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The prevalence of diabetes in the United States and globally has been rapidly increasing 
over the last several decades. There are now estimated to be 30.3 million people in the 
United States and 422 million people worldwide with diabetes. Diabetes is associated 
with a greatly increased risk of cardiovascular mortality, which is the leading cause of 
death in adults with diabetes. While exercise training is a cornerstone of diabetes treat-
ment, people with diabetes have well-described aerobic exercise impairments that may 
create an additional diabetes-specific barrier to adding regular exercise to their lifestyle. 
Physiologic mechanisms linked to exercise impairment in diabetes include insulin resis-
tance, cardiac abnormalities, mitochondrial function, and the ability of the body to supply 
oxygen. In this paper, we highlight the abnormalities of exercise in type 2 diabetes as well 
as potential therapeutic approaches.
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SCOPe

The prevalence of diabetes is rising rapidly in the United States, with a 75% increase from 1988 
to 2010 (1). There are now 30.3 million people in the United States with diabetes (2). Diabetes is 
associated with a greatly increased risk of cardiovascular mortality, which is the leading cause of 
death in adults with diabetes (2–4). In 2015, diabetes was the seventh leading cause of death in the 
United States (2). Total direct and indirect costs associated with diabetes globally may have been as 
high as 1.3 trillion USD and are expected to rise (5, 6).

Regular exercise is a cornerstone of treatment for diabetes. In the 2018 Diabetes Standards of 
Care publication, the American Diabetes Association recommends most adults with type 1 and 
type 2 diabetes (T2D) should engage in 150 min or more of moderate to vigorous intensity physi-
cal activity plus two bouts of resistance exercise per week (7). Despite the well-established health 
benefits of exercise, paradoxically only 51% of adults in the USA meet the recommended aerobic 
exercise guidelines (8). Exercise training is associated with lowering blood pressure, improving 
insulin sensitivity, and glucose control, improving lipoprotein profile and playing an important 
role in weight management among other benefits (9). More recent evidence shows that moderate to 
high volumes of aerobic activity are associated with significantly lower cardiovascular and overall 
mortality risks in both type 1 diabetes and T2D (10). In contrast, physical inactivity or sedentarism, 
is known to have deleterious health effects in people with diabetes (11, 12).
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TAble 1 | Decreased exercise capacity in type 2 diabetes (T2D)—exercise 
training intervention.

lean control 
subjects

Overweight 
control subjects

T2D subjects

N 10 9 8
Age (years) 37 ± 6 37 ± 6 43 ± 7
Fasting glucose 
(mmol/l)

4.89 ± 0.43 5.12 ± 0.67 11.90 ± 3.80*

HbA1c (%) 6.3 ± 2.8 5.4 ± 0.5 9.5 ± 1.9*
VO2 max (ml/kg/min)

Before 25.1 ± 4.7 21.8 ± 2.9 17.7 ± 4.0*
After 26.0 ± 6.0 23.0 ± 1.8† 22.4 ± 5.5*†

RER
Before 1.13 ± 0.08 1.12 ± 0.06 1.16 ± 0.13
After 1.12 ± 0.13 1.15 ± 0.05 1.12 ± 0.03

Heart rate (bpm)
Before 174 ± 15 167 ± 12 166 ± 11
After 167 ± 12 164 ± 10 164 ± 18

This table is adapted from Brandenburg et al. (21). Copyright 1999 by the American 
Diabetes Association. These data demonstrates reduced VO2 max in T2D compared 
with lean control and overweight control subjects. Note there is no difference in 
baseline physical activity (assessed by low-level physical activity recall) across  
all groups.
Data are mean ± SD.
*P < 0.05 for difference between the group with diabetes and the other two groups.
†P < 0.05 for difference between before and after exercise training.
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The focus of this review is to outline recent advances in 
understanding the interaction between diabetes and impairments 
in aerobic exercise function. There are numerous other chronic 
conditions that are known to impact exercise capacity including 
smoking (13), obesity (14, 15), and hypertension (16–18). The 
mechanisms underlying these impairments may overlap with or 
differ from those leading to impairments in people with diabetes. 
Past studies from our group have addressed this potential over-
lap by controlling for BMI, weight, activity level, and excluding 
potential participants with hypertension, chronic kidney disease, 
or smokers (19).

CliNiCAl iMPACT

People with diabetes have physiologic exercise limitations and 
decreased cardiorespiratory fitness (CRF). More specifically, 
people with diabetes have approximately 20% lower maximal 
oxygen uptake (VO2 max) when compared with those without 
diabetes (20–25). This is important because reduced VO2 max is 
linked to increased cardiovascular mortality (11, 20, 22, 26–28). 
A second exercise limitation is that individuals with T2D have 
slower oxygen uptake kinetics with constant-load exercise  
(21, 29), indicating decreased ability to adapt to an acute change 
in the demand for oxygenation at the beginning of exercise. Our 
group has reported that, perhaps related to the aforementioned 
physiologic limitations, people with diabetes report greater per-
ceived exertion compared with their non-diabetic counterparts; 
that is, exercise seems more challenging to them, even at very 
low-work rates (30).

We and others have characterized many individual impair-
ments in key cardiac and vascular measures associated with CRF 
impairment in T2D including insulin resistance, endothelial 
dysfunction, decreased myocardial perfusion with exercise, 
abnormally increased pulmonary capillary wedge pressure 
(PCWP), decreased limb blood flow, and skeletal muscle mito-
chondrial dysfunction (20–24, 29, 31–36). CRF impairment in 
T2D is present in youth as well as adults, even those with recent 
onset diabetes and no clinically apparent cardiovascular disease 
(23, 24). The CRF impairment appears to be independent from 
effects of obesity or decreased habitual physical activity (19–24, 
37–41). Due to methodologic limitations to date, we lack criti-
cal knowledge about how each of the associated abnormalities 
of CRF mechanistically contributes to the CRF impairments. In 
addition, we lack information about which of the abnormalities 
are potentially reversible vs non-reversible. The goal of this review 
is to discuss underlying mechanisms of decreased CRF in T2D  
and to highlight newer data suggesting a microvascular contribu-
tion to the impaired exercise capacity associated with T2D.

eXeRCiSe AS iNTeRveNTiON

Given the overwhelming importance CRF plays in health and 
the importance of exercise training in diabetes management, it 
is critical to characterize diabetes-related physiologic exercise 
limitations in order to identify therapeutic strategies to improve 
CRF. Physical activity has been seen to prevent T2D even in the 
absence of weight loss (42). Multiple studies have documented 

that exercise training generally improves exercise function in 
T2D (20–22, 29, 43–49). It is less clear if a clinical intervention 
with exercise training reduces mortality in established T2D. For 
example, the Look Ahead trial did not find a survival advantage 
associated with lifestyle/exercise intervention (50). In this study, 
there was a very low-event rate (due in part to the overall decline 
in CV mortality in people with DM likely related to the use of 
improved CV risk factor modification over the time period of 
the study). There were, however, other benefits resulting from 
lifestyle modification in the Look Ahead Study including better 
quality of life, lower medical costs, and reduced need of diabetes 
medications in the intensive lifestyle intervention group (51).  
We have previously shown that, despite improvement in CRF 
after formal exercise training, exercise impairments persist in 
people with T2D relative to similarly trained people without 
T2D, possibly suggesting a mixture of modifiable and fixed 
defects (Table 1) (21).

ASSeSSMeNT OF POTeNTiAl 
MeCHANiSTiC CAUSeS OF eXeRCiSe 
iMPAiRMeNT iN T2D

Previous research from our laboratory has demonstrated a 
significant positive correlation between insulin sensitivity and 
VO2 max (20, 31). As proof of concept, we elected to examine 
whether an insulin sensitizer has the capacity to improve exercise 
function. Our group investigated the effects of rosiglitazone, a 
thiazolidinedione (TZD), on exercise capacity in individuals 
with diabetes (31). TZDs augment insulin responsiveness of 
the skeletal muscle and adipose tissue. This study demonstrated 
significantly improved VO2 max (7% increase) in participants 
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with diabetes that were treated for 4 months with rosiglitazone  
4  mg/day (31). Insulin sensitivity, measured by HOMA, and 
endothelial function, measured by ultrasound of the brachial 
artery, were also significantly improved in the rosiglitazone-
treated group. Since multiple physiological factors correlated 
with improvement in CRF, the relative contributions to improved 
exercise capacity from changes in insulin action and improve-
ments in vascular function with TZD remain unclear.

Our findings with rosiglitazone and CRF were reproduced by 
Kadoglou et al. (52). In addition, they demonstrated an added 
benefit of exercise training plus the TZD (52), a finding which 
was recently substantiated in an animal model (53). The impact 
of TZD on exercise capacity appears to differ depending upon 
disease status, as people with T2D and cardiovascular disease did 
not improve VO2 max (54). Taken together, these publications 
support the proof of concept that targeting insulin action in 
diabetes is associated with improvement in VO2 max in uncom-
plicated T2D. Rosiglitazone is no longer commonly used in 
diabetes treatment, due in part to concerns that it increased risk 
of cardiac events [a claim the FDA later disputed (55)], and thus 
further research with other insulin sensitizers may be warranted.

Metformin, a known stimulator of AMP-activated protein 
kinase, has also been evaluated for its effects on CRF. A study 
published in 2008 by Braun et  al. investigated the effects of 
metformin on exercise capacity in healthy individuals and noted 
metformin decreased VO2 max by 2.7% when compared with 
controls (56). A similar study in people with insulin resistance 
by HOMA IR also demonstrated a significant decrease in VO2 
peak with metformin for 3 months (57). However, evaluation of 
the impact of metformin on VO2 peak has not been determined 
in people with diabetes. Limited investigations have addressed 
the response to metformin in people with metabolic disease 
and the data are mixed regarding CRF and metformin. A recent 
study showed a significant decrease in VO2 max in people with 
metabolic syndrome following 6  weeks of metformin admin-
istration (58). However, previous investigations in people with 
prediabetes demonstrated no effect of metformin on CRF when 
administered without a concomitant exercise intervention and no 
metformin-associated impairment of the response to an exercise 
training intervention (59, 60). Metformin is reported to inhibit 
complex 1 of the mitochondrial respiratory chain (61, 62). It has 
been postulated that this action of metformin may be responsible 
for the observed reduced CRF in people with diabetes. As met-
formin is first-line therapy for the treatment of diabetes, further 
studies are necessary to determine the impact of this widely used 
pharmacological agent on CRF in the primary population where 
it is prescribed.

Epigenetic modifications have been noted in T2D (63) and 
research also shows that acute exercise results in DNA hypometh-
ylation in promoter regions in human skeletal muscle (64). There 
are suggestions in the literature that a physiological challenge, such 
as diabetes, may change these acute epigenetic responses (65). 
This is an area of intensive investigation under the NIH Common 
Fund Molecular Transducers of Physical Activity Program. Once 
the changes in the healthy population are understood, we will be 
in a better place to understand whether there are differences in 
the adaptive response in the context of diabetes.

MiTOCHONDRiAl DYSFUNCTiON

Diabetes is associated with mitochondrial dysfunction in cardiac 
tissue and skeletal muscle (66, 67). In addition to other muscle 
tissue, we reported that DM affects mitochondrial function in 
the vasculature (68). This finding is pertinent because mitochon-
dria, when dysfunctional, can decrease normal vasomotion and 
generate excess vascular reactive oxygen species (ROS) (69, 70). 
Vascular ROS are related to vascular inflammation and vascular 
stiffness—precursors of clinical cardiovascular disease (71). Prior 
studies in healthy subjects demonstrate that exercise improves 
skeletal muscle and vascular mitochondrial function and 
decreases mitochondrial damage (72–76). However, our group 
found that rats with hypertension or metabolic syndrome and 
mild diabetes did not have the mitochondrial improvement in the 
aorta that was demonstrated in control rats after exercise training 
(68). This failure of mitochondrial adaptation in the diabetic rats 
was unexpected and led us to consider vascular mitochondrial 
function and turnover as new therapeutic targets in diabetes.

To target mitochondrial dysfunction, we have explored con-
nections between known mitochondrial regulatory pathways 
and established vascular consequences of diabetes. Endothelial 
dysfunction is an established vascular abnormality in diabetes 
and it is known to be regulated, in part, by endothelial nitric 
oxide synthase (eNOS) (77). Work by Nisoli’s group established 
nitric oxide (NO) to be an upstream regulator of mitochondrial 
biogenesis in a variety of tissues (78). We therefore examined the 
effects that NOS inhibition might have specifically in vascular 
mitochondrial biogenesis. In a 2013 publication, we noted that 
inhibition of eNOS blocked mitochondrial adaptation to an 
exercise intervention in the aorta of Sprague Dawley rats (79)—
affirming the important role NO plays in vascular mitochondrial 
biogenesis and the adaptive response to exercise.

PANCReATiC DYSFUNCTiON

Onset of exercise in individuals without diabetes is associated 
with decreased insulin secretion and increased glucagon secretion 
(80–82). Previous reports suggest that exercise is trophic for the 
pancreatic beta cell (83, 84). We are unaware of studies conducted 
to evaluate islet dysfunction and its interaction with exercise 
capacity. Pancreatic β cell dysfunction and failure are common 
culprits in the pathogenesis of diabetes. The process of aging can 
result in impaired carbohydrate metabolism, via both increased 
insulin resistance and impaired insulin secretion (85–89). Several 
factors have been shown to contribute to decreased insulin secre-
tion in aging including reduced expression of β(2)-adrenergic 
receptors (90), decreased calcium signaling (91), and chronic 
oxidative stress (92). Consequently, it is plausible that aging in 
people with diabetes could be associated with abnormal ratios of 
glucagon to insulin with a subsequent impact on exercise capacity 
(93). It is also important to note the important role that pancreatic 
β cell mitochondria play in facilitating insulin secretion and that 
mitochondrial dysfunction in β cells is associated with beta cell 
failure and thus dysregulation of glucagon (94–96). This principle 
has been further substantiated recently in a study illustrating 
the deleterious effect of tacrolimus on β cell mitochondria and 
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subsequent β cell failure (97). It is interesting to speculate that 
the mitochondrial impairment noted in aging and diabetes could 
deleteriously impact the metabolic flexibility needed for the mito-
chondria to adapt to an exercise challenge and further interfere 
with the acute adaptive response of the islet to an exercise bout. 
Evaluation of the islet response to exercise in people with uncom-
plicated diabetes is an area for future investigation.

TARGeTiNG NOS DYSFUNCTiON

To determine if it was possible to counteract NOS inhibition and 
improve adaptive response to exercise training, we looked to the 
incretin class of insulin secretagogues: glucagon-like peptide 1 
receptor agonists (GLP-1 RA) and dipeptidyl peptidase 4 inhibi-
tors (DPP4). GLP-1 signals via G-protein-coupled receptors that 
are highly expressed in the vasculature and have been shown 
to stimulate eNOS and increase cyclic AMP (cAMP)—leading 
to enhanced endothelial function and tissue perfusion, plus 
improved muscle glucose utilization (98–101). To explore the 
effects of incretins on exercise, vascular function, and mito-
chondrial adaptation in diabetes, we first examined the effects 
of saxagliptin (a DPP4 inhibitor) in Goto-Kakazaki rats (a lean 
rat model of insulin resistant diabetes). Saxagliptin combined 
with exercise training stimulated eNOS and restored vascular 
mitochondrial expression (70).

In a more recent study, we treated human subjects with 
uncomplicated T2D with the GLP-1 RA exenatide (102). 
Treatment with exenatide, without a concomitant exercise 
intervention, led to improvement of both diastolic cardiac 
function and aortic stiffness, but did not improve VO2 max 
or endothelial dysfunction as measured by flow mediated 
dilatation (102). These data suggest that an effective stand-
alone intervention (without concomitant exercise intervention) 
would need to impact cardiac, vascular, and muscle function 
(the latter was not evaluated in this trial). In our clinical study, 
we did not measure the impact of exenatide on eNOS or NO. It is 
possible that eNOS dysfunction, including eNOS uncoupling in 
diabetes, rendered our subjects resistant to cAMP regulation of 
NO, or that the combination of GLP-1 RA and exercise training 
is needed to achieve an adaptive response and change VO2 max. 
These observations suggest that NO may be crucial for exercise 
adaptation in the vasculature. We are currently exploring other 
methods to target NOS dysfunction in the context of diabetes.

Other agents with “insulin sensitizing” mechanisms have been 
examined as exercise mimetics in non-diabetic preclinical mod-
els and healthy subjects, including AMPK stimulation and PPAR 
delta ligands. In a 2008 study, administration of an orally active 
AMPK agonist, AICAR, for 4 weeks resulted in a 44% enhance-
ment of running endurance in sedentary mice (103). In a 2017 
study, sedentary mice administered a PPAR delta ligand were able 
to run ~100 min longer than control mice before exhaustion, a 
70% increase (104). Studies in diabetic models employing these 
agents are either underway or not yet conducted.

Sodium glucose transporter type 2 (SGLT2) inhibitors are a 
relatively new class of diabetes medications with demonstrated car-
diovascular morbidity and mortality benefit in humans (105, 106).  
SGLT2 inhibitors have recently been found to improve insulin 

sensitivity in the skeletal muscle of diabetic rats (107) and in ex 
vivo human epicardial adipose tissue (108). SGLT inhibition with 
phlorizin was shown by Li et al. to improve endothelial dysfunc-
tion by way of increasing NO levels in human umbilical vein 
endothelial cells (109). We are not aware of any published studies 
directly addressing the effect of SGLT2 inhibition on CRF, except 
a beneficial impact in the context of heart failure (105, 106, 110).  
In light of the recent reports demonstrating improvements in car-
diac function, aortic stiffness, and renal perfusion, it is plausible 
that SGLT2 inhibition will counteract the pathophysiological fac-
tors contributing to exercise impairment in diabetes (111–116). 
Further studies evaluating the impact of SGLT2 inhibition on 
insulin sensitivity, NO, and functional exercise capacity in dia-
betes are warranted.

MUSCle PeRFUSiON-
MiCROvASCUlATURe

The role of NOS in vascular adaptation to sheer stress and 
exercise is accepted. Still, it is unclear what the consequences of 
impaired NOS function are on skeletal muscle and cardiac func-
tion. Importantly, it is controversial whether the skeletal muscle 
and heart NOS isoforms (eNOS and neuronal NOS, nNOS) 
contribute to exercise training adaptation or whether it is NOS 
mediated blood flow that contributes to the NOS-dependent 
adaptive response. McConnell has reported that skeletal muscle 
mitochondrial adaptation to exercise training is unaffected by 
deletion of either eNOS or nNOS (117). Another recent study 
indicates that alterations in muscle microvascular blood flow after 
an exercise bout are needed to garner the bout effect of exercise 
on insulin action (118). In a parallel line of investigation, Liu and 
Barrett report that insulin-mediated microvascular recruitment is 
essential for skeletal muscle insulin action and that this response 
requires NOS stimulation (119, 120). Taken together, these 
reports support a model wherein skeletal muscle insulin action 
involves coordination of blood flow-dependent insulin delivery 
to the skeletal muscle and intact skeletal muscle insulin signaling.

Similar to the relationship between muscle microvascular per-
fusion and insulin action, cardiac and skeletal muscle perfusion 
are critical for physiological function during a bout of exercise. 
Our previous work demonstrated decreased myocardial perfusion 
by sestamibi during exercise in people with T2D—consistent with 
abnormal tissue perfusion associated with cardiac dysfunction in 
T2D (19). Further, we have also reported slowed skeletal muscle 
blood flow at the onset of exercise in people with T2D (22). With 
regard to skeletal muscle mitochondrial dysfunction, a few key 
questions are currently unresolved: 1. What is the relationship 
between in vivo skeletal muscle oxidative capacity and VO2 max? 
2. What is the contribution of muscle perfusion to decreased 
skeletal muscle oxidative capacity? 3. Is the adaptive response to 
either an exercise bout or exercise training in the skeletal muscle 
impacted by diabetes?

We postulated that skeletal muscle perfusion limitations 
due to either capillary rarefication or perfusion heterogeneity 
may contribute to the limitations observed in muscle oxidative 
phosphorylation in people with diabetes, and ultimately the 
associated CRF impairment. In support of this model, we recently 
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published that people with diabetes have similar capillary recruit-
ment with the onset of exercise as controls, yet have decreased 
oxyhemoglobin depletion during exercise compared with people 
without diabetes (121). We postulate that decreased skeletal mus-
cle oxidative capacity is due to a combination of skeletal muscle 
mitochondrial dysfunction and muscle perfusion abnormalities 
including irregular blood flow distribution. Ongoing work in our 
laboratory is investigating the relationship between muscle O2 
delivery and muscle mitochondrial function.

To add to our understanding of lower effective muscle oxygen 
delivery in diabetes, we conducted a recent analysis of capillary 
density, muscle perfusion, and muscle fatigue in collaboration 
with Jefferson Frisbee’s group (122). This analysis combines a 
theoretical modeling simulation of blood flow distribution and 
predicted oxygen extraction across a muscle bed with experimen-
tal data from the lean Zucker rat and the metabolic syndrome 
obese Zucker rat (OZR) to test the contributors to decreased 
muscle VO2 in metabolic syndrome. Muscle blood flow was 
lower in the OZR and yet venous oxygen was higher. Simply 
stated, despite less blood flow delivery to the muscle there was 
less oxygen extracted to do the same amount of work (Figure 1). 
Possible explanations for this could be decreased capillary den-
sity or decreased effectively perfused capillaries. Based on our 
simulation, the observed diabetes-related decrease in capillary 
density only accounted for 20% of the mismatch. The remaining 
defect in muscle oxygen extraction was due to uneven blood 
flow (red blood cell) distribution. We were able to confirm 

that our modeling was correct by treating with an antioxidant 
(TEMPOL) and observing that we were able to restore ~80% of 
the mismatch (123). An acute response like this would not be 
possible if the defect was due to a fixed lesion such as decreased 
capillary density. Taken together, published findings indicate 
that the discrepancy in muscle oxygen extraction (muscle VO2) 
is primarily explained by muscle perfusion heterogeneity (122).  
In light of the significant improvements in oxygen extraction with 
the TEMPOL intervention, microvascular perfusion heterogene-
ity represents an unaddressed therapeutic target for improving 
tissue oxygenation and muscle function.

To summarize, muscle perfusion abnormalities are a plausible 
contributor to decreased VO2 and CRF in diabetes. Recent data 
in humans and in rodents using TEMPOL and other agents dem-
onstrate that abnormalities in muscle perfusion can be corrected 
(123). Targeting muscle perfusion is a novel therapeutic direction 
for improving CRF and the adaptation to exercise intervention 
in diabetes. Future studies should focus on the impact of inter-
ventions targeting cardiac and skeletal muscle blood flow and 
examining the interaction between perfusion and the adaptive 
exercise training response.

CARDiAC FUNCTiON

Studies to evaluate cardiac abnormalities using invasive and non-
invasive methods revealed that cardiac abnormalities are present 
in newly diagnosed adults and youth with T2D upon exercise 

FiGURe 1 | Oxygen extraction fails to compensate for reduced blood flow under conditions of microvascular perfusion heterogeneity. Adapted from Mason 
McClatchey et al. (123). Copyright 2017 Springer US. (A) Blood flow during exercise is reduced by ~20% in the obese Zucker rat (OZR) relative to the Lean Zucker 
Rat. (b) Venous oxygenation during exercise is increased in the OZR relative to the Lean Zucker Rat, reflecting impaired oxygen extraction. (C) Computational 
modeling of oxygen transport reveals that the failure to compensate for reduced blood flow in the OZR can be explained by the combined effects of reduced 
capillary density and microvascular perfusion heterogeneity.
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