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Abstract

Divisive normalization is a canonical mechanism that can explain a variety of sensory phenomena. While normalization
models have been used to explain spiking activity in response to different stimulus/behavioral conditions in multiple brain
areas, it is unclear whether similar models can also explain modulation in population-level neural measures such as power
at various frequencies in local field potentials (LFPs) or steady-state visually evoked potential (SSVEP) that is produced by
flickering stimuli and popular in electroencephalogram studies. To address this, we manipulated normalization strength by
presenting static as well as flickering orthogonal superimposed gratings (plaids) at varying contrasts to 2 female monkeys
while recording multiunit activity (MUA) and LFP from the primary visual cortex and quantified the modulation in MUA,
gamma (32–80 Hz), high-gamma (104–248 Hz) power, as well as SSVEP. Even under similar stimulus conditions, normalization
strength was different for the 4 measures and increased as: spikes, high-gamma, SSVEP, and gamma. However, these results
could be explained using a normalization model that was modified for population responses, by varying the tuned
normalization parameter and semisaturation constant. Our results show that different neural measures can reflect the
effect of stimulus normalization in different ways, which can be modeled by a simple normalization model.
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Introduction
Divisive normalization refers to a canonical computation in
which the response of a neuron is divided by the summed
response of a larger (normalization) pool of neurons (Heeger
1992; Carandini and Heeger 1994; Carandini et al. 1997; Lee and
Maunsell 2009; Reynolds and Heeger 2009; Ni et al. 2012, 2019).
Normalization models have been used to explain a variety of
sensory phenomena, such as saturation of the contrast response
function (CRF; Heeger 1992; Carandini et al. 1997; Reynolds and
Heeger 2009) and cross-orientation suppression (Busse et al.
2009; Brouwer and Heeger 2011). CRF saturation is a nonlinear
phenomenon in which the response of a neuron increases
linearly at lower contrasts but saturates at higher contrasts.
Cross-orientation suppression is a phenomenon in which the

response of a neuron to an optimally orientated grating stimulus
is suppressed by a superimposed orthogonal grating, that is, plaid
stimulus (Adelson and Movshon 1982; Freeman et al. 2002), even
though the orthogonal grating produces little or no response
when presented alone. These sensory phenomena have been
well explained using a normalization model (Carandini and
Heeger 2011). More recently, normalization has also been used
to explain a variety of cognitive phenomena such as selective
attention, predominantly to explain different ways in which
selective attention can change the CRF (Lee and Maunsell 2009;
Reynolds and Heeger 2009).

Cross-orientation suppression has also been studied in pop-
ulation signals such as the local field potential (LFP) and elec-
troencephalogram (EEG), where the effect is often quite distinct
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from what is observed in spiking activity. For example, Lima et al.
(2010) showed that gamma oscillations (30–80 Hz) induced by
2 orthogonal gratings when presented alone, get strongly sup-
pressed when presented together as a plaid. Strength of gamma
power in LFP was also shown to be dependent on normalization
mechanisms (Ray et al. 2013). Likewise, the so-called steady-state
visually evoked potential (SSVEP) that is produced by presenting
a flickering visual stimulus at a particular frequency and is
typically used in EEG recordings get suppressed in presence of
another visual stimulus flickering at a different frequency (Burr
and Morrone 1987; Ross and Speed 1991) in an asymmetric fash-
ion, with low-frequency SSVEP tags causing more suppression
than high-frequency tags (Salelkar and Ray 2020). Some of these
interactions have also been explained based on normalization
models (Candy et al. 2001; Busse et al. 2009; Tsai et al. 2012;
Baker and Wade 2017; Cunningham et al. 2017). Recent studies
have also looked at the effect of cross-orientation suppression
on population responses such as visual evoked potentials (Busse
et al. 2009) and noise correlations (Ruff and Cohen 2016; Ruff et al.
2016). However, typically, different studies have only modeled 1
neural measure (spiking activity, power in different bands, and
SSVEP), and no study, to our knowledge, has modeled the sup-
pression across various measures using a single normalization
model. Such a comparison is crucial to understand the neural
mechanisms underlying cognitive processes such as attention
that are also thought to be linked to normalization. For exam-
ple, single-unit studies have shown that selective attention can
either lead to a multiplicative increase in firing rates (response
gain; Williford and Maunsell 2006) or shift the CRF to the left
(contrast gain; Reynolds et al. 2000; Martínez-Trujillo et al. 2002).
While some SSVEP studies have also shown response gain (Joon
Kim et al. 2007), to integrate these findings in a common frame-
work, it is important to first test whether different measures are
affected in similar ways due to normalization or attention.

To address this, we recorded spikes and LFP from the primary
visual cortex (V1) of 2 passively fixating monkeys while pre-
senting cross-oriented superimposed gratings (plaids) that were
either static or counterphasing at 8 cycles per second. From the
static and counterphasing gratings, we obtained spiking activity
and SSVEP, respectively. In addition, from the LFP for the static
condition, we focused on 2 features in the LFP: gamma oscilla-
tions, which are thought to index excitation–inhibition interac-
tions (Atallah and Scanziani 2009), and high-gamma power (104–
248 Hz), which are thought to reflect the overall firing activity of
neurons near the microelectrode (Ray et al. 2008; Manning et al.
2009; Ray and Maunsell 2011). The band-powers and SSVEP power
were measured from the respective band pass filtered data for
static and counterphasing stimuli recorded by a microelectrode
array. We then modified the normalization model for population
responses and compared the parameters across these 4 neural
measures.

Materials and Methods
Animal Recordings

All the animal experiments were performed in compliance with
the guidelines approved by the Institutional Animal Ethics Com-
mittee of the Indian Institute of Science and the Committee
for the Purpose of Control and Supervision of Experiments on
Animals. Two adult female bonnet monkeys (Macaca radiata;
Monkey 1: ∼ 3.3 kg, 15 years old and Monkey 2: ∼ 4 kg, 18 years old)
were used in this study. For each monkey, a titanium head post
was implanted over the anterior/frontal region of the skull under

general anesthesia. After recovery, the monkeys were trained
for a visual passive fixation task. Once the monkeys were suf-
ficiently trained to successfully perform the task, each of them
was operated under general anesthesia and implanted with a
custom-made hybrid electrode array in the macaque area V1
in the left cerebral hemisphere. The hybrid array had 81 (9 × 9)
microelectrodes (Blackrock microsystems) and 9 (3 × 3) electro-
corticogram (ECoG) electrodes (Ad-Tech Medical Instrument Cor-
poration), both attached to the same connector made by Black-
rock microsystems. This electrode arrangement was used for
studies reported elsewhere (Dubey and Ray 2019, 2020); however,
for the present study, the data were only analyzed from 81 micro-
electrodes. Each of microelectrodes were 1 mm long, separated
by 400 μm with a tip diameter of 3–5 μm. Area V1 was identified
with stereotactic coordinates and by visual inspection of the
lunate and the superior temporal sulci. The microelectrode array
was placed 10–15 mm from the occipital ridge and 10–15 mm
lateral from the midline. The entire length of the microelectrode
penetrated the cortex. The reference wires were placed over the
dura near the edge of the craniotomy or secured to the metal
strap used to secure the bone on the craniotomy. The receptive
fields of the neurons recorded from the microelectrodes were
centered in the lower right quadrant of the visual field at an
eccentricity of ∼ 3.5◦ to ∼ 4.5◦ in Monkey 1 and ∼1.6◦ to ∼ 1.8◦ in
Monkey 2.

The mean impedance of microelectrodes was ∼ 0.6 MΩ (range
0.1–1.8 MΩ) at 1 kHz for both the monkeys. Both LFP and multiu-
nit activity (MUA) were recorded using the Cerebus Neural Signal
Processor (Blackrock Microsystems). LFP was obtained by band-
pass filtering the raw data between 0.3 Hz (Butterworth filter, first
order, analog) and 500 Hz (Butterworth filter, fourth order, digital)
sampled at 2 kHz and digitized at 16-bit resolution. MUA was
obtained by filtering the raw signal between 250 Hz (Butterworth
filter, fourth order, digital) and 7500 Hz (Butterworth filter, third
order, analog), followed by an amplitude threshold (set at ∼ 5
standard deviations [SDs]) of the signal for both the monkeys.
The MUA, which we also refer to as a “neuron,” was based on
this amplitude threshold crossing and was not sorted further.

Behavioral Task

For the behavioral task, the monkeys were placed inside a mon-
key chair with their head fixed by the head post mounted on
the chair and grating or plaid stimuli of varying contrasts and
orientations were displayed on a monitor (BenQ XL2411 LCD,
at 1280 × 720 resolution, 100 Hz refresh rate, gamma-corrected
and calibrated to a mean luminance of 60 cd/m2 on the monitor
surface using i1Display Pro; x-rite PANTONE) placed ∼ 50 cm from
their eyes. The monkeys and the display setup were placed inside
a Faraday enclosure lined with copper with a dedicated ground-
ing separate from the main power supply to provide isolation
from external electrical noise.

Each monkey performed a passive fixation task in which
fixation had to be maintained at a small white dot (0.10◦ radius)
at the center of the screen for the duration of a trial, which varied
between 2.5 and 3.5 s. Each trial began with fixation, followed
by an initial blank gray screen of 1000 ms; presented 2–3 stimuli
for 500 ms each, with an interstimulus period of 500 ms. The
monkeys were rewarded with a drop of juice for successfully
maintaining fixation within 2◦ of the fixation spot during the
entire duration of the trial. The stimuli were achromatic plaid
stimulus of radius 1◦, composed of 2 gratings with orthogonal
orientations at a spatial frequency of 4 cycles per degree (cpd).
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The stimuli spanned only the receptive fields of the microelec-
trodes but not of the ECoG electrodes. The contrast of each of
the component grating during any stimulus presentation could
take 5 possible values: 0%, 6.2%, 12.5%, 25%, and 50%, whereas the
temporal frequency of each of the component grating during any
stimulus presentation could take 2 possible values: 0 Hz (static
grating) or 8 Hz (counterphasing grating). The orthogonal pair of
orientations chosen for different sessions were 0–90, 22.5–112.5,
45–135, and 67.5–157.5◦.

Data from 2 monkeys were collected in 13 and 9 recording
sessions, respectively. Only correct trials (in which the monkeys
maintained fixation throughout the duration of the trials) were
used for analysis. We only analyzed the plaid stimuli data when
both the component gratings were either static or counterphas-
ing at 8 Hz. On average, we obtained 33 ± 1 stimulus repeats for
each of the stimuli conditions.

Electrodes Selection

We chose electrodes for which the following 3 conditions were
met: 1) at least 15 spikes across all trials were recorded during
stimulus period of 150–400 ms for either of the grating stimulus at
50% contrast, 2) signal-to-noise (SNR) ratio of the spike waveform
(Kelly et al. 2007) was at least 2, and 3) receptive field centers
were within 0.75◦ of the stimulus center in each of the recording
sessions. This yielded 143 electrodes (37 unique) for Monkey
1 and 48 electrodes (13 unique) for Monkey 2. For a proper
comparison between spike and LFP measures, the same set of
electrodes was also used for LFP and SSVEP analysis. To account
for potential differences in signal variability of MUA versus LFP
across sessions, for each unique electrode, we averaged data
across sessions, yielding 50 unique electrodes from both mon-
keys combined. This set was subsequently used for all 4 neural
measures. The results were similar when analysis was performed
without combining data for each electrode across sessions
(Supplementary Fig. 3).

Data Analysis

All data were analyzed using custom codes written in MATLAB
(The MathWorks, RRID: SCR_001622). Individual data analysis
methods are briefly summarized below.

Absolute and Relative Power Spectral Density Plots

Power spectral densities (PSDs) for different stimulus conditions
were computed using multitaper method with 1 taper using
the Chronux toolbox (Bokil et al. 2010; http://chronux.org/, RRID:
SCR_005547; Figs 3, 5, and 6). The analysis period was selected
between 150 and 400 ms after stimulus onset to avoid stimu-
lus onset-related transients and compared against a “baseline
period” between −300 and −50 ms of stimulus onset (a gray
screen). Absolute PSDs were expressed in logarithmic units (base
10), and change in PSDs was plotted with respect to the baseline
response (common baseline for all plaid contrast combinations)
for each plaid contrast condition:

�PSDi = 10
(
log10(ST)i − BLcommon

)

Here i represents a contrast condition of a plaid; � PSDi

represents the change in PSD in decibels; (ST)i denotes the PSD in

the stimulus epoch for stimulus condition i; and BLcommon denotes
the mean baseline PSD across all 25 (5 × 5) contrast conditions,
that is, BLcommon = mean [log10 (BLi)]. Absolute PSDs and change in
PSDs in Figure 5A were computed for static stimuli, and whereas
the same in Figure 6A were computed for counterphasing
stimuli.

For the changes in gamma power and high-gamma power
as shown in Figure 5 for static stimuli, we first averaged the
raw power between 32–80 and 104–248 Hz for both stimulus
and baseline periods. For the changes in SSVEP power as shown
in Figure 6 for counterphasing stimuli, we computed the raw
power at 16 Hz (twice the counterphasing frequency, i.e., 8 Hz)
for both stimulus and baseline periods. We then repeated the
same procedure as described above to compute the change in
power.

Time–Frequency Analysis

We computed the time–frequency power spectra using multi-
taper method with 1 taper (Fig. 3). We used a moving window
of size 100 ms and step size of 25 ms, giving a frequency res-
olution of 10 Hz. We computed baseline power by averaging
power across baseline period in logarithmic units (base 10) for
each frequency. We further computed the common baseline
time–frequency power spectra by averaging this baseline power
across all 25 contrast conditions. We computed the changes in
time–frequency power spectra at each of the contrast conditions
by subtracting the common baseline power from its respective
time–frequency power spectra.

Normalization Model

The standard normalization model is as follows:

R1,2 = c1L1 + c2L2

c1 + c2 + σ
(1)

where R1,2 is the mean response, c1 and c2 are the contrasts of the
2 gratings; L1 and L2 are the responses of the site’s linear receptive
field to the individual gratings at unit contrast respectively; σ is
a positive-term that denotes the semisaturation constant for the
CRF of an electrode. This equation is similar to the normalization
equations described in previous studies (Heeger 1992; Carandini
et al. 1997). The linear responses to the plaid (c1L1 + c2L2) is “divi-
sively normalized” by the overall activity of the normalization
pool, which is proportional to the contrasts of the 2 gratings, c1

and c2. We refer to this model as the “untuned” normalization
model because the strength of the normalization signal is not
dependent on the orientation of the gratings.

Recently, the standard normalization model has been modi-
fied to include a tuned normalization component (Ni et al. 2012;
Ni and Maunsell 2017). In this case, the normalization model is
as follows:

R1,2 = c1L1 + c2L2

c1 + αc2 + σ
(2)

Here, a tuned normalization parameter (α) is introduced to
the standard divisive normalization model (equation 1) in the
denominator to describe the extent of normalization contributed
by one population on the other. Normalization is “untuned” for
α = 1 and becomes “tuned” as α deviates away from 1.

Here we describe a normalization model for population sig-
nals such as LFP and EEG. Note that the normalization models

http://chronux.org/
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mentioned above describe the activity of an individual neuron.
Neurons in V1 are highly orientation selective, so a population
of neurons that prefer the first stimulus will hardly respond to
the second stimulus, and their response can be approximated
(by setting L2 to zero) as: c1L1

c1+αc2+σ
. Similarly, a population of

neurons that prefer the second stimulus can be approximated as
c2L2

αc1+c2+σ
. The population signal, which is the sum of the activity

of both these subpopulations, can therefore be approximated
as:

R1,2 = c1L1

c1 + αc2 + σ
+ c2L2

αc1 + c2 + σ
(3)

Interestingly, this normalization model is similar to the
“equal-maximum-suppression stimulus-tuned” normalization
model proposed by Ni and colleagues for fitting normalization
responses of neuronal spike activity in middle-temporal (MT)
cortex when the relative locations of nonoverlapping stimuli are
varied within the receptive field of MT neurons (Ni and Maunsell
2017). In their case as well, this model outperformed the other
normalization models.

Although previous studies have used exponents to scale
responses in CRFs with (Reynolds and Heeger 2009; Itthipuripat
et al. 2014) or without attention (Tsai et al. 2012) using
normalization models, we have avoided it here for 2 reasons.
First, this reduces one free parameter. Second, we wanted our
model to be consistent with the model proposed by Ni and
Maunsell (2017).

Model Fitting

The fitting procedure was the same for each of the neural
measures. For a given neural measure, R1,2 is the actual neural
response for a given contrast condition obtained from the
experiments. The free parameters in the standard (untuned)
normalization model were L1, L2, and σ , whereas the free
parameters in the tuned and population normalization models
were L1, L2, α, and σ . The starting points for each of the free
parameters were set separately. L1 was initialized by setting c2 = 0
(contrast of grating 2 is 0%); L2 was initialized by setting c1 = 0
(contrast of grating 1 is 0%), and alpha was initialized by setting
c1 = c2 = 0.5 (contrast of grating 1 and 2 are 50% each). Sigma was
initialized at 0.1 and constrained between 0 and 5. We fit the
free parameters of the relevant model(s) to the 25 combinations
of contrasts using the “fminsearch” function in MATLAB. The
predicted responses were then obtained for each of the 25 con-
trast conditions by using the estimated parameters to respective
normalization equation. The sum of squared estimate of errors
(SSED) was calculated between the actual and predicted response
for all 25 contrast conditions. The variability in the actual
data was calculated by the sum of squared estimate of errors
around the mean (SSEM) for 25 contrast conditions. The ratio
(SSED/SSEM) was the fraction of data that could not be explained
by the model and thus explained variance was calculated by
subtracting the ratio from 1 and converted to percentage. We
present fit results for the entire population by fitting the median
response across all electrodes using population normalization
model (Figs 4D, 5D, and 6D). We also present fit results for
individual electrodes by using each of the normalization models
(Fig. 7A).

Because the different normalization models had different
number of free parameters, to compare their performance, we
calculated the corrected Akaike information criteria (AICc) values
for each of the electrodes for each of the 3 models (Hurvich and

Tsai 1989; Motulsky and Christopoulos 2004):AICc = N×loge
SSED

N +
2K + 2K(K+1)

N−K−1 where SSED is the sum of squared estimate of errors
as before, N is the number of observations, and K is the number
of fitted free parameters. The number of observations for each
model was 25 for the number of different contrast conditions.
There were 3 free parameters for our “untuned” model and
4 free parameters each for “tuned” and “population” models.
We also included the SSED itself as another degree of freedom
(Motulsky and Christopoulos 2004), resulting in fitted parameters
to increase to 4 for “untuned” model and 5 each for “tuned”
and “population” model. According to this formula, the absolute
value of the AICc has no meaning since it only depends on the
absolute values of sum of squared error (SSED in the formula). In
particular, the AICc values can also be negative. The important
comparison is how this value changes across models. The abso-
lute difference between AICc values is important in selection of
the preferred model and not the absolute AICc values (Motulsky
and Christopoulos 2004).

Statistical Analysis

Unless noted otherwise, all the statistical analyses were com-
puted for the sample size of N = 50 unique electrodes obtained
from combined dataset of 2 monkeys. The standard error of
medians (SEM) of normalization index (N.I.) (a suppression
index described in Results section), normalization parameter (α),
semisaturation constant (σ ), explained variance and AICc values
of normalization models were computed using bootstrapping
method. In this method, from a sample of 50 elements, a new
sample of 50 elements was chosen randomly with replacement
to the original sample (termed as bootstrap sample). The median
of this bootstrap sample was computed. This process was
iterated 1000 times to generate 1000 medians. The SD of this
population of medians was reported as SEM in Figure 7A–D.

Statistical tests were performed between different neural
measures to test whether their distributions were significantly
different from each other. The null hypotheses of these tests
assumed that the medians of the sample distribution between
2 neural measures were from the same distribution. Nonpara-
metric tests (Kruskal–Wallis test) were performed between dif-
ferent neural measures in pairs for their sample distributions
of N.I., tuned normalization parameter (α), and semisaturation
constant (σ ).

Results
We analyzed the effect of stimulus normalization on 4 different
neural measures (spikes, gamma power, high-gamma power,
and SSVEP) by recording spikes and LFP from the primary
visual cortex (area V1) of 2 passively fixating monkeys while
presenting static (for spikes, gamma, and high-gamma power)
or counterphasing (for SSVEP) plaids. Results were similar for
the 2 monkeys and therefore the data were pooled, yielding a
total of 191 electrodes across 22 recording sessions. We further
combined data from individual electrodes across sessions,
yielding 50 unique electrodes (see Materials and Methods for
details).

Figure 1A shows the raster plots and peristimulus time his-
togram (PSTH) of one example electrode from a single recording
session when 2 overlapping static gratings of 112.5◦ (preferred)
and 22.5◦ (null) orientations were presented at 5 contrast levels
each (25 contrast conditions). Although the null orientation by
itself produced negligible response at any contrast level (first
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Figure 1. Spiking activity profile for different contrast conditions of the plaid stimuli for a representative electrode, which preferred one component grating (112.5◦) but

not the other (22.5◦). (A) Raster plots showing spiking activity in individual trials for each contrast combination during presentation of static orthogonal plaid stimuli

(0–500 ms). The columns (left to right) represent increase in contrast of the component grating 1 (from 0% to 50% in steps of multiplicative factor of 2) and rows (bottom to

top) indicate increase in contrast of the component grating 2 in the same manner as component grating 1. Trial-averaged PSTH is overlaid on individual raster plots (blue

to orange traces highlight increase in contrast for component grating 2). Gray trace in the top-right tile shows the sum of responses to individual component gratings

(top-left and bottom-right traces). (B) PSTH plots of varying contrast conditions of component grating 2 is overlaid together (all 5 rows collapsed into a single row).

column), it nonetheless suppressed the response due to the
preferred stimulus, which can be observed by comparing the
last row that corresponds to the preferred only condition to
the first row, which corresponds to the same preferred stimulus
with a superimposed null stimulus at 50% contrast. To highlight
the suppression, we also computed the sum of responses to
individual gratings at 50% contrast (sum of the traces in top-
left and bottom-right tiles, indicated by a gray line in the top-
right tile) and overlaid on the plaid response at 50% contrast
(orange line in the top-right tile). Figure 1B shows the overlaid
PSTHs for different contrast values of the null grating (blue to
orange traces indicate increase in contrast) for each value of
the preferred contrast level, which shows suppression of the
initial transient response as the contrast of the null stimulus
increases.

Because a single orthogonal pair of orientations was used for
each session, they were not the preferred and null orientations
for most neurons. Instead, most neurons responded to both grat-
ings. Figure 2A shows an example of a site where both gratings
of the plaid produced a significant response (following the same
layout in Fig. 1A). Cross-orientation suppression was not evident
directly but could be observed by comparing the responses to
the plaid at 50% contrast (orange trace in the top-right tile) with
the sum of responses to individual gratings at 50% contrast (gray
trace in the top-right tile).

Figure 3A shows the change in power with respect to a
baseline period (−300 to −50 ms before stimulus onset; see
Materials and Methods) of the LFP recorded from the same
example electrode as Figure 1. While gratings at either of
the 2 orientations at 25% and 50% contrast produced strong
gamma oscillations (top-left and bottom-right panels), these
oscillations were severely attenuated for plaid stimuli (top-right
panel). This effect has been previously reported in macaque
V1 area by Lima et al. 2010. Figure 3B shows the change in
PSD computed during 150–400 ms after stimulus onset with
respect to the baseline period, following the same format as
in Figure 1B, to clearly visualize the change in power for each
contrast condition and the effect of normalization at different
frequencies.

High-gamma power (104–248 Hz) increased after stimulus
onset, but the increase was less for plaids compared with
gratings, best observed at mid-level contrasts (middle panels
in Fig. 3B) for this electrode. Similar to firing rates, the effect
was more subtle than what was observed at gamma frequencies.
We also observed a strong suppression at alpha frequencies (8–
12 Hz). However, the effect was difficult to quantify because
the stimuli were presented only for 500 ms and analyzed
over only 250 ms, yielding a frequency resolution of 4 Hz and
consequently only 2 points in the alpha range, which was
insufficient to detect potential shifts in alpha peak frequencies.
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Figure 2. Spiking activity profile for different contrast conditions of the plaid stimuli for a representative electrode that was responsive to both component gratings.

Same layout as Figure 1.

Further, alpha suppression started relatively later for plaid
stimuli (roughly 300 ms) compared with the grating conditions
(roughly 200 ms; compare alpha ranges in top vs. bottom-
rightmost plot in Fig. 3A). Therefore, power in the alpha range
was not analyzed further.

Effect of Stimulus Normalization on Population Spiking
Activity in Area V1

Figure 4A shows the mean firing rates of 50 unique electrodes
from 2 monkeys, in the same format as Figure 1B. Here, we simply
averaged the responses across electrodes irrespective of their
individual orientation preference. Figure 4B shows the median
change in spike rates during 150–400 ms after stimulus onset
relative to baseline, as a function of the contrast of each grating
(x- and y-axes for component gratings 1 and 2, respectively).
To quantify the suppression, we calculated N.I. for each elec-
trode (as proposed by Ruff and Cohen, 2016) as the ratio of the
sum of the responses to individual gratings at 50% contrast to
the response to their superposition (gray and orange traces in
Fig. 4A). According to this equation, N.I. value of 2 indicate perfect
normalization, where the response for plaid stimulus at 50%
contrast is the average of both the grating stimuli at 50% contrast,
whereas value of 1 indicates no normalization (plaid response
is the sum of individual grating response). Values >2 show very
strong normalization where the response for plaid stimulus at
50% contrast is even lower than average of both the grating
stimuli at 50% contrast.

Figure 4C shows the histogram of N.I. values for the
population. The median N.I.± SEM (computed using bootstrap
method) of all multiunits was 1.07 ± 0.03, indicating mild
cross-orientation suppression in our multiunit data. These
N.I. values are slightly lower than the values obtained for
multiunits by Ruff and colleagues for MUA in V1 (1.14). The
weaker normalization could be due to the use of a fixed
spatial frequency, which was optimized to produce strong
gamma oscillations. However, this was not due to the use of
a suboptimal pair of orientations. In control analyses, we found
no correlation between the N.I. values and difference between
the preferred and stimulus orientations for a neuron, suggesting
that normalization is largely a property of a particular neuron
rather than the response to specific stimuli, as shown previously
by Ruff and Cohen (2016). The lower N.I. values could also be
due to the use of static stimuli, which had lower sustained
firing rates in the analysis period. In comparison, N.I. value
for spike responses for counterphasing plaids was 1.22 ± 0.04
(Supplementary Fig. 1).

A normalization model, modified for population responses
(equation 3), provided good fits to the MUA data as well. Figure 4D
shows the change in median spike rates of the population for
2 gratings at 5 contrast levels (circles in 2 shades of gray), their
superposition to form a plaid (black triangles), as well as the fit of
the normalization model (corresponding traces in gray and black;
all 25 contrast levels were used to fit the model). This model
explained 95% of the variability in this dataset. The performance
of the model when applied to individual electrodes is described
later (Fig. 7).
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Figure 3. Difference in time–frequency energy profile and PSD profile. (A) Time–frequency energy difference plots for the same example electrode as in Figure 1 (in dB)

showing the difference in energy from baseline energy (−300 to −50 ms, 0 denotes the stimulus onset, difference computed separately for each frequency) for contrast

combinations of the static plaid stimuli. Gamma and high-gamma range is denoted by solid black horizontal lines (32–80 Hz) and gray horizontal dashed lines (104–

248 Hz). (B) Change in PSD of all contrast combinations of component grating 2 overlaid together (same arrangement to Fig. 1); gamma and high-gamma ranges are

denoted by solid black vertical lines (32–80 Hz) and gray vertical lines (104–248 Hz).

Effect of Stimulus Normalization on Gamma and
High-Gamma Power in Area V1

Next, we analyzed the effect of stimulus normalization on LFP
gamma band power and high-gamma band power averaged
across all unique electrodes. The top panel in Figure 5A shows
the PSDs of different contrast conditions of the plaid stimuli
for the interval between 150 and 400 ms. The 5 plots in the
top panel (left to right) denote increasing contrasts of grating
1 and individual blue to orange traces represent increasing
contrasts of grating 2. Black trace denotes the mean PSD across
all contrast conditions for baseline period of −300 to −50 ms
with respect to stimulus onset. The lower plots show the change
in power during stimulus period from this baseline, similar to
the scheme presented in Figure 3B. Similar to the results shown
in the example electrode in Figure 3, we observed increases in
gamma band power and peak frequency with increasing contrast
of the grating 2 (leftmost plot in top panel). We also observed a
drastic reduction in gamma power as well as an increase in peak
frequency when gratings were superimposed to form a plaid
(best observed in the rightmost panel). The leftmost panel in
Figure 5A also shows that gamma oscillations become faster
with increasing contrast of the gratings, as shown previously
(Ray and Maunsell 2010), whereas the rightmost panel shows
that plaids have less gamma power but a higher center frequency
than gratings, as shown by Lima et al. (2010).

As before, we quantified these results by computing the
total change in power in the gamma and high-gamma bands
relative to the baseline power in these bands (top and bottom
rows of Fig. 5B) and calculated the N.I. for change in gamma and

high-gamma power in the same manner as spikes (Fig. 5C). N.I
for gamma varied between 1.8 and 6 (median: 3.4 ± 0.12), with
majority of electrodes showing suprastrong cross-orientation
suppression (N.I. >2). For high-gamma power, the median N.I.
was 1.39 ± 0.03, significantly higher than the N.I. for spikes
(Kruskal–Wallis test, P = 1.15 × 10−9). Importantly, the same
normalization model as used above could explain the variation
in power in both bands with high accuracy (explained variance
of 98% and 96% for gamma and high-gamma power of the
population data; Fig. 5D) by taking different values of the
tuned normalization parameter (alpha) and the semisaturation
constant (sigma).

Effect of Stimulus Normalization on SSVEP Power in Area
V1

We then performed similar analysis for SSVEP power obtained
from counterphasing stimuli, for which the strongest response
was observed at twice the temporal frequency (16 Hz; Fig. 6A;
same format as Fig. 5). Normalization in SSVEPs (median N.I.:
1.66 ± 0.08; Fig. 6C) was stronger than high-gamma power
(Kruskal–Wallis test, P = 7.03 × 10−3), although significantly
weaker than gamma (Kruskal–Wallis test, P = 1.79 × 10−17). The
normalization model used earlier provided excellent fit to this
dataset as well (explained variance of 91%; Fig. 6D). Comparison
of the fitted parameters on median of the population data
(Figs 4D, 5D, and 6D) revealed that while the semisaturation
constant (sigma) was similar for spikes, high-gamma and
SSVEP (0.3, 0.13, and 0.17, respectively), the parameter alpha
increased considerably (0.14, 0.53, and 0.85, respectively) to
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Figure 4. Population spiking activity profile. (A) Mean firing rate for all contrast combinations of plaid stimuli across all 50 unique electrodes during time period of −100

to 500 ms with respect to stimulus onset. The stimulus period of 150–400 ms is denoted by thick vertical lines. Error bars have been omitted for clarity. The plots (left to

right) in panel A represent increasing contrast of grating 1, whereas individual traces (blue to orange) in each of the plots indicate increasing contrast of grating 2. Gray

trace in the rightmost plot shows the sum of responses to individual component gratings at 50% contrast. (B) Median change in population spike response of all V1 units

to static plaid stimuli as a function of the contrast of each component grating (x-axes correspond to component grating 1 and y-axes correspond to component grating

2). (C) Histogram of N.I. for spike responses of all unique units recorded in V1; vertical black solid-dashed lines indicate the boundary range of units with N.I. values

between 1 and 2, respectively. (D) Median population responses for grating 1 (dark gray circles), grating 2 (light gray circles) and plaid (black triangles) as a function of

contrast. The lines show fit of the median population responses by a single population normalization model (same color scheme as markers); caption indicates values

of fitted parameters and explained variance for the mean population spiking activity.

explain the increase in N.I. for these 3 measures. For gamma
power, both sigma and alpha (1.8 and 9.7, respectively) were
almost an order of magnitude larger, which explained the linear
increase in gamma power with increasing contrast of component
gratings and the strong suppression with superimposed gratings,
respectively. We quantified this by comparing the model fits to
individual electrodes below.

Comparison of Effect of Stimulus Normalization on
Different Neural Measures

Finally, we fitted the normalization model to individual elec-
trodes to compare the fit quality and fitted parameters of all the 4
neural measures (spike rate, gamma power, high-gamma power,
and SSVEP power).

First, we compared 3 normalization models—standard
normalization model (equation 1), tuned normalization model
(equation 2), and finally the population normalization model
proposed here (equation 3). While the fit quality with this new
“population normalization model” was high for all measures
(87 ± 3%, 97 ± 0.2%, 94 ± 1%, and 90 ± 2% for spikes, gamma, high
gamma, and SSVEP, respectively), other 2 models fared poorly,
especially for gamma (Fig. 7A). To account for differences in
free parameters (3, 4, and 4 for the 3 models), we compared
the corrected AIC values for each electrode for each of 3 models
(Fig. 7B). The median AIC values were not significantly different
between the standard and tuned models (Kruskal–Wallis test,
P = 0.41, 0.54, 0.55, and 0.50 for spikes, gamma, high-gamma,
and SSVEP, respectively). However, the difference in corrected

AIC values between population and tuned models was highly
significant for gamma (Kruskal–Wallis test, P = 0.30, 7.33 × 10−17,
0.02, and 0.52 for spikes, gamma, high-gamma, and SSVEPs,
respectively). We discuss the reasons behind the failure of the
standard and tuned model for gamma power in the Discussion
section. For the remaining section, we used the fits for the new
population normalization model only.

The tuned normalization parameter α for the 4 measures
were 0.3 ± 0.04, 9.28 ± 1.43, 0.63 ± 0.03, and 1 ± 0.09 (Fig. 7C). This
parameter was significantly higher for gamma power than firing
rate (P = 3.23 × 10−17, Kruskal–Wallis test), high-gamma power
(P = 6.86 × 10−18, Kruskal–Wallis test), and SSVEP (P = 6.86 × 10−18,
Kruskal–Wallis test). There was also significant difference
between firing rate and high-gamma power (P = 4.19 × 10−7,
Kruskal–Wallis test), between firing rate and SSVEP power
(P = 1.84 × 10−9, Kruskal–Wallis test) and that between high-
gamma power and SSVEP power (P = 5.59 × 10−7, Kruskal–Wallis
test).

The median semisaturation constants (σ ), which specifies
how rapidly the CRF reaches semisaturation, were 0.18 ± 0.04,
1.23 ± 0.34, 0.12 ± 0.07, and 0.15 ± 0.02 for the 4 neural measures
(Fig. 7D). While the values for gamma differed significantly
from firing rate (P = 1.31 × 10−7, Kruskal–Wallis test), high-
gamma power (P = 1.64 × 10−14, Kruskal–Wallis test), and SSVEP
(P = 5.04 × 10−16, Kruskal–Wallis test), none of the differences
between firing rate and high-gamma power (P = 0.15, Kruskal–
Wallis test), firing rate and SSVEP power (P = 0.11, Kruskal–
Wallis test), and high-gamma power and SSVEP power (P = 0.53,
Kruskal–Wallis test) were significant. Supplementary Figure 2
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Figure 5. Changes in gamma and high-gamma power profile as a function of contrasts of component gratings. Solid black and solid gray vertical lines indicate gamma

and high-gamma range, respectively. (A) Top row: PSDs during stimulus period (150–400 ms after stimulus onset) as a function of contrast of component gratings of the

static plaid stimuli, layout same as in preceding figures, black trace indicates the mean baseline for all contrast combinations. Bottom row: Corresponding change in

PSDs during stimulus period (150–400 ms after stimulus onset) with respect to prestimulus baseline (−300 to −50 ms) as a function of contrast of component gratings of

the static plaid stimuli. (B) Median change in population response of all electrodes to static plaid stimuli as a function of the contrast of each component grating (x-axes

correspond to component grating 1 and y-axes correspond to component grating 2). (C) Histogram of N.I. of median population responses all unique electrodes; vertical

black solid-dashed lines indicate the range of units with N.I. values between 1 and 2. (D) Median population responses for grating 1 (dark gray circles), grating 2 (light

gray circles), and plaid (black triangles) as a function of contrast. The lines show fit of the median population responses by a single population normalization model for

each of the conditions (same color scheme); caption indicates values of fitted parameters and explained variance for the mean population spiking activity. (B–D) Change

in gamma power (top); high-gamma power (bottom).

shows the same results separately for the 2 monkeys, along
with data from individual electrodes. While there were minor
differences across monkeys (potentially due to a smaller sample
size for Monkey 2), the main results—superior performance
of the population normalization model over the standard and
tuned models for gamma and significantly larger normalization
parameter and semisaturation constant for gamma compared
to other measures—were consistent across monkeys. These
results remained consistent even when data across individual
sessions for a particular electrode were not pooled, which yielded
143 nonunique electrodes from Monkey 1 and 48 nonunique

electrodes from Monkey 2 (Supplementary Fig. 3). Finally, results
remained consistent when the analysis was restricted to the
early stimulus period between 0 and 250 ms after stimulus
onset (Supplementary Fig. 4). Although the gamma rhythm was
less prominent in the first 250 ms, leading to lower median
N.I. values (1.89 as compared with 3.37 for the late period as
described earlier) and tuned normalization parameter (5.01 as
compared with 9.28), our population normalization model was
still able to outperform the other 2 models in explaining the
change in gamma power (Kruskal–Wallis test on corrected AIC
values, P = 0.20 between the standard and the tuned model and
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Figure 6. Changes in SSVEP power profile as a function of contrasts of component gratings of flickering Plaid. (A–D) Same layout as in Figure 5A–D. The black vertical

lines in each of the plots in Panel A indicate the SSVEP power at 16 Hz (second harmonic of the counterphasing stimuli flickering at 8 Hz).

Figure 7. Comparison of normalization model parameters for all neural measures for 50 unique electrodes. (A) Bar plots (white to gray) showing median explained

variance for the respective neural measures for the untuned, tuned, and population normalization models. (B) Bars (white to gray) represent median corrected AIC

values for standard, tuned, and population normalization models (C) Bar plots of median normalization parameter (α) for all 4 neural measures for our population

model. (D) Bar plots of median semisaturation constant (σ ) for all 4 neural measures for our population model. Error bars indicate bootstrapped SEM.
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P = 2.87 × 10−14 between the tuned and the population model).
The median semisaturation constant values became higher and
more variable for all measures because transient responses were
stronger and more variable across electrodes.

To test whether normalization strengths of different mea-
sures were correlated, we analyzed the Spearman correlation
coefficient for N.I. values of different neural measures across
the 50 unique electrodes. We found significant correlation in
the N.I. values of MUA and high-gamma (Spearman correlation
coefficient, r = 0.39, P = 0.02 in Monkey 1, r = 0.75, P = 4.4 × 10−3 for
Monkey 2), which is not unexpected because high-gamma is
thought to reflect population firing rate (Ray and Maunsell 2011).
Correlations between other measures were not consistent/signif-
icant across monkeys.

Eye Position Analysis

Because small stimuli were placed on receptive fields that were
close to the boundary of fixation window (specially for Monkey
2), we compared the horizontal and vertical eye positions for
the 25 different contrast conditions, for both static and coun-
terphasing stimuli. We performed a grand mean for horizontal
eye-position, vertical eye-position (mean over all time points
between −500 to 500 ms and subsequently for all stimuli repeats)
for each of the 25 contrast conditions. We did not find any
significant difference in horizontal and vertical eye positions
across 25 different contrast conditions for either static or coun-
terphase stimuli in either monkey (1-way analysis of variance
[ANOVA] test: Eye-Position Horizontal, Monkey 1: Pstatic = 0.11,
Pcounterphase = 0.66, Monkey 2: Pstatic = 0.31, Pcounterphase = 0.76, Eye-
Position Vertical, Monkey 1: Pstatic = 0.17, Pcounterphase = 0.81, Monkey
2: Pstatic = 0.45, Pcounterphase = 0.22). We also detected microsaccades
using a threshold-based method described earlier (Murty et al.
2018, 2020), initially proposed by Engbert (2006). Specifically, we
identified microsaccades as eye movements with velocities that
crossed a specified threshold for at least a specified duration
of time. We set the velocity threshold between 3 and 6 times
the SD of eye-velocities and minimum microsaccade duration
between 10 and 15 ms for an individual monkey to maximize the
correlation between peak velocity and amplitude of all microsac-
cades for that monkey (also called a “main sequence,”see Engbert
2006 for details), while maintaining the minimum microsaccade
velocity at 100/s and the microsaccade rate between 0.5/s and
3.0/s. The above algorithm was applied for the analysis period of
−500 to 500 ms of stimulus onset. We did not find any significant
difference in the microsaccade rate across all 25 contrast con-
ditions for most of the stimuli in either monkey by performing
1-way ANOVA test on microsaccade-rate (Monkey 1: Pstatic = 0.19,
Pcounterphase = 0.45, Monkey 2: Pstatic = 0.12, Pcounterphase = 0.02). There-
fore, the results shown here cannot be attributed due to poten-
tial differences in eye positions or movements across stimulus
conditions.

Discussion
We used plaid stimuli composed of 2 superimposed orthogonal
gratings with varying contrasts to alter normalization strength
and determined how that affects different neural measures
such as multiunit spiking activity, gamma power, high-gamma
power, and SSVEP power in V1. Although normalization affected
these measures in different ways, a single normalization model,
adapted for population responses, provided excellent fits to all
the data.

Previous Studies on the Effect of Normalization on Different
Neural Measures

Spiking Activity

Cross-orientation suppression has been best studied in spiking
activity, both extracellular (DeAngelis et al. 1992; Carandini et al.
1997; Freeman et al. 2002) and intracellular (Bishop et al. 1973;
Morrone et al. 1982; Priebe and Ferster 2006). Our N.I. values are
closer to those observed by Ruff and Cohen (Ruff et al. 2016) who
also recorded using the chronically implanted Utah arrays (1.14,
1.04, and 1.08 for multiunits recorded from V1, MT, and V4). In our
recordings, the spatial frequency was further restricted to 4 cpd
to maximize gamma power, which may not have been optimal
for spiking activity resulting in slightly smaller values of N.I.
compared with Ruff and colleagues in V1. However, the observed
weak cross-orientation suppression in the small receptive fields
of V1 can also be explained by the decrease in the surround
suppression provided by plaid stimuli, as shown by Walker et al.
(2002).

Gamma Power

Our results were consistent with Lima et al. (2010) who also
showed strong suppression of gamma for plaid stimuli in V1.
However, they did not study multiple contrast levels for both
gratings; neither did they fit any model to their data. Lima and
colleagues interpreted their results by stating that single gratings
induce strong cooperative interactions between population of
neurons, whereas plaid stimuli generate competition between
different population of neurons. Suppressed gamma responses
for plaid stimuli have also been shown in ECoG recordings by
Hermes et al. (2019).

Although our results were well explained using the modified
normalization model, it is unlikely that populations of neurons
that prefer orthogonal orientations exert a >3-fold suppressive
effect (median N.I. 3.37, range 1.8–6) on each other. Instead,
gamma oscillations are likely to arise due to excitation–inhibition
interactions (Whittington et al. 1995; Bartos et al. 2007; Cardin
et al. 2009; Sohal et al. 2009; Buzsáki and Wang 2012; Veit et al.
2017), which have been modeled using very different methods
(Wang 2010), such as Wilson–Cowan type models of excitatory–
inhibitory balance (Wilson and Cowan 1972; Jia et al. 2013; Jadi
and Sejnowski 2014), “interneuronal network gamma” models
(Whittington et al. 1995; Wang and Buzsáki 1996), and “pyramidal
inter-neuronal network gamma” models (Whittington et al. 2000;
Tiesinga and Sejnowski 2009). Therefore, gamma power itself
may not be a good measure of normalization because it may not
necessarily rely only on normalization mechanisms. Recently,
the reduction in gamma power due to the presentation of plaid
stimuli has been explained by a variance-based model (Hermes
et al. 2019), in which the gamma responses are largely driven
by the variance across orientations in the population receptive
field. Plaid stimuli activated multiple orientation columns and
reduced the variance, and therefore reduced gamma power. We
have previously shown that gamma power varies with normal-
ization strength, but the relationship is nontrivial, possibly due
to the complex excitation–inhibition interactions that underly
normalization (Ray et al. 2013). Although these studies suggest
that it may be too simplistic to model gamma power using a
normalization model as done here, it is nonetheless an important
characterization because gamma power has also been reported
to be coupled to other neural measures such as functional mag-
netic resonance imaging (fMRI) (Lachaux et al. 2007; Nir et al.
2007), which have been routinely used to study CRFs and their
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modulation with behavioral state such as attention (Buracas and
Boynton 2007; Li et al. 2008). Therefore, to interpret these results
in the normalization framework, it is crucial to study its effect
on other neural measures related to the blood oxygen level–
dependent signal, such as gamma oscillations.

High Gamma

High-gamma power in the LFP has been linked to firing rate of
neurons around the microelectrode (Ray et al. 2008; Manning
et al. 2009; Ray and Maunsell 2011; Ray 2015). To our knowledge,
no study has looked at the effect of cross-orientation suppression
in the high-gamma of the LFP. However, Hermes and colleagues
have studied the effect of plaids on both gamma and high-
gamma in human ECoG. They observed that the “Broadband
power” (30–200 Hz), spanning both gamma (32–80 Hz) and high-
gamma ranges (104–248 Hz) for our study, increases with the
number of component gratings, whereas “narrowband gamma
power” (30–80 Hz) decreases with the number of component
gratings, in agreement with our observations. While gamma
was related to the variance between orientation columns, high-
gamma was related to the mean activity in these columns,
similar to a model developed for fMRI (Kay et al. 2013).

SSVEP Power

Many EEG studies have studied interactions between multiple
visual stimuli at different temporal frequencies and modeled
these interactions using normalization mechanisms (Candy et al.
2001; Tsai et al. 2012). Tsai et al. (2012) used temporally modu-
lated stimulus contrast in the numerator of the normalization
equation and time-varying normalization pool in the denomi-
nator and used exponents to scale responses unlike our model
to explain SSVEP responses as well as intermodulation terms.
In our data as well, SSVEP responses were well explained by all
the models, including the 3-parameter untuned normalization
model (Fig. 7A).

We used static gratings to analyze spike and LFP responses for
gamma, high-gamma power while using counterphase flickering
gratings for SSVEP power. Counterphase stimuli were not used
for all the measures because they generate strong SSVEP signals
at second harmonic and all subsequent even harmonics. In our
study, we used 8 Hz counterphase gratings causing the SSVEP
signal to be found at 16, 32, 48 Hz, and so on, thus interfering with
gamma and high-gamma responses. To avoid this, we used sep-
arate stimuli to measure and analyze the normalization trends
for different neural measures. However, use of static and coun-
terphase flickering stimuli to obtain different neural measures
complicates the comparison of normalization measures across
different types of neural responses.

Comparison of Our Model With Other Normalization Models

In our study, we have compared predictions of 3 normaliza-
tion models—untuned (equation 1), tuned (equation 2), and
population (equation 3) and found that the population model
outperforms others, especially for the gamma CRFs, even though
the latter 2 have the same number of free parameters. The key
difference is that only in the population model, the tuned
normalization parameter (α) can be arbitrarily increased without
decreasing the responses to the gratings-only conditions, in
which either c1 or c2 is set to zero. Specifically, if we ignore the
semisaturation term (σ ) from the normalization equations, the
responses to presentation of grating 1 (for which c2 = 0) and grat-
ing 2 (c1 = 0) are L1 and L2/α for the tuned normalization model but

are L1 and L2 for the population model. Therefore, a condition in
which the plaid condition produces a weaker response than the
constituent gratings can be readily achieved in the population
model by appropriate values of L1 and L2 and a large value of
α, but this cannot be done for the tuned normalization model
because increasing α decreases the response to grating 2 pre-
sented alone. We tried another version of the tuned normaliza-
tion model in which α term was multiplied to c1, but this did not
improve the overall fit quality because now increasing α reduced
the responses to grating 1 alone. Similarly, a weighted sum model
proposed by Busse et al. (2009) cannot explain the results for
gamma oscillations because the population response cannot be
lower than the response of both stimuli presented alone. Inter-
estingly, our model is similar to the equal maximum suppression
(EMS) spatially tuned normalization model or EMS-stimulus
tuned normalization model (equations 7 and 8 of Ni and Maun-
sell 2017), which was used to explain MT responses to both indi-
vidual or multiple stimuli present at different locations inside the
large receptive fields of MT area when attention was directed to
different locations of the receptive field. They used this model to
explain mutual suppression by populations of neurons encoding
the preferred or null stimuli inside the receptive field. In our
model, we used one normalization parameter (α) instead of using
2 normalization parameters used by Ni and Maunsell, because
in our case there was no clear preferred or null stimulus and the
model did very well with only a single tuned parameter.

Although our model was able to explain the population-
level neural measures, it is descriptive in nature and does not
provide a comprehensive biophysical explanation of why the
normalization strength is different for different measures. It also
lacks dynamics (fluctuations in normalization strength), which
has been introduced in recent normalization models (Tsai et al.
2012; Zhou et al. 2019) and cannot explain differences in cross-
orientation normalization produced by overlapping gratings of
arbitrary relative orientations, as discussed and implemented
in other normalization models (Candy et al. 2001; Hermes et al.
2019). Our analysis was limited to variants of the standard nor-
malization model, because these were directly comparable to a
large body of literature that have used similar simplistic models
to explain spike responses (Ni et al. 2012; Ruff et al. 2016; Ni
and Maunsell 2017). Also, more complex models (Candy et al.,
2001, Hermes et al. 2019, Zhou et al., 2019) were fitted over a
larger set of features (such as multiple relative orientations and
temporal frequencies) than our dataset. Future studies involving
a larger set of stimulus parameters and more detailed modeling
are needed to explain the biophysical origins of different forms
of normalization reported here.

Relation Between Normalization Strength and Attention on
CRFs

Our results partially reconcile some results from attention stud-
ies that have shown different effect of attention on CRFs. Specif-
ically, while some single-unit studies have shown that atten-
tion enhances neuronal spike response for moderate-contrast
stimuli more than very low or very high contrasts, resulting
in a leftward shift of CRFs (contrast gain; Reynolds et al. 2000;
Martínez-Trujillo et al. 2002), others have shown a multiplicative
boosting of neural responses at all contrast levels resulting in
an upward shift of CRFs (response gain; Williford and Maunsell
2006; Lee and Maunsell 2010). Both contrast and response gain
in attentional shifts have been also observed in studies involving
psychophysics and behavior in humans (Ling and Carrasco 2006;
Pestilli et al. 2009; Herrmann et al. 2011), LFP band powers in



Effect of Normalization on Neural Measures in V1 Das and Ray 13

macaques (Chalk et al. 2010), and SSVEP power from EEG (Di
Russo et al. 2001; Joon Kim et al. 2007; Lauritzen et al. 2010;
Itthipuripat et al. 2014). The differences in single-unit studies
have been largely reconciled based on a normalization model in
which factors such as the size of the stimulus and the attention
field can lead to contrast or response gain like changes in the CRF
(Reynolds and Heeger 2009), and variants of such normalization
models (including tuned normalization) have recently been used
to explain the effect of attention on stimulus interactions as well
as noise correlations (Ni et al. 2012, 2019; Ni and Maunsell 2017;
Verhoef and Maunsell 2017). Although we did not manipulate
attention directly in our study, we show that normalization itself
has different effect on different neural measures, and therefore
provides another factor that could lead to differences in the
way CRF obtained from different neural measures shift due to
attention.

Supplementary Material
Supplementary material can be found at Cerebral Cortex Commu-
nications online.
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