doi.org/10.1371/journal.pone.0239977


showed a significant increased use during the VP exercise compared with the LC (p<0.01),

while the three regions of the BFs displayed selective use during the LC compared with the VP

(p<0.01).

Unclear correlations were obtained between the mechanical variables measured and

changes in the T2 values of BFl, BFs, SM, and ST muscles (p>0.05).

Discussion

The aim of the present study was to analyze mechanical responses and MRI-based regional

muscle use during inertial knee- and hip-dominant hamstring strengthening exercises in pro-

fessional soccer players. The main findings of the present study were: 1) CON mean power

was always higher than ECC mean power in both exercises; 2) ECC overload was only

observed in peak power during the VP; 3) VP (hip-extension exercise) allowed greater mean

and peak power than LC (knee-flexion exercise), while players perceived a higher training load

after LC exercise; 4) overall, changes in T2 values in most regions of the 4 muscle bellies, par-

ticularly the BFs and ST, were greater during the knee-flexion exercise (LC); and 5) VP

appeared more capable of selectively engaging the BFl proximal and medial regions while all

regions of BFs were selectively used by the LC.

Previous studies have shown a link between the mechanical stress applied to contractile tis-

sue and muscle hypertrophy [43,44], and muscle stretch combined with overloading is one of

the most effective stimuli for muscle growth [45]. Training session data from our study showed

that for inexperienced professional soccer players there was no eccentric overload (defined as

greater load during the ECC phase vs the CON phase) during LC exercise. While flywheel

devices are a very convenient technology for emphasizing more forceful actions in the ECC--

CON transition phase, it is unclear whether such devices can offer eccentric overload [31]. A

previous study suggests that using the inertia provided by a rotating flywheel to provide resis-

tance in leg-curl exercise may enable the production of eccentric overload [25]. Our results, in

Table 2. Mechanical variables during the 4 sets with hip-extension versa pulley. Values are mean ± SD.

Variables Sets

1 2 3 4

CON mean Power (w) 476.7 ± 109.9� 519.1 ± 135.0 512.8 ± 127.3 538.9 ± 126.7

ECC mean Power (w) 410.8 ± 135.3� 453.9 ± 150.5 448.2 ± 142.8 481.9 ± 145.6

PM CON: ECC ratio 1: 0.85 ± 0.15c,d 1: 0.86 ± 0.11 1: 0.87 ± 0.11 1: 0.89 ± 0.12

CON peak Power (w) 770.8 ± 119.0� 816.5 ± 166.8d 813.8 ± 152.2d 870.8 ± 151.9

ECC peak Power (w) 881.9 ± 193.5c 916.5 ± 205.1 943.3 ± 242.8 1037.8 ± 221.0�

PP CON: ECC ratio 1: 1.16 ± 0.28 1: 1.15 ± 0.30 1: 1.18 ± 0.30 1: 1.22 ± 0.32

CON time (rev/s) 0.83 ± 0.05� 0.81 ± 0.06 0.80 ± 0.06 0.80 ± 0.05

ECC time (rev/s) 1.02 ± 0.23� 0.96 ± 0.13 0.94 ± 0.11 0.92 ± 0.13

Time CON: ECC ratio 1: 1.23 ± 0.29c,d 1: 1.18 ± 0.16 1: 1.18 ± 0.16 1: 1.15 ± 0.19

CON mean Velocity (m/s) 4.96 ± 0.53� 5.13 ± 0.51 5.11 ± 0.51 5.25 ± 0.53

ECC mean Velocity (m/s) 4.64 ± 0.89� 5.05 ± 0.68 5.10 ± 0.60 5.20 ± 0.73

CON peak Velocity (m/s) 7.53 ± 0.77� 7.74 ± 0.87 7.66 ± 0.83 7.86 ± 0.81

ECC peak Velocity (m/s) 7.53 ± 0.76� 7.74 ± 0.87 7.66 ± 0.83 7.85 ± 0.81

CON: Concentric Phase; ECC: Eccentric Phase; PM; Mean power; PP; Peak power; Rev/s: Revolutions per second
c = significantly different vs 3rd set (p<0.05).
d = significantly different vs 4rd set (p<0.05).

� = significantly different vs others (p<0.05).

https://doi.org/10.1371/journal.pone.0239977.t002
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Fig 4. Comparisons between flywheel leg-curl and versa-pulley hip-extension exercises during concentric and eccentric phases.

https://doi.org/10.1371/journal.pone.0239977.g004
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line with Nunez et al. [31], after analyzing all repetitions during the training session showed

less mean (-29% to -35%, Table 1) and peak (-6% to -17%, Table 1) power during the ECC

phase in comparison with the CON phase. Mainly, this was due to the substantial and excessive

disparity in time between the phases (Fig 4), with time in ECC vs CON ratios increasing gradu-

ally as the sets were executed (from +42% to +61%). These findings are in line with or slightly

higher than those of Tous-Fajardo et al. (2006), who found ECC vs CON ratios for mean

power in experienced and inexperienced players of -54% to -65% and -44% to -65%, respec-

tively, and ratios for peak power of -7% to -17% and -10% to -36% respectively. During the

training session with VP, exercise data revealed less mean power during the ECC phase (-11%

to -15%) while players reached higher peak power during the ECC phase (+22% to +15%),

with lesser differences in time ECC vs CON ratios in comparison with LC exercise, which

decreased gradually as the sets were executed. In addition to this, present results showed that

CON and ECC mean power during the first set in VP was lower than in any other set. This

was probably to the fact that the first set in VP with a 0.21964 kg/m2 moment of inertia in this

Fig 5. Changes in the transverse relaxation time (T2) values immediately after flywheel leg-curl exercise. Values are given as a percentage of the pre-values. BFl:

biceps femoris long head; BFs: Biceps femoris short head; ST: semitendinosus; SM: semimembranosus. CV: coefficient of variation. P: proximal portion; M: medial

portion; D: distal portion. �� Significant difference between muscle regions (p<0.01). � Significant difference between muscle regions (p<0.05). Open bars represent

no statistical changes.

https://doi.org/10.1371/journal.pone.0239977.g005
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population could be used as a protocol to stimulate the postactivation potentiation responses

to obtain a subsequent better performance [46].

When prescribing hamstring strength training exercises, individual hamstring muscles are

not activated in a similar manner [47] and changes in response to resistance training occur

non-uniformly along the muscle [35,36]. The results of the present study showed that each

individual hamstring muscle and regional zone responded differently during hip extension

(VP) and knee flexion (LC) exercises. Previous studies showed that BFl and SM were selec-

tively recruited during hip joint movements such as the “stiff-leg deadlift” exercise [7], whereas

ST and BFs were mainly activated in knee flexion exercises such as the prone leg curl or Nordic

Hamstring exercises [16,48], although there may also be certain activation in the middle and

distal regions in BFl after the prone leg curl [16].

Our results indicated that in elite soccer players, T2 values after training using LC exercise

were increased mainly in BFl, BFs and ST, as found in previous studies [14,16] and in contrast

Fig 6. Changes in the transverse relaxation time (T2) values immediately after versa-pulley hip-extension exercise. Values are given as a percentage of the pre-

values. BFl: biceps femoris long head; BFs: Biceps femoris short head; ST: semitendinosus; SM: semimembranosus. CV: coefficient of variation. P: proximal portion; M:

medial portion; D: distal portion. �� Significant difference between muscle regions (p<0.01). � Significant difference between muscle regions (p<0.05). Open bars

represent no statistical changes.

https://doi.org/10.1371/journal.pone.0239977.g006
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with a study that did not find changes in BFl after ECC LC [47]. In accordance with Mendez-

Villanueva et al. [14], we used a flywheel Leg-Curl device with a high training load in the CON

and ECC phases. That is probably why our results, like those obtained by Mendez-Villanueva

et al. [14], showed greater recruitment in the proximal region in the BFl than was found by

Kubota et al. [16], although generally the individual responses in BFl in our study showed sub-

stantially higher CV (41%–75%) than in ST or BFs, where more hamstring injuries occur and

where the LC exercise has its greatest impact (7%-19%). Previous studies suggest that scar tis-

sue formation in the muscle, along with weakness or atrophy of previously injured muscle,

may be contributing factors to re-injury [49], and that after biceps femoris injuries, 85% of

players likely return to sport with residual atrophy of the BFl and/or hypertrophy of the BFs

[50]. This could lead to changes in the muscle-tendon unit and alter the contraction mechanics

during functional movements (i.e. running), therefore contributing to re-injury risk [50]. It is

not entirely clear why this atrophy in the BFl and/or hypertrophy of the BFs processes take

place. There may be a possible compensatory effect by BFs after BFl injury and during the

recovery process, which is enabled by the separate innervation of the long and short heads

[48], or a recovery and/or return to sport process based mainly on strengthening the hamstring

muscles through knee flexor exercises such as the Nordic Hamstring or leg curl [16,48]. The

angle of the hip produces a greater impact on the length of the BFl than the angle of the knee

[51,52], and as measured by MRI, hip flexion-extension exercises cause greater BFl recruit-

ment compared with fixed-hip movements [7,14,53]. This is keeping with our results, in which

VP hip flexion-extension exercise resulted in a selective and homogenous use of the proximal

and medial regions of the BFl belly (Table 3). In contrast to Ono et al. [7] and in agreement

with Mendiguichia et al. [48] for the lunge exercise, we didn’t find recruitment in the SM,

since the mechanics of the hip flexion-extension exercises used were different from each other,

possibly causing a different response. Physiotherapists and strength and conditioning coaches

could consider this when optimizing the recovery process after BFl muscle injuries.

This study has limitations. The T2 changes reflect the metabolic response to muscle activa-

tion. In this regard, work done by tendons and/or other elastic structures reduces muscle work

Table 3. Comparison between individual share of each hamstring muscle portion (i.e., proximal, medial and distal) in the total T2 shift for the entire hamstring

group (portion of 100%) immediately after the flywheel leg-curl and versa-pulley hip-extension exercises.

Flywheel-Leg Curl (FLC) Pulley-Hip Extension (PLE) Standardized Differences (±95%CL) Outcome

BFl proximal 2.4 ± 3.0 22.4 ± 17.4�� 1.44 ± 0.85 "PLE

BFl medial 4.1 ± 3.5 11.2 ± 8.1�� 1.05 ± 0.84 "PLE

BFl distal 3.5 ± 3.2 5.0 ± 7.0 0.25 ± 0.84 Unclear

BFs proximal 17.8 ± 4.4�� 4.7 ± 4.0 -2.95 ± 0.81 "FLC

BFs medial 11.6 ± 3.2�� 2.6 ± 4.8 -2.08 ± 0.82 "FLC

BFs distal 8.7 ± 4.3�� 1.9 ± 2.5 -1.80 ± 0.80 "FLC

ST proximal 16.0 ± 4.2 12.8 ± 6.7 -0.53 ± 0.83 Unclear

ST medial 17.5 ± 4.0 21.3 ± 11.6 0.41 ± 0.84 Unclear

ST distal 14.7 ± 5.4�� 3.1 ± 3.4 -2.41 ± 0.80 "FLC

SM proximal 1.5 ± 1.6 7.1 ± 6.7� 1.03 ± 0.85 "PLE

SM medial 1.5 ± 1.4 2.7 ± 5.3 0.27 ± 0.85 Unclear

SM distal 0.9 ± 1.1 5.2 ± 4.4�� 1.23 ± 0.85 "PLE

BFl, biceps femoris long head; BFs, biceps femoris short head; ST, semitendinosus; SM, semimembranosus.

��: Significantly different (p<0.01);

�: Significantly different (p<0.05).

https://doi.org/10.1371/journal.pone.0239977.t003
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and therefore metabolic cost (i.e. T2), and can have a powerful effect on muscle power. This

may explain why there were unclear correlations between power output and changes in T2 val-

ues. Although fMRI T2 change has been widely used for evaluating muscle recruitment during

a wide range of exercises involving the hamstring muscles [14], this information needs to be

interpreted with caution. A small sample size was used in the present study although with a

population of elite athletes.

Conclusions

VP hip-extension exercise produced greater mean and peak power than LC flywheel knee-flex-

ion exercise, although players perceived a higher training load after LC exercise. The main

benefits of both exercises were that LC exercise involved a greater overall use of the 4 muscle

bellies, more specifically in the ST and BFs, with a selective augmented activity (compared

with the VP) in the 3 regions of the BFs, while VP exercise selectively targeted the proximal

and medial regions of the BFl, where more hamstring injuries occur [2,4,5]. These findings are

of particular importance in prescribing a strengthening program for preventing hamstring

injuries in soccer players. In addition, these findings could be crucial in reducing or eliminat-

ing residual atrophy of the BFl and hypertrophy of the BFs in previously injured muscle and

probably minimizing the risk of re-injury [50]. The reason for this could be that in training

with this exercise, the impact is mainly focused on the proximal and medial region of the atro-

phied BFl, with no influence on hypertrophied BFs. Future research is needed with experi-

enced professional soccer players to identify longitudinal changes in mechanical variables and

muscle volume after long-term training with each exercise.
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29. Raya-González J, Castillo D, Beato M. The Flywheel Paradigm in Team Sports: A Soccer Approach.

Strength & Conditioning Journal. 9000;Publish Ahead of Print. https://doi.org/10.1519/ssc.

0000000000000561

30. Suarez-Arrones L, Lara-Lopez P, Maldonado R, Torreno N, De Hoyo M, Nakamura FY, et al. The

effects of detraining and retraining periods on fat-mass and fat-free mass in elite male soccer players.

PeerJ. 2019; 7:e7466. https://doi.org/10.7717/peerj.7466 PMID: 31423358.

31. Nunez FJ, Galiano C, Munoz-Lopez A, Floria P. Is possible an eccentric overload in a rotary inertia

device? Comparison of force profile in a cylinder-shaped and a cone-shaped axis devices. J Sports Sci.

2020:1–5. https://doi.org/10.1080/02640414.2020.1754111 PMID: 32299296.

32. Nunez FJ, Suarez-Arrones LJ, Cater P, Mendez-Villanueva A. The High Pull Exercise: A Comparison

Between a Versapulley Flywheel Device and the Free Weight. Int J Sports Physiol Perform. 2016:1–

21. https://doi.org/10.1123/ijspp.2016-0059 PMID: 27705034.

33. Green RA, Wilson DJ. A pilot study using magnetic resonance imaging to determine the pattern of mus-

cle group recruitment by rowers with different levels of experience. Skeletal Radiol. 2000; 29(4):196–

203. Epub 2000/06/16. https://doi.org/10.1007/s002560050593 PMID: 10855467.

34. Takeda Y, Kashiwaguchi S, Endo K, Matsuura T, Sasa T. The most effective exercise for strengthening

the supraspinatus muscle: evaluation by magnetic resonance imaging. Am J Sports Med. 2002; 30

(3):374–81. Epub 2002/05/23. https://doi.org/10.1177/03635465020300031201 PMID: 12016078.

35. Wakahara T, Fukutani A, Kawakami Y, Yanai T. Nonuniform muscle hypertrophy: its relation to muscle

activation in training session. Med Sci Sports Exerc. 2013; 45(11):2158–65. Epub 2013/05/10. https://

doi.org/10.1249/MSS.0b013e3182995349 PMID: 23657165.

36. Ema R, Wakahara T, Miyamoto N, Kanehisa H, Kawakami Y. Inhomogeneous architectural changes of

the quadriceps femoris induced by resistance training. Eur J Appl Physiol. 2013; 113(11):2691–703.

Epub 2013/08/21. https://doi.org/10.1007/s00421-013-2700-1 PMID: 23949789.

37. Fernandez-Gonzalo R, Tesch PA, Linnehan RM, Kreider RB, Di Salvo V, Suarez-Arrones L, et al. Indi-

vidual Muscle use in Hamstring Exercises by Soccer Players Assessed using Functional MRI. Int J

Sports Med. 2016; 37(7):559–64. https://doi.org/10.1055/s-0042-100290 PMID: 27116347.

38. Borg G, Hassmen P, Lagerstrom M. Perceived exertion related to heart rate and blood lactate during

arm and leg exercise. Eur J Appl Physiol Occup Physiol. 1987; 56(6):679–85. Epub 1987/01/01. https://

doi.org/10.1007/BF00424810 PMID: 3678222.

39. Sweet TW, Foster C, McGuigan MR, Brice G. Quantitation of resistance training using the session rat-

ing of perceived exertion method. J Strength Cond Res. 2004; 18(4):796–802. Epub 2004/12/03.

https://doi.org/10.1519/14153.1 PMID: 15574104.

40. Lambert MI, Borresen J. Measuring training load in sports. Int J Sports Physiol Perform. 2010; 5

(3):406–11. Epub 2010/09/24. https://doi.org/10.1123/ijspp.5.3.406 PMID: 20861529.

PLOS ONE Muscle use and mechanical response during inertial flywheel exercises

PLOS ONE | https://doi.org/10.1371/journal.pone.0239977 October 2, 2020 17 / 18

https://doi.org/10.1371/journal.pone.0193841
https://doi.org/10.1371/journal.pone.0193841
http://www.ncbi.nlm.nih.gov/pubmed/29590139
https://doi.org/10.1123/ijspp.2013-0547
https://doi.org/10.1123/ijspp.2013-0547
http://www.ncbi.nlm.nih.gov/pubmed/24910951
https://doi.org/10.1016/j.jsams.2017.03.004
https://doi.org/10.1016/j.jsams.2017.03.004
http://www.ncbi.nlm.nih.gov/pubmed/28385560
https://doi.org/10.1371/journal.pone.0205332
http://www.ncbi.nlm.nih.gov/pubmed/30325935
https://doi.org/10.1123/ijspp.1.3.293
http://www.ncbi.nlm.nih.gov/pubmed/19116442
https://doi.org/10.1123/ijspp.2016-0059
http://www.ncbi.nlm.nih.gov/pubmed/27705034
https://doi.org/10.3389/fphys.2020.00569
https://doi.org/10.3389/fphys.2020.00569
http://www.ncbi.nlm.nih.gov/pubmed/32581845
https://doi.org/10.1519/ssc.0000000000000561
https://doi.org/10.1519/ssc.0000000000000561
https://doi.org/10.7717/peerj.7466
http://www.ncbi.nlm.nih.gov/pubmed/31423358
https://doi.org/10.1080/02640414.2020.1754111
http://www.ncbi.nlm.nih.gov/pubmed/32299296
https://doi.org/10.1123/ijspp.2016-0059
http://www.ncbi.nlm.nih.gov/pubmed/27705034
https://doi.org/10.1007/s002560050593
http://www.ncbi.nlm.nih.gov/pubmed/10855467
https://doi.org/10.1177/03635465020300031201
http://www.ncbi.nlm.nih.gov/pubmed/12016078
https://doi.org/10.1249/MSS.0b013e3182995349
https://doi.org/10.1249/MSS.0b013e3182995349
http://www.ncbi.nlm.nih.gov/pubmed/23657165
https://doi.org/10.1007/s00421-013-2700-1
http://www.ncbi.nlm.nih.gov/pubmed/23949789
https://doi.org/10.1055/s-0042-100290
http://www.ncbi.nlm.nih.gov/pubmed/27116347
https://doi.org/10.1007/BF00424810
https://doi.org/10.1007/BF00424810
http://www.ncbi.nlm.nih.gov/pubmed/3678222
https://doi.org/10.1519/14153.1
http://www.ncbi.nlm.nih.gov/pubmed/15574104
https://doi.org/10.1123/ijspp.5.3.406
http://www.ncbi.nlm.nih.gov/pubmed/20861529
https://doi.org/10.1371/journal.pone.0239977


41. Schuermans J, Van Tiggelen D, Danneels L, Witvrouw E. Susceptibility to Hamstring Injuries in Soccer:

A Prospective Study Using Muscle Functional Magnetic Resonance Imaging. Am J Sports Med. 2016;

44(5):1276–85. https://doi.org/10.1177/0363546515626538 PMID: 26912281.

42. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine

and exercise science. Medicine & Science in Sports & Exercise. 2009; 41(1):3–13. Epub 2008/12/19.

https://doi.org/10.1249/MSS.0b013e31818cb278 PMID: 19092709.

43. Shepstone TN, Tang JE, Dallaire S, Schuenke MD, Staron RS, Phillips SM. Short-term high- vs. low-

velocity isokinetic lengthening training results in greater hypertrophy of the elbow flexors in young men.

J Appl Physiol (1985). 2005; 98(5):1768–76. Epub 2005/01/11. https://doi.org/10.1152/japplphysiol.

01027.2004 PMID: 15640387.

44. Seynnes OR, de Boer M, Narici MV. Early skeletal muscle hypertrophy and architectural changes in

response to high-intensity resistance training. J Appl Physiol (1985). 2007; 102(1):368–73. Epub 2006/

10/21. https://doi.org/10.1152/japplphysiol.00789.2006 PMID: 17053104.

45. Goldspink G. Changes in muscle mass and phenotype and the expression of autocrine and systemic

growth factors by muscle in response to stretch and overload. Journal of anatomy. 1999; 194(03):323–

34. https://doi.org/10.1046/j.1469-7580.1999.19430323.x PMID: 10386770

46. Beato M, Dello Iacono A. Implementing Flywheel (Isoinertial) Exercise in Strength Training: Current Evi-

dence, Practical Recommendations, and Future Directions. Frontiers in Physiology. 2020; 11(569).

https://doi.org/10.3389/fphys.2020.00569 PMID: 32581845

47. Mendiguchia J, Garrues M, Cronin JB, Contreras B, Los Arcos A, Malliaropoulos N, et al. Nonuniform

changes in MRI measurements of the thigh muscles after two hamstring strengthening exercises. J

Strength Cond Res. 2013; 27(3):574–81. Epub 2013/02/28. https://doi.org/10.1519/JSC.

0b013e31825c2f38 PMID: 23443215.

48. Mendiguchia J, Arcos A, Garrues M, Myer GD, Yanci J, Idoate F. The use of MRI to evaluate posterior

thigh muscle activity and damage during nordic hamstring exercise. J Strength Cond Res. 2013; 27

(12):3426–35. Epub 2013/03/26. https://doi.org/10.1519/JSC.0b013e31828fd3e7 PMID: 23524362.

49. Orchard J, Best TM. The management of muscle strain injuries: an early return versus the risk of recur-

rence. Clin J Sport Med. 2002; 12(1):3–5. Epub 2002/02/21. https://doi.org/10.1097/00042752-

200201000-00004 PMID: 11854581.

50. Silder A, Heiderscheit BC, Thelen DG, Enright T, Tuite MJ. MR observations of long-term musculoten-

don remodeling following a hamstring strain injury. Skeletal Radiol. 2008; 37(12):1101–9. Epub 2008/

07/24. https://doi.org/10.1007/s00256-008-0546-0 PMID: 18649077.

51. Hawkins D, Hull ML. A method for determining lower extremity muscle-tendon lengths during flexion/

extension movements. J Biomech. 1990; 23(5):487–94. Epub 1990/01/01. https://doi.org/10.1016/

0021-9290(90)90304-l PMID: 2373721.

52. Visser JJ, Hoogkamer JE, Bobbert MF, Huijing PA. Length and moment arm of human leg muscles as a

function of knee and hip-joint angles. Eur J Appl Physiol Occup Physiol. 1990; 61(5–6):453–60. Epub

1990/01/01. https://doi.org/10.1007/BF00236067 PMID: 2079066.

53. Ono T, Okuwaki T, Fukubayashi T. Differences in activation patterns of knee flexor muscles during con-

centric and eccentric exercises. Res Sports Med. 2010; 18(3):188–98. Epub 2010/07/14. https://doi.

org/10.1080/15438627.2010.490185 PMID: 20623435.

PLOS ONE Muscle use and mechanical response during inertial flywheel exercises

PLOS ONE | https://doi.org/10.1371/journal.pone.0239977 October 2, 2020 18 / 18

https://doi.org/10.1177/0363546515626538
http://www.ncbi.nlm.nih.gov/pubmed/26912281
https://doi.org/10.1249/MSS.0b013e31818cb278
http://www.ncbi.nlm.nih.gov/pubmed/19092709
https://doi.org/10.1152/japplphysiol.01027.2004
https://doi.org/10.1152/japplphysiol.01027.2004
http://www.ncbi.nlm.nih.gov/pubmed/15640387
https://doi.org/10.1152/japplphysiol.00789.2006
http://www.ncbi.nlm.nih.gov/pubmed/17053104
https://doi.org/10.1046/j.1469-7580.1999.19430323.x
http://www.ncbi.nlm.nih.gov/pubmed/10386770
https://doi.org/10.3389/fphys.2020.00569
http://www.ncbi.nlm.nih.gov/pubmed/32581845
https://doi.org/10.1519/JSC.0b013e31825c2f38
https://doi.org/10.1519/JSC.0b013e31825c2f38
http://www.ncbi.nlm.nih.gov/pubmed/23443215
https://doi.org/10.1519/JSC.0b013e31828fd3e7
http://www.ncbi.nlm.nih.gov/pubmed/23524362
https://doi.org/10.1097/00042752-200201000-00004
https://doi.org/10.1097/00042752-200201000-00004
http://www.ncbi.nlm.nih.gov/pubmed/11854581
https://doi.org/10.1007/s00256-008-0546-0
http://www.ncbi.nlm.nih.gov/pubmed/18649077
https://doi.org/10.1016/0021-9290(90)90304-l
https://doi.org/10.1016/0021-9290(90)90304-l
http://www.ncbi.nlm.nih.gov/pubmed/2373721
https://doi.org/10.1007/BF00236067
http://www.ncbi.nlm.nih.gov/pubmed/2079066
https://doi.org/10.1080/15438627.2010.490185
https://doi.org/10.1080/15438627.2010.490185
http://www.ncbi.nlm.nih.gov/pubmed/20623435
https://doi.org/10.1371/journal.pone.0239977

