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Abstract: Africa’s PM2.5 pollution has become a security hazard, but the understanding of the
varying effects of urbanization on driven mechanisms of PM2.5 concentrations under the rapid
urbanization remains largely insufficient. Compared with the direct impact, the spillover effect of
urbanization on PM2.5 concentrations in adjacent regions was underestimated. Urbanization is highly
multi-dimensional phenomenon and previous studies have rarely distinguished the different driving
influence and interactions of multi-dimensional urbanization on PM2.5 concentrations in Africa. This
study combined grid and administrative units to explore the spatio-temporal change, spatial depen-
dence patterns, and evolution trend of PM2.5 concentrations and multi-dimensional urbanization
in Africa. The differential influence and interaction effects of multi-dimensional urbanization on
PM2.5 concentrations under Africa’s rapid urbanization was further analyzed. The results show that
the positive spatial dependence of PM2.5 concentrations gradually increased over the study period
2000–2018. The areas with PM2.5 concentrations exceeding 35 µg/m3 increased by 2.2%, and 36.78%
of the African continent had an increasing trend in Theil–Sen index. Urbanization was found to
be the main driving factor causing PM2.5 concentrations changes, and economic urbanization had
a stronger influence on air quality than land urbanization or population urbanization. Compared
with the direct effect, the spillover effect of urbanization on PM2.5 concentrations in two adjacent
regions was stronger, particularly in terms of economic urbanization. The spatial distribution of
PM2.5 concentrations resulted from the interaction of multi-dimensional urbanization. The inter-
action of urbanization of any two different dimensions exhibited a nonlinear enhancement effect
on PM2.5 concentrations. Given the differential impact of multi-dimensional urbanization on PM2.5

concentrations inside and outside the region, this research provides support for the cross-regional
joint control strategies of air pollution in Africa. The findings also indicate that PM2.5 pollution
control should not only focus on urban economic development strategies but should be an optimized
integration of multiple mitigation strategies, such as improving residents’ lifestyles, optimizing land
spatial structure, and upgrading the industrial structure.

Keywords: PM2.5 concentrations; multi-dimensional urbanization; spatial regression model; spillover
effect; African region

1. Introduction

Since the turn of the century, global value chains and production networks have
accelerated their penetration into various regions. Globalization has entered a new era of
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inclusive development, propelling urbanization at tremendous vitality levels [1,2]. Waves
of rapid urbanization have been experienced in regions, including East Asia, South Asia,
Southeast Asia, and Central America [3]. With urban spaces increasingly expanding into the
suburbs, huge populations have migrated to urban built-up areas, which has considerably
improved residential living conditions [4]. However, in the past few decades, increased
urbanization activities, such as agriculture economy, industrial production, residential
life, commercial trade, and energy emissions, have been proved to be important factors
to accelerate global PM2.5 levels [5–8]. Air pollution has become the fifth leading cause of
death in the world. Long-term exposure to PM2.5 causes more than 4.2 million premature
deaths annually, with associated diseases such as ischemic heart disease, cerebrovascular
disease, and lower respiratory tract infection [9,10]. Given the association of urbanization
and PM2.5 levels, policymakers have to be more aware and responsive to address the needs
of human well-being and air quality sustainability.

Previous studies have demonstrated that urbanization can affect PM2.5 concentrations,
resulting different degrees of response in air pollution control for various regions, such
as China’s “Air Pollution Prevention and Control Action Plan” issued in 2013 and the
US “Clean Air Act” policies [11,12]. Some studies have explored the driving impact
of urbanization on PM2.5 pollution using a single dimension, such as human activity
intensity (i.e., population urbanization) and urban land expansion intensity (i.e., land
urbanization) [13]. Few treated urbanization as a comprehensive system comprising
economic growth, population agglomeration, urban land expansion, and other elements,
combined with natural factors to analyze the driving mechanism of PM2.5 concentrations,
which led to the limited comprehensiveness of the mechanism analysis [14,15].

In recent years, remote sensing data (e.g., PM2.5 satellite inversion data, nighttime
lighting data, land use data, and impervious surface data) in the interaction research
between urbanization and PM2.5 concentrations has become widely used. Compared to
traditional statistical data of administrative regions, this has greatly improved the objec-
tivity and comparability in spatial distribution research [16]. However, in most instances,
spatial distribution analyses are conducted at the country or city level, which weakens
the refinement degree of spatial expression of remote sensing data and resulted a great
compromise of data analysis [17,18]. Studies rarely utilize joint analysis on administrative
units and grid units, resulting in poor integration of decision-making reference value and
refined expressions.

Spatial regression models, such as the spatial lag model (SLM), spatial error model
(SEM), and spatial Durbin model (SDM), have been used to measure the impact of spatial
differentiation of urbanization on PM2.5 concentrations [18,19]. However, the spillover ef-
fect of urbanization on PM2.5 concentrations in adjacent regions has often been overlooked,
as well as the different influencing forces and interaction effects of multi-dimensional
urbanization. Such oversight has made it difficult to fully understand the endogenous and
exogenous mechanisms of the urbanization effect on PM2.5 concentrations.

International investors heavily favor Africa’s potential due to its enormous labor
force, raw materials, and markets. Establishing a free trade zone (FTZ) and supporting
the development of small and medium-sized enterprises has become the consensus of
many African countries to stimulate national economic growth. Urban construction and
infrastructure development are in full swing in Johannesburg, Cairo, Nairobi, and Algiers,
resulting in significant improvements to people’s living conditions and general welfare [20].
However, increased urbanization has also resulted in higher levels of air pollution. Exhaust
emissions from old cars, open garbage incineration, coal smoke pollution, and industrial
pollutant emissions have clouded the “ecological Mainland”, making air pollution one
of the most serious social hidden dangers in the continent, along with AIDS, malaria,
poverty, and war [21–23]. The backwardness in environmental technology and the low
investments in environmental protection have aggravated the negative impact of Africa’s
PM2.5 pollution, estimated to cost about USD 450 billion in annual economic losses [24].
The issue of PM2.5 pollution has received increasing attention from different international
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organizations, and various governments have put forth their ambitions for ecologically
sustainable development on the “African Agenda 2063” [25]. However, social awareness
and attention remain insufficient to the driving effects of multi-dimensional urbanization
on PM2.5 concentrations in Africa.

To sum up, previous studies have helped enhance the understanding of urbanization
effects on PM2.5 concentrations and have supported urban policymakers in emerging de-
veloping countries towards human–land harmony and sustainable development. However,
in the context of rapid urbanization, the discussion on Africa’s PM2.5 pollution is far from
being settled due to the following reasons: (1) the measurement of urbanization remains
limited and disparate. Significant improvements are required to comprehensively analyze
the impact of urbanization on PM2.5 concentrations in Africa from a broader perspective
(including population, land, and economy); (2) the joint analysis of grid and administra-
tive units has not received much attention. Such analysis can achieve the integration of
decision-making reference value and refined expression; and (3), few studies have inte-
grated multiple spatial regression models to study the difference between the direct and
spillover effects of urbanization on PM2.5 concentrations and analyzed the interaction
effects between multi-dimensional urbanization, although this can provide support for the
cross-regional joint control of air pollution in Africa.

To address these knowledge gaps, this study explores the spatial distribution charac-
teristics of multi-dimensional urbanization (population urbanization, land urbanization,
economic urbanization) and PM2.5 concentrations in Africa for 2000–2018 using grid and
administrative units. Along with the impact of natural factors (e.g., altitude, elevation,
rainfall, vegetation coverage), this study analyzes the effects of urbanization on PM2.5
concentrations using spatial regression models and investigates the differential impact
and interaction of multi-dimensional urbanization on PM2.5 concentrations. The main
objectives of this study are as follows: (1) to characterize the spatio-temporal pattern and
spatial dependence features of PM2.5 concentrations and multi-dimensional urbanization;
(2) to explore the driving mechanism of PM2.5 concentrations under the rapid moderniza-
tion in Africa and determine whether the effects of urbanization on PM2.5 concentrations
would spillover among neighboring areas; and (3) to compare the impact and interaction of
urbanization in different dimensions on PM2.5 concentrations. The results of this study can
provide reference for African countries to optimize the coordination relationship between
urbanization and air quality systems.

2. Materials and Methods
2.1. Materials

Table 1 summarizes the variables used in this study. The datasets were obtained from
the following sources:

(1) PM2.5 concentrations. The Atmospheric Composition Analysis Group (ACAG) pro-
vided the PM2.5 concentrations (V4.GL.03, 0.05◦ × 0.05◦, Contains “all ingredients”)
from the African satellite corrected by geographically weighted regression (GWR)
for 1998–2018 (http://fizz.phys.dal.ca/~atmos/martin/?page_id=175) (accessed on
15 December 2020) [26,27]. The mean annual PM2.5 concentration grid data were ob-
tained by vector clipping and calculated using Python 2.7 (http://www.python.org)
(accessed on 20 December 2020).

(2) Urbanization. Based on the availability of remote sensing data and existing research,
multiple dimensions of urbanization were measured using various indicators, in-
cluding population urbanization, land urbanization, and economic urbanization [28].
The population urbanization level was depicted by the population density, which
was considered to be the most direct indicator of the spatial pattern of population
distribution [29]. Its data were obtained from the LandScan Global Population
Project, developed by the Department of Energy Oak Ridge National Laboratory
(ORNL) in Tennessee, USA based on a combination of geographic information sys-
tems, image analysis, and multivariate zoning density models at 1 km spatial reso-

http://fizz.phys.dal.ca/~atmos/martin/?page_id=175
http://www.python.org


Int. J. Environ. Res. Public Health 2021, 18, 9389 4 of 22

lution (https://www.satpalda.com/product/landscan/) (accessed on 25 December
2020) [30]. The land urbanization level, characterized by the degree of the artificial
impervious surface coverage (impervious surface coverage = impervious surface
area/total area) [31], was calculated using a 30 m high-resolution artificial imper-
vious surface product by Professor Gong Peng [32]. This product was produced
by long-time Landsat optical images (nearly 1.5 million scenes) and other auxiliary
data (http://data.ess.tsinghua.edu.cn/) (accessed on 25 December 2020) and has
been used in various studies to quantify the expansion intensity of urban areas [33].
For economic urbanization, several studies have shown the feasibility of analyzing
regional economic levels using nighttime light intensity [34,35]. Since DMSP/OLS
(2000–2013a) and NPP/VIIRS (2013–2018a) are different datasets, continuity correc-
tion is required. The global nighttime light dataset (1992–2018a) by Li et al. (2020),
accessed from the Scientific Data platform (Nature Group), was used as the data
source [36]. In this dataset, a sigmoid function was used to establish the continuity
relationship between the DMSP and VIIRS datasets after noise reduction. Given a
consistent spatial resolution and radiation characteristics, the performance evalua-
tion showed that the dataset is reliable and can be used stably for long-term global
research (https://www.nature.com/articles/s41597-020-0510-y) (accessed on 25 De-
cember 2020).

(3) Natural indicators. In addition to urbanization, the agglomeration and diffusion of
PM2.5 concentrations have been shown to be highly related to natural factors such
as topography, meteorological factors, and vegetation coverage. Xu et al. (2018)
concluded that the radiative cooling effect of aerosols caused by low temperatures
in winter promotes the accumulation of PM2.5 concentrations [37]. Fang et al. (2020)
found that increased forest coverage can reduce PM2.5 concentrations [17]. Zhou et al.
(2016) proved that slope and altitude play an important role in blocking PM2.5 pollu-
tants [38]. To reduce omitted variable bias, natural indicators, including normalized
differential vegetation index (ndvi), cumulative precipitation (pre), and elevation (ele),
were used as control variables in the spatial regression model. As natural control
factors, their statistically negative or positive impact would not greatly influence the
relationship between urbanization and PM2.5 concentrations. The ndvi data were
derived from MODIS monthly NDVI product (MOD13A3-6) at 1 km spatial resolution
(https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MOD13A3-6) (accessed
on 5 December 2020). The cumulative precipitation data were obtained from the Na-
tional Earth System Science Data Center (CN) (http://www.geodata.cn/index.html)
(accessed on 5 December 2020), with a spatial resolution of 2.5 points. The elevation
and slope data were derived from the GDEMV2 DEM digital elevation product of
the Computer Network Information Center of the Chinese Academy of Sciences
(http://www.gscloud.cn) (accessed on 5 December 2020) at 30 m spatial resolution
and were processed using ArcGIS.

Table 1. Variables setting and unit.

Variable Category Variable Abbreviation Measurement
Unit

Urbanization
Population density pd people/km2

Impervious surface coverage isc %
Nighttime light intensity ntl DN

Natural variable

PM2.5 concentrations PM2.5 µg/m3

Normalized differential
vegetation index ndvi -

Cumulative precipitation pre mm
Elevation ele m

Slope slope -

https://www.satpalda.com/product/landscan/
http://data.ess.tsinghua.edu.cn/
https://www.nature.com/articles/s41597-020-0510-y
https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MOD13A3-6
http://www.geodata.cn/index.html
http://www.gscloud.cn


Int. J. Environ. Res. Public Health 2021, 18, 9389 5 of 22

2.2. Methods

The research structure consists of three parts: (1) Theil–Sen median trend degree and
spatial autocorrelation methods were used to analyze the spatio-temporal evolution and
spatial dependence patterns of PM2.5 concentrations and the multi-dimensional urbaniza-
tion in Africa; (2) spatial regression models (SEM, SLM, and SDM) were used to reveal the
driving mechanism of PM2.5 concentrations under the rapid modernization; and (3) joint
spatial regression model and geographic detector were employed to analyze the differential
impact and interaction effects of multi-dimensional urbanization on PM2.5 concentrations.

2.2.1. Theil–Sen Median Trend Degree

The spatio-temporal evolution trend (SET) of PM2.5 concentrations and multi-dimen-
sional urbanization were analyzed at the grid level. The Theil–Sen median trend degree is
a robust non-parametric statistical trend calculation method that has a strong resistance to
calculation error [39]. The Theil–Sen median trend degree was calculated as follows:

SPM2.5 = Median
( xi − xj

i− j

)
, 1998 ≤ j<i ≤ 2018 (1)

where xi is the observations at grid level in i year; and S is the median of the slopes
of n(n − 1)/2 data combinations. S-values significantly above zero indicate substantial
increases in grid index, while S-values significantly below zero suggest substantial declines
in grid index over the period 2000–2018.

2.2.2. Spatial Autocorrelation Methods

To explore the spatial dependence pattern (SDP) of PM2.5 concentrations, the global
autocorrelation Moran’s I and hot/cold spots method were determined at the adminis-
trative unit level to characterize the global and local spatial agglomeration [40]. Global
autocorrelation Moran’s I [−1,1] was calculated as follows:

I =

n
n
∑

i=1

n
∑

j 6=1
Wij(xi − x)(xj − x)

n
∑

i=1

n
∑

j=1
Wij

n
∑

i=1
(xi − x)2

(2)

where n is the number of grid units; Wij is spatial weight matrix; xi and xj are the ob-
servations of PM2.5 concentrations at the grid level. Moran’s I significantly above zero
indicates positive spatial dependence, significantly below zero indicates negative spatial
dependence, and zero means no agglomeration feature.

Hot/cold spot analysis is performed using the Getis-OrdGi* tool, which characterizes
the grids into four types: hot spot, cold spot, sub-hot spot, and sub-cold spot [41]. The
Getis-OrdGi* (Gi*(d)) was calculated using:

Gi
∗(d) =

n

∑
i=1

Wij(d)xi/
n

∑
i=1

xj (3)

Values above zero indicate hot spots while values below zero indicate cold spots.
Given the empirical selection from previous studies and the suitability comparison of
measurement results from different methods, the spatial relations and spatial weights were
constructed using the Fixed Distance and the Euclidean distance methods [40].

2.2.3. Spatial Regression Analysis

Spatial regression analysis has an advantage over linear regression given its ability to
consider the influence of spatial dependence on regression indexes. Based on the spatial
autocorrelation characteristics of variables, this study introduced grid data into SEM, SLM,
and SDM. The SEM focuses on the error of dependent variables in adjacent regions to
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explain PM2.5 pollution on the areas, while the SLM focuses on the spatial spillover effects
of urbanization and natural factors in the PM2.5 concentrations of adjacent regions. For
more details on the SLM and SEM; see Lou et al. (2016) [42]. As a general form of SLM and
SEM, the SDM can integrate the endogenous and exogenous characteristics of variables
and is given by the expression:

Y = ρWY + Xβ + WXθ + αKn + ε (4)

where Y (dependent variable) is the PM2.5 concentrations of the grid level; X consists of key
explanatory variables and natural control variables; ρ, α, β, and θ are the parameters to be
estimated; ε is a normally distributed disturbance term with a diagonal covariance matrix;
W is the spatial weight matrix reflecting the data spatial structure and spatial relationship
among locations; WY is the spatial lag dependent variable; and, WX is the spatial lag
independent variable. As a general form of SLM and SEM, the SDM can transform each
other [43]. The likelihood ratio (LR) was used to examine the applicability of the models:
(1) If ρβ + θ = 0 passes the LR significance test, SDM can be reduced to the SEM. (2) If θ = 0
passes the LR significance test, SDM can be reduced to the SLM. If both are rejected, the
SDM will be more suitable for the regression analysis of this study [15].

The following procedures were undertaken to improve the rationality for spatial
regression analysis: (1) the variance inflation factor (VIF) and Condition Index were
calculated in the SPSS software to test multi-collinearity among variables. The results
showed that the VIF of each variable was less than 7.5 and the Condition Index was less
than 10; (2) normalization was performed for both dependent and independent variables
to reduce the heteroscedasticity; and (3) analysis and selection of the regression model
were performed based on Du et al. (2019) [15]. After passing the Lagrangian multiplier
(LM) test and residual spatial autocorrelation test, the LR was used to test the significance
of the hypothesis and determine whether the SDM can be reduced to SLM or SEM. Spatial
regression models and related statistical tests were performed in MATLAB.

2.2.4. Geographic Detector

The geographical detector consists of four modules: factor detector, risk detector,
interaction detector, and ecological detector [44]. The interaction detector can determine
the mode and direction of the variable interaction based on the quantitative relationship
between the explanatory power of the bivariate interaction and the univariate explanatory
power. The evaluation criteria of interaction mode are summarized in Table 2 [45]. The
interaction detector was used to measure the interaction influence of population urban-
ization, land urbanization, economic urbanization on the PM2.5 concentrations in Africa,
calculated using the formula:

PD = 1−

L
∑

i=1
Nhσ2

h

Nσ2 (5)

where D is the urbanization level in different dimensions, PD is the explanatory power
intensity of urbanization factor, h is the number of grid data classifications based on natural
breaks (Jenks), Nh is the number of category h, N is the number of categories in all grid
units, σh

2 is the variance of Y values for class h, and σ2 is the variance of Y values for the
total grid. The operation was calculated in the GeoDetector.
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Table 2. The judgment basis of interaction mode.

Interaction Judgment Basis

Non-linear reduction P(A∩B) < min(P(A),P(B))
Single-factor nonlinearity reduction min(P(A),P(B)) < P(A∩B) < max(P(A),P(B))

Two-factor enhancement P(A∩B) > max(P(A),P(B))
Independent P(A∩B) = P(A) + P(B)

Non-linear enhancement P(A∩B) > P(A) + P(B)
Notes: A and B are urbanization factors for any two different dimensions.

2.3. Study Area

The study area is the entire African continent, composed of 55 countries. Using
the geographic division standard created by the United Nations, the continent can be
subdivided into five regions: Northern Africa, Western Africa, Southern Africa, Eastern
Africa, and Central Africa (Table 3). For the union of administrative and grid levels, a
50 × 50 km grid layer was established using ArcGIS, resulting in 13,633 grid units for the
entire continent.

Table 3. The list of countries and regions in Africa.

Regions Countries and Regions

Northern Africa Egypt, Libya, Tunisia, Algeria, Morocco, Sudan, Western Sahara

Eastern Africa
Eritrea, Ethiopia, South Sudan, Djibouti, Somalia, Kenya, Uganda, Rwanda,

Burundi, Tanzania, Madagascar, Zambia, Zimbabwe, Malawi,
Mozambique, Seychelles, Mauritius, Comoros

Western Africa
Nigeria, Benin, Ghana, Togo, Côte d’Ivoire, Liberia, Sierra Leone, Guinea,

Guinea-Bissau, Senegal, Gambia, Mauritania, Mali, Niger, Cape Verde,
Burkina Faso

Central Africa Angola, Congo, Congo Dem.Republic, Equatorial Guinea, Gabon, Central
African Republic, Chad, Cameroon, Sao Tome and Principe

Southern Africa Botswana, Namibia, South Africa, Swaziland, Lesotho

3. Results
3.1. Spatio-Temporal Distribution and Spatial Dependence of PM2.5 Concentration and
Urbanization under the Rapid Urbanization

Figure 1 shows the spatial distribution pattern of average PM2.5 concentrations for
2000–2018, which exhibits a strong geographical heterogeneity for PM2.5 concentrations
over the 19 year study period. According to the Air Quality Guidelines by the World
Health Organization (WHO), areas with PM2.5 concentrations of 35 µg/m3 (or more)
have considerably higher mortality rates than those with less than 10 µg/m3. The PM2.5
concentrations in the Sahara Desert, the Gulf of Guinea, the Niger River Basin, and the
Chad Basin far exceeded WHO’s recommended threshold limit of 35 µg/m3, while those in
eastern and southern Africa were mostly below 10µg/m3. Figure 2 compares the classified
areas of the mean annual PM2.5 concentrations for the different years. Areas with mean
annual concentrations above 35 µg/m3 increased from 43.25% in 2000 to 44.21% in 2018,
equivalent to an annual growth rate of 0.12%. Extremely polluted areas with average
concentrations exceeding 75 µg/m3 were reduced by 3.32%, from 5.98% in 2000 to 2.66% in
2018. In comparison, areas with concentrations ranging from 35 to 65 µg/m3 increased by
27.7% (29.31% in 2000 compared to 37.43%), equivalent to an annual growth rate of 1.35%.
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The spatial distribution of PM2.5 concentrations at the national level (Figure 3) showed
small cluster changes in PM2.5 concentrations (based on natural breaks classification), with
significant drops of mean concentrations in the Democratic Republic of Congo, the Congo,
and the Central African Republic. PM2.5 concentrations were low in Southern and Eastern
African countries, while many Northern, Western, and Central African countries had mean
PM2.5 concentrations greater than 35 µg/m3. In particular, Chad, Niger, and Mali around
the Sahara Desert and Nigeria, Côte d’Ivoire, Ghana, and Togo along the Gulf of Guinea
had average PM2.5 concentrations greater than 50 µg/m3.
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The results also showed that the levels of population agglomeration, land expansion,
and economic construction exhibited varying degrees of spatial heterogeneity. (1) Popu-
lation agglomeration (Figure 4): from 2000 to 2018, the mean population agglomeration
level in African countries increased by 44.1%. Among them, Eastern Africa had the highest
population agglomeration average level and fastest growth rate, which the population
density increased to 149 persons/km2 and a growth rate of 44.4% from 2000 to 2018. (2)
Land expansion (Figure 5): from 2000 to 2018, the mean land expansion level among
African countries increased by 54.7%. By 2018, the high value areas were concentrated in
Northern and Southern Africa and in the coastal countries along the Gulf of Guinea. In
2018, the impervious surface coverage (ISC) in Northern Africa was 0.0031, and 0.0027 in
the Southern African region, representing an increase of 47.5% and 35.08%, respectively.
The countries with the highest ISC included Mauritius, Ghana, Tunisia, South Africa, Egypt,
and Nigeria, with values exceeding 0.0053. (3) Economic construction (Figure 6): from
2000 to 2018, the mean economic construction level among African countries increased by
359%, of which Central and Western Africa increased the most, with 1051.9% and 314.4%,
respectively. High-value clusters formed gradually across the Central Region, from Uganda
to Senegal. Other high-value areas can also be found in Northern Africa (Tunisia, Morocco,
Egypt) and Southern Africa (South Africa, Lesotho, Swaziland).
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Theil–Sen trend analysis showed the Sen trend index of Africa’s PM2.5 concentrations
levels had been dominated by a growth trend over the 19 year study period, with 36.78% of
the region experiencing positive growth and 6% of which having rapid growth (Figure 7).
Ethiopia and parts of the Congo River Basin (Chad, Republic of Congo, the Democratic
Republic of the Congo) registered massive increasing PM2.5 pollution, while those along the
Mediterranean coast and the Gulf of Guinea (Togo, Ghana, Benin, Nigeria) had gradually
declined. In terms of the population urbanization level, 46.32% of the continent posted a
positive change. Rapid growths were concentrated in Nigeria, Central Ethiopia, parts of
the African Great Lakes region (Rwanda, Burundi, Uganda, and Kenya), and international
metropolises, such as Johannesburg, Cairo, and Rabat. The continent had relative stability
in terms of land urbanization level, while 32.11% posted positive changes in economic
urbanization level. Both land urbanization and economic urbanization development were
found to have significant coastal–inland distribution heterogeneity, while growth areas
were mainly found in the Mediterranean coast (a coastal city belt composed of Rabat,
Algiers, Tripoli, Tunisia, and Cairo), Southern Africa (South Africa, Sri Lanka, Lesotho),
and the Gulf Coast of Guinea.
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To characterize the SDP of PM2.5 concentrations at the administrative level, we calcu-
lated Moran’s I for PM2.5 concentrations per province (Figure 8). The estimated Moran’s I
values for 2000 and 2018 were 0.643 and 0.646, respectively (p < 0.001), indicating increased
spatial dependence of PM2.5 concentrations. Spatial agglomeration characteristics of cold
and hot spots were significant, with hot spots distributed in the west and cold spots in the
east. A “crescent-shaped” dividing line between the hot spot and cold spot regions can be
seen from Morocco’s Doukkala-Abda to Angola’s Bengo. For the given study period, the
majority of the continent was categorized as cold spots, but its overall share has fallen by
6.1%, and the sub-cold spot area (95% confidence level) fell by 28.6%. By 2018, some areas
along the dividing line shifted to sub-hot spots (95% confidence level), and the total hot
spot area increased by 0.4%.
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3.2. Driving Mechanism of PM2.5 Concentration under the Rapid Urbanization

The spatio-temporal distribution pattern confirmed the relationship between PM2.5
concentrations and urbanization in Africa. Most countries in Northern and Western Africa
(especially along the Sahara Desert and the Gulf of Guinea) had PM2.5 concentrations well
above 35 µg/m3 and registered high land expansion and economic construction levels.
Hence, several questions arise as follows: (1) does urbanization impact PM2.5 concentra-
tions in Africa? (2) How does this impact change during the study period? To answer the
above questions, spatial regression models were constructed to further analyze the impact
of urbanization on PM2.5 concentrations at the grid unit level by using urbanization as the
key variable and natural factors as control variables. Three temporal cross-sections (i.e.,
2000, 2010, 2018) were analyzed considering the data availability. Furthermore, referring to
the study of Du et al. (2019), an indicator for comprehensive urbanization was established
based on the multi-dimensional urbanization index (each dimension of the urbanization
index was standardized, the former results were added, and the results were standardized
again). The resulting value was used as the key explanatory variable (lncmpu) to reflect
the impact of comprehensive urbanization on PM2.5 concentrations.
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The results of the Lagrangian multiplier test (LM) and the robust Lagrangian multiplier
test (Robust LM) in OLS estimates all rejected the null hypothesis that was no spatial
lag term and no spatial error term at the significant level of 1%. The residual spatial
autocorrelation test shows that the mean value of residual Moran’ I of OLS is 0.938 (at 1%
confidence level), while the mean value of residual Moran’s I of spatial regression is closer
to 0, which indicates the rapid decline of the spatial autocorrelation of the residuals, spatial
regression models have to be introduced. The likelihood ratio (LR) for the SLM and SLM
(namely, LR-SLM, LR-SEM) were both statistically significant (Table 4). This means that
the SDM cannot be reduced to SLM or SEM and that SDM was more suitable in analyzing
the driving mechanism analysis since it can simultaneously characterize the endogenous
and exogenous interaction effects. The SDM calculation results (Table 4) for 2000, 2010,
and 2018 show that the regression coefficient of comprehensive urbanization (lncmpu) is
significantly greater than zero. In the periods 2000–2010 and 2010–2018, the comprehensive
urbanization coefficient (lncmpu) grew by 5.88% and 79.63%, respectively. This means
that urbanization had an increasing effect on PM2.5 concentrations and that the impact
had intensified rapidly. Furthermore, as a control variable, the vegetation cover played
an important role in mitigating PM2.5 pollution in Africa. From 2000 to 2018, the absolute
value of vegetation coefficient (lnndvi) increased by 86.36%. The altitude and slope were
also important factors mitigating the increase in PM2.5 concentrations, and their coefficients
for 2018 were −0.034 (lnele) and −0.06 (lnele), respectively. The influence of cumulative
precipitation on PM2.5 concentrations was weak, with coefficients (lnpre) for 2000 and 2018
being −0.017 and 0.015, respectively.

Table 4. Spatial regression model estimates of the driving factors of PM2.5 concentrations in 2000,
2010, and 2018.

Variables SDM_2000 SDM_2010 SDM_2018

lncmpu 0.051 *** 0.054 *** 0.097 ***
lnndvi −0.022 *** −0.037 *** −0.041 ***
lnpre −0.017 *** −0.007 * 0.015 **
lnele −0.03 *** −0.018 *** −0.034 ***

lnslope −0.038 *** −0.062 *** −0.060 ***
W*cmpu 0.068 *** 0.099 ** 0.122 *
W*ndvi 0.014 *** 0.024 *** 0.020 ***
W*pre 0.042 *** 0.038 *** 0.031 ***
W*ele 0.012 *** 0.014 *** 0.028 ***

W*slope −0.050 *** −0.018 *** −0.033 ***

R-squared
0.961 (SLM) 0.956 (SLM) 0.954 (SLM)
0.961 (SEM) 0.956 (SEM) 0.955 (SEM)
0.962 (SDM) 0.956 (SDM) 0.957 (SDM)

Log-L
24,236.9 (SLM) 24,428.8 (SLM) 24,343.7 (SLM)
24,142.9 (SEM) 24,382.1 (SEM) 24,267.9 (SEM)
24,273.9 (SDM) 24,467.1 (SDM) 24,384.3 (SDM)

LR-SLM 38,347.6 *** 34,852.9 *** 34,948.5 ***
LR-SEM 38,159.6 *** 34,759.6 *** 34,797.1 ***

Notes: cmpu indicates comprehensive urbanization index, which was obtained as follows: first, the mean
standardized economic urbanization, land urbanization, and population urbanization level were calculated;
and second, this sum value was standardized to obtain the final comprehensive urbanization index. *, **, and
*** indicate the significance at the confidence level of 10%, 5%, and 1%, respectively.

3.3. Differential Influence and Interaction of Multi-Dimensional Urbanization on
PM2.5 Concentrations

After estimating the impact of comprehensive urbanization index on PM2.5 concentra-
tions, other questions arose: (1) does each dimension of urbanization have same impact
intensity on PM2.5 concentrations? (2) Does multi-dimensional urbanization have an inter-
action effect on PM2.5 concentrations? To assess the impact of the different urbanization
dimensions on PM2.5 concentrations, spatial regression model and interaction detector
were used with multi-dimensional urbanization as the explanatory variables and PM2.5
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concentrations as the dependent variable. Based on SDM, Table 5 shows the different
effects (i.e., direct effect and spillover effect) of various urbanization dimensions on PM2.5
concentrations for 2000, 2010, and 2018. The influence of multi-dimensional urbanization
on PM2.5 concentrations typically ranked as follows: economic urbanization > land ur-
banization > population urbanization. This means that economic activity and urban land
expansion had relatively stronger contributions to the PM2.5 concentrations in Africa.

Table 5. Impact of multi-dimensional urbanization on PM2.5 concentrations in 2000, 2010, and 2018.

Row
Number

Type of
Urbanization Variable

Indicator
Abbreviation

Direct Effect (DEU) Spillover Effect (SEU)

2000 2010 2018 2000 2010 2018

1 Population
urbanization

Population
density lnpd −0.005

(−0.410)
−0.001

(−0.147)
−0.002

(−0.224)
−0.251

(−0.399)
−0.783

(−1.511)
−0.265

(−0.512)

2 Land
urbanization

Impervious
surface

coverage
lnisc 0.015 *

(1.909)
0.030 ***
(4.174)

0.026 ***
(2.325)

−1.015
***

(−2.325)

0.406
(0.966)

−0.459
(−0.682)

3 Economic
urbanization

Nighttime
light intensity lnntl 0.020 ***

(4.225)
0.017 ***
(4.007)

0.027 ***
(5.671)

1.241 ***
(3.103)

1.587 ***
(3.684)

2.464 ***
(4.228)

Notes: t-statistics in parentheses. * and *** indicate the significance at the confidence level of 10% and 1%, respectively.

For population urbanization, neither the direct effect (DEU) nor the spillover (SEU)
effect of lnpd was significant in any period, and the absolute value of the elasticity coeffi-
cient for DEU approached zero (Table 5, row 2). For land urbanization, under statistical
significance, the elasticity coefficient of the DEU increased from 0.015 in 2000 to 0.026
in 2018, equivalent to a 73.3% increase (Table 5, row 3). The elasticity coefficient of the
SEU in 2000 was −1.015 (significant at the 1% level) but was not significant in 2010 and
2018. For economic urbanization, the DEH and SEH of lnntl increased over the years
and were significant at the 1% level. From 2000 to 2018, the DEU and SEU for economic
urbanization largely ranked first in multi-dimensional urbanization, and the elasticity
coefficient increased by 35% and 98.5%, respectively (Table 5, row 4). Furthermore, the
SEH had a stronger influence than the DEU in multi-dimensional urbanization, indicating
that the impact of urbanization on PM2.5 concentrations was stronger on the adjacent areas
than on the given region. For example, the elasticity coefficient of the DEU for population
urbanization was 0.020 (significant at the 1% level), which was only 1/62 of the SEU.

Using data from 13,633 grid units, we employed an interaction detector to explore the
interaction effects of multi-dimensional urbanization on PM2.5 concentrations. The results
show that the interaction of any two different urbanization dimensions has a nonlinear
enhancement effect on PM2.5 concentrations (Table 6). For example, the interaction’s
explanatory power (A∩B) between PU and LU, PU and EU, and LU and EU in 2018 were
0.09, 0.63, and 0.46, while the combined explanatory power (A + B) were 0.022, 0.425, and
0.437, respectively. Moreover, the interaction effects of multi-dimensional urbanization
were significantly different; the overall growth rate and the explanatory strength of the
interaction effect in 2018 all can be ranked as follows: PU∩EU > LU∩EU > PU∩LU. The
results suggest that the interaction effects between population agglomeration and economic
construction and between urban land expansion and economic construction were important
interaction mechanisms affecting the spatial distribution patterns of PM2.5 concentrations
in Africa.
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Table 6. The interaction effect of multi-dimensional urbanization factor on PM2.5 concentrations.

Year P1 = A∩B P2 = A + B Comparison Result Interaction Types

2000
PU∩LU = 0.07 P(0.003) + LU(0.029) = 0.032 P > PU + LU Nonlinear enhancement
PU∩EU = 0.12 PU(0.003) + EU(0.07) = 0.073 P > PU + EU Nonlinear enhancement
LU∩EU = 0.14 LU(0.029) + EU(0.07) = 0.099 P > LU + EU Nonlinear enhancement

2010
PU∩LU = 0.11 PU(0.009) + LU(0.031) = 0.04 P > PU + LU Nonlinear enhancement
PU∩EU = 0.21 PU(0.009) + EU(0.08) = 0.017 P > PU + EU Nonlinear enhancement
LU∩EU = 0.11 LU(0.031) + EU(0.08) = 0.039 P > LU + EU Nonlinear enhancement

2018
PU∩LU = 0.09 PU(0.005) + LU(0.017) = 0.022 P > PU + LU Nonlinear enhancement
PU∩EU = 0.63 PU(0.005) + EU(0.42) = 0.425 P > PU + EU Nonlinear enhancement
LU∩EU = 0.46 L(0.017) + EU(0.42) = 0.437 P > LU + EU Nonlinear enhancement

Notes: PU, the p-value of population urbanization; LU, the p-value of land urbanization; EU, the p-value of economic urbanization. The
confidence level of all variables exceeds 95%.

4. Discussion
4.1. Explanation for the Different Impact and Interaction Effect of Multi-Dimensional
Urbanization on PM2.5 Concentrations

Why do the multiple urbanization dimensions show varying effects on PM2.5 con-
centrations in Africa? For population urbanization, the non-significant impact of DEU
and SEU can be partially attributed to the inconsistent distribution pattern between PM2.5
concentrations and population urbanization. As shown in Figures 3 and 4, many countries
with high population density do not necessarily have high PM2.5 concentrations. In Eastern
Africa, which has the highest average level and growth rate of population urbanization,
and in high-value countries, such as Morocco, Tunisia, and Egypt, PM2.5 concentrations
were less than 35 µg/m3. Meanwhile, some areas with high PM2.5 concentrations, includ-
ing those around the Sahara Desert, such as Chad, Niger, and Mali, did not form high
population agglomeration areas.

Furthermore, compared to economic urbanization and land urbanization, the spatial
gravity center for population urbanization was farther from the PM2.5 concentrations
center (see Figure 9). For 2018, the spatial distance of gravity centers between population
urbanization and PM2.5 concentrations was 1240.3 km, which was 141.8% of the distance
between economic urbanization and PM2.5 concentration gravity centers. This interesting
finding could be attributed to the spatial difference in population growth and regional
industrial development within Africa. In recent years, Kenya, Rwanda, Ethiopia, and other
Eastern African countries have launched long-term development strategies suitable for the
national economic conditions. These strategies focus on social livelihood, medical security,
and employment in urban areas, resulting in considerable population shifts towards urban
areas and the rapidly development of population urbanization [46]. According to the
African Statistical Yearbook (2019), Ethiopia and Kenya were major urban population growth
areas in Africa in 2018, increasing by 12.9 million and 7.6 million since 2000. Meanwhile, the
export economy rapidly developed among many Eastern African countries, where special
economic zones, such as Free Trade Areas (FTA) and Export Processing Zones (EPZ), have
been expeditiously created. For example, Ethiopia’s Eastern Industrial Park and Kenya’s
Athi River Export Processing Zone were the typical manufacturing development model
in Africa. Rapid construction of industrial areas and preferential tax policies in many
Eastern African countries have helped to attract foreign investment, developing their
service industries in tourism, logistics, and business services [47]. These economic actions
have a smaller negative impact on air quality than extensive industrial production, causing
the separation between Africa’s population growth center and PM2.5 pollution center.
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The DEU and SEU of economic urbanization ranked first among the various urbaniza-
tion dimensions. The DEU results suggest that PM2.5 concentrations were greatly affected
by regional economic construction, which could be partly related to the negative environ-
mental effects (e.g., waste gas pollution, energy consumption, smoke dust emission) caused
by regional economic construction [49]. The Environmental Kuznets Curve (EKC) posits
that environmental quality deteriorates with economic growth during the large-scale indus-
trialization era. In the post-industrial era, negative scale effects would then be surpassed
by technical and structural changes, and environmental quality gradually improves with
economic growth. Most African regions are far from reaching the EKC inflection point,
and the negative environmental effects brought by economic development are significant.
According to the United Nations Industrial Development Organization, only three African
countries have entered the “new industrialized economies”. Most African countries are still
in the initial stage of industrialization, dominated by resource development, raw material
processing, and manufacturing [50]. At this stage, the industrial economy and energy
consumption grow synergistically. According to the International Energy Agency (IEA)
and the African Statistical Yearbook, Africa’s total manufacturing output value increased
from USD 115.3 billion in 2000 to USD 264 billion in 2018, an increase of 128.9%. At the
same time, the total coal consumption by sector increased by 29.37%, from 19,092 Kote to
24,699 Kote. Particulate pollution from energy production, industrial operations, and car
exhaust emissions brought significant environmental costs. Based on the method of the
OECD National Environment Agency, Roy (2016) estimates that the total annual deaths
caused by particulate pollution in Africa increased by 250,000 from 1990 to 2013 [51]. This
information confirmed that most of Africa is still in the rising stages of “EKC”, and air
quality negative effects, industrial construction, energy consumption coexist for a long time,
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which provides a powerful explanation for the significant impact of economic construction
on PM2.5 concentrations in Africa [52].

The SEU results reflect the significant contributions of economic urbanization to PM2.5
concentrations of adjacent areas. Two reasons can explain such a finding. First, with the
support of hydrodynamics, air pollutants produced by regional economic activities diffuse
to neighboring areas due to wind forces [53]. Second, international trade has accelerated
the globalization of emissions and pollution [8]. The value of goods exports and non-factor
services increased by 105% from 2000 to 2018, reaching USD 560.8 billion. Rising economic
contact and border trading activities between countries have contributed to increase the
transmission of PM2.5 pollutants and pollutant components among neighboring coun-
tries [54]. This suggests that Africa’s PM2.5 pollution problem should not only focus on
local urbanization but also include cross-regional strategies and policies to address air
quality concerns.

The DEU of land urbanization has generally increased but is slightly lower than eco-
nomic urbanization in 2018. This is most likely caused by two main reasons: construction
dust pollution and green land shrinkage. On the one hand, rapid agglomeration of popula-
tion and economic activities boost the construction of residential houses, industrial plants,
and roads in cities. These urban constructions produce loads of road and construction
dust, adversely impacting urban air quality [55]. On the other hand, increased urban
building density and new land development accelerate green space fragmentation to a
certain extent [56]. As a result, the functions of absorption and regulation of suspended
particulate matter by vegetation is considerably reduced [57], and also indirectly affects the
diffusion and sedimentation of particulate matter by increasing the heat island effect [58],
which adversely impacts the region’s air quality.

Why did the interactions with multi-dimensional urbanization result in non-linear en-
hancement to PM2.5 concentrations? The PM2.5 pollution in Africa is not caused simply by
the independent and direct impact of any single urbanization metric but rather the product
of interactions of various urbanization factors. The systemicity and inherent synergy of
urbanization may explain this phenomenon (Figure 10). The principal elements of urban-
ization, population, economy, and land serve as the basic support, source, and space carrier
of urbanization, respectively [59,60]. The changes in residents’ lifestyles will accelerate the
transformation of the socio-economic structure and urban space development and promote
industrial growth and land use expansion. Among them, the socio-economic structure acts
on atmospheric ecosystem by industrial pollution and energy consumption. Urban space
development shows as increased urban land development and rising housing demands,
which has negative effects on air quality in the form of green space shrinkage, building
density growth, and construction dust [56]. Residents’ lifestyles often act on the air quality
system in the form of household fuel and domestic waste combustion [61]. As a result,
these various socio-economic activities influence and coordinate each other under human–
land system science and ultimately affect the spatio-temporal evolution of regional PM2.5
concentrations. The significant interaction of multi-dimensional urbanization-affected
PM2.5 concentrations also confirms the necessity and rationality to analyze the impact
of urbanization on PM2.5 concentrations using multi-dimensional perspectives. Urban
environmental planning and management should also integrate the population, economic,
and land optimization measures to coordinate the relationship between urban development
and air quality.
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4.2. Policy Implications

The results showed that Africa’s urbanization had a significant positive impact on
PM2.5 concentrations and has been increasing over the years. Various dimensions of ur-
banization exhibited interaction effect and spillover effects, which were generally stronger
than the direct effects. How to promote the coordinated development of urbanization
and air quality system in Africa? We believe that the more important thing for Africa’s
air quality management is not only limited in understanding pollution mechanisms, but
also addresses the negative environmental effects of urbanization under the condition of a
weak economy. While traditional problems, such as diseases, poverty, hunger, and political
turmoil, often limit many African countries to heavily invest in environmental protection
and management, air quality concerns and other environmental problems should not be
ignored. The urbanization path of treatment after pollution is obviously incompatible with
the current resource and climate-constrained world order and the sustainability goals of
urbanization. Africa has already paid a lot of economic costs and residents’ health for air
pollution. According to a report (Roy, 2016), in 2013, the economic cost of air pollution
in Africa was estimated at USD 447 billion, resulting in some 250,000 deaths [51]. As a
result, air quality protection and environmental management must be promoted while
stimulating economic growth and urban development [62]. Under our results and limited
economic conditions, some works still remain to be proposed for promoting coordinated
development of urbanization and air quality in Africa:

(1) Given the strong spillover effects across regions, integrated regional planning in air
quality management must be strengthened among African countries. In particular,
countries along the Gulf of Guinea and the Sahara Desert should enhance the joint
action capacity for air pollution control, monitoring, and mitigation strategies. Devel-
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oping emission inventories and environmental risk assessment systems within the
framework of Agenda 2063 are also critical.

(2) The interaction of multi-dimensional urbanization has a substantial amplifying ef-
fect on PM2.5 concentrations. As a result, air quality management in Africa should
integrate various urban aspects, such as population lifestyle transformation, land
structure optimization, and industrial upgrading. Policymakers should consider com-
prehensive urban development planning, domestic waste management, urban green
space maintenance, and energy conservation, as well as the impact of cross-regional
trade on PM2.5 transmission.

(3) Urbanization complexity requires strong sectoral collaboration to effectively manage
air pollution. Experiences in PM2.5 governance from other countries should be consid-
ered, and governments should promote pollution traceability and accountability. The
coordinated management of pollution sources from different sectors should be further
strengthened, including those in trade, greening, construction, industrial production,
and transportation.

4.3. Research Limitations and Future Directions

There are several limitations in this study. First, although we explored the multi-
dimensional urbanization effects on PM2.5 concentrations in Africa and discussed the
reasons of the varying impacts of multi-dimensional urbanization, we did not reveal the
threshold levels of population, land, and economic urbanization at which coordinated
development of urbanization and air quality can be achieved. Coordinated response
mechanisms between urbanization and air quality can be more effective in achieving
sustainable development in Africa if they utilize the threshold response function and
pollution warning model. Second, the analyses of the driving impact and interactions were
based on the entire African continent. Causing the driving impact and spillover effects of
multi-dimensional urbanization in particular, geographic areas are difficult to be analyzed.
Extending the study area to a particular country or city in the future can help to reveal
the interaction between urbanization and PM2.5 concentrations in small-scale areas and
address local air pollution problems.

Despite these limitations, under the wave of global air pollution governance, this
study introduced the driving analysis of urbanization on PM2.5 concentrations in Africa,
and identified the different impacts of urbanization on the local and neighboring areas.
For case with difficulty in data acquisition, pd, isc, and ntl were used to characterize the
multiple dimensions of urbanization, providing a deeper understanding of the impact of
multi-dimensional urbanization on PM2.5 concentrations in Africa. In addition, the empir-
ical analysis of the different impacts and interaction of multi-dimensional urbanization
on PM2.5 concentrations can be extended to other environmental issues, such as carbon
emissions, carbon neutrality, and biodiversity conservation. The discussion on handling
the relationship between urban development and PM2.5 pollution in underdeveloped areas
can also be extended to other economically developing areas.

5. Conclusions

Previous studies have analyzed the impact of urbanization on PM2.5 concentrations
in many areas. However, most of the research has overlooked the comprehensive im-
pact of the various dimensions of urbanization (i.e., population, land, and economic) on
PM2.5 concentrations, particularly in Africa. They seldom pay attention to the direct and
spillover effects of multi-dimensional urbanization on PM2.5 concentrations, lacking the
quantitative evaluation to the interaction effects of different dimensions of urbanization
on PM2.5 concentrations. Therefore, this study explored the spatio-temporal evolution of
PM2.5 concentrations and multi-dimensional urbanization at the grid and administrative
levels and explored the driving mechanisms of PM2.5 concentrations. We also analyzed
the varying direct and spillover impacts and interaction effects of multi-dimensional ur-
banization on PM2.5 concentrations. The results show that the areas exceeding the PM2.5



Int. J. Environ. Res. Public Health 2021, 18, 9389 20 of 22

pollution standard (>35 µg/m3) increased over the study period 2000–2018 and can be
found mainly along the Gulf of Guinea and the Sahara Desert. The influence of urban-
ization on PM2.5 concentrations has gradually increased and stayed dominant, and the
economic urbanization level had the strongest impact on PM2.5 concentrations among
the various urbanization dimensions. The results also show that the spillover effect of
multi-dimensional urbanization was stronger than the direct effect, and Africa’s PM2.5
pollution problem was the product of interactions of various urbanization factors.
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